JPS61105442A - Method for resonating filament by self-excitation with basic wave - Google Patents

Method for resonating filament by self-excitation with basic wave

Info

Publication number
JPS61105442A
JPS61105442A JP22733484A JP22733484A JPS61105442A JP S61105442 A JPS61105442 A JP S61105442A JP 22733484 A JP22733484 A JP 22733484A JP 22733484 A JP22733484 A JP 22733484A JP S61105442 A JPS61105442 A JP S61105442A
Authority
JP
Japan
Prior art keywords
filament
driving force
self
resonance
integration circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22733484A
Other languages
Japanese (ja)
Inventor
Kazuo Wakayama
若山 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22733484A priority Critical patent/JPS61105442A/en
Publication of JPS61105442A publication Critical patent/JPS61105442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PURPOSE:To satisfy resonance conditions between a filament and a driving force and to secure even self-excitation oscillation with a basic wave by incorporating an integration circuit in a feedback path. CONSTITUTION:One terminal of the filament 5 which is tensed with a weight 7 is suspended from a grounded metallic support 1, and the length of the vibra tion section of the filament 5 is set from said terminal by using a wedge 2. Vibrations of the filament 5 are detected by a photoelectric converter 3 and an obtained electric signal is passed through the integration circuit 8 and an amplifier 9, whose output voltage is applied to an electrode 4 placed nearby the filament 5 to constitute the feedback circuit. Consequently, the phase shift of photoelectric conversion can be ignored and the electrostatic driving force applied from the electrode 4 to the filament 5 is in phase with the output signal of the amplifier 9. Two points of the filament 5 are fixed, so a phase difference that vibrations need to have so as to resonance with the driving force is logi cally a fixed value, i.e. 90 deg.. This is given by the integration circuit in the feed back path, so the filament 5 oscillates itself while meeting resonance requirements.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は例えば細いa維の線密度を振動法によって測定
する場合、繊条の振動を検知してその信励発振の方法を
用いるのに応用する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention is applicable to, for example, when measuring the linear density of thin a-fibers by the vibration method, the vibration of the fibers is detected and the method of excitation oscillation is used. Apply to.

(,21従来の技術 振動法でl短かいtanのIM密度rを測定するには、
張力Tで長さしの区間に張られたfa雄がJic本振動
数f、c振幅の小さい定在波を作るとき、次式がこれに
ついて本発明者が先願(特公昭37−18535、特公
昭4l−6203)L、た自励発振の方法は、繊条の振
動区間の一端をy+<動子とし、自励発振を促がすため
の帰還回路に直流増幅器を用い、これに連続可変の位相
調整器を付けることよ にXっで共振の自励発振かに本周波数の定在波になるよ
うにした。
(,21 To measure the IM density r of l short tan using the conventional technical vibration method,
When a fa male stretched over a length section with a tension T creates a standing wave with a Jic main frequency f and a small amplitude c, the following formula is calculated for this by the inventor in an earlier application (Japanese Patent Publication No. 37-18535, The method of self-excited oscillation is that one end of the vibrating section of the filament is set as y + < oscillator, a DC amplifier is used as a feedback circuit to promote self-oscillation, and a continuous By attaching a variable phase adjuster, we made the self-excited oscillation of the resonance at X to become a standing wave at this frequency.

(3)発明が解決しようとする問題点 以との場合、(1)駆動チが振動するため=条の振動区
間長りに不確定さが残る。また、(2)駆動子そのもの
に必ず共振特性があるので繊条自身の共振周波数foに
形容を与え、さらにそのため(3) 共振の位相調製も
試料ごとに異なる。これらが原因して[冗した計算式で
補圧することができず、式(1)゛を用いるとき、誤差
として処理するほかない。
(3) Problems to be Solved by the Invention In the following cases, (1) Since the drive chip vibrates, there remains uncertainty in the length of the vibration section of the row. In addition, (2) since the driver itself always has resonance characteristics, it gives shape to the resonance frequency fo of the fiber itself, and for this reason (3) the resonance phase adjustment also differs from sample to sample. Due to these reasons, it is not possible to compensate for pressure using redundant calculation formulas, and when using formula (1), there is no choice but to treat it as an error.

(≠)問題を解決するための手段 この発明は、本発明者の論文(P%1維学会誌38゜4
07 (1982))で示すように帯電繊条に近く置い
た電極による振動電界が繊条の駆動力として七分である
から、たとえばこれを利用して先の問題点(1) + 
(2)  を解消することにより実施可能になる。すな
わち、帰還回路に積分回路を組み入れることで問題点(
3)を解決し、さらにこのために基本波による自励発振
までも保証することができることを特徴とする。
(≠) Means for solving the problem This invention is based on the inventor's paper (P%1 Textile Society Journal 38゜4
07 (1982)), the oscillating electric field generated by an electrode placed close to the charged filament is the driving force of the filament, so for example, this can be used to solve the previous problem (1) +
It becomes possible to implement by solving (2). In other words, by incorporating an integrating circuit into the feedback circuit, the problem (
The present invention is characterized in that it solves the problem of 3) and can even guarantee self-sustained oscillation due to the fundamental wave.

(5)実施例 Jよ実施例の概要を示す。分@7で張力が与えられたn
条jの一端を接地した支持金具/につるし、この端から
旗2によって繊条の振動区間長を設定する。繊条の振動
は先願と同じ光電変換3で検知し、得られた電気信号を
酌項の積分回路!および位相ずれの無視できる増@器9
に通し、こ繊 の出力電圧を帯88条に近く開いた氾1iIi≠に印加
することで帰還回路を惜成する。
(5) Example J An overview of the example is shown. Tensioned n in minutes @7
One end of the filament j is suspended from a grounded support metal fitting/, and the length of the vibrating section of the filament is set using a flag 2 from this end. The vibration of the fibers is detected by the same photoelectric conversion 3 as in the previous application, and the obtained electrical signal is sent to the extenuating integration circuit! and an intensifier with negligible phase shift 9
The feedback circuit is spared by applying the output voltage of this wire to the open flood 1iIi≠ near the strip 88.

(6)作用 上の実施例で、光電変換における(1γ相のずれは無視
でき、また、べ極が帯電む1条に加える静市、気P」り
動力の位相は、他の多くのI11!動方法と台って増幅
器出刃信号の位相そのものである。そのと、繊条の2点
を固定しているので、その振動が駆動力に対して共振す
るために必要な位相差はす1!論とで定値90度になる
。これが先に述べた帰還路の積分回路−・コ与えられる
から、繊条は共振条件を満足した自lrm発振を行うこ
とになる。
(6) In an operational example, the (1γ phase shift in photoelectric conversion is negligible, and the phase of the static force applied to the single line charged by the electrode, qi P) is similar to that of many other I11 !The movement method is the phase itself of the amplifier blade signal. Also, since the two points of the filament are fixed, the phase difference necessary for the vibration to resonate with the driving force is 1 !The constant value becomes 90 degrees.Since this is given by the integration circuit of the feedback path mentioned earlier, the fiber will perform self-lrm oscillation that satisfies the resonance condition.

しかも、この積分回路は次式 %式% の作用があるから、増幅器出力は正弦波信号の周Tll
!波数の低い方で大きい増幅度を示す。このため、繊条
の共振による定在波は最も周波数の低い基本波乙になる
ことが保証される。
Moreover, since this integrating circuit has the effect of the following formula % formula %, the amplifier output is the frequency Tll of the sine wave signal.
! It shows a large amplification degree at lower wave numbers. Therefore, it is guaranteed that the standing wave caused by the resonance of the filaments will be the lowest frequency fundamental wave B.

(7)発明の効果 aaa+の線密度ンを求めるために上記の実施日を用い
るときは、tJ(1)の91!論条件をできるだけ1、
.j足させるために定在波の振幅を裸IIIで見えない
ほど小さくする。この場合でも本発明によると、共振に
よる自動発振で基本波の定在波が確実に得られるから、
その椰動数を電気信号で測定したものをいささかの疑問
もなく式(1)のf、とじ、硝に所定の張力Tと振動長
りとを使ってその計算で練密Ma−を精度品く求めるこ
とができる。
(7) Effect of the invention When using the above implementation date to calculate the linear density of aaa+, 91! of tJ(1)! Set the condition to 1 as much as possible.
.. In order to add j, the amplitude of the standing wave is made so small that it cannot be seen in bare III. Even in this case, according to the present invention, the fundamental standing wave can be reliably obtained by automatic oscillation due to resonance.
The number of palm motions is measured using an electrical signal, and without any doubt, f in equation (1) is used. Using the predetermined tension T and vibration length on the glass, the kneaded Ma- is determined as an accurate product. You can ask for more.

【図面の簡単な説明】[Brief explanation of the drawing]

附図は本発明の一実m態様を示す原理図である。 /・・・・・・接地した支持金具、2・・・・・1隻3
・・・・・・光を変換器、l・・・・・・電極板(2枚
)、j・・・・・・繊条、乙・・・・・・繊条の基本波
でのm動模様(定在波)、7・・・・・・分銅、t・・
・・・・積分回路、9・・・・・・増幅器
The accompanying drawing is a principle diagram showing one embodiment of the present invention. /...Grounded support metal fittings, 2...1 ship 3
......Light converter, l...Electrode plate (2 pieces), j...Filament, Otsu...M at the fundamental wave of the fiber Dynamic pattern (standing wave), 7... Weight, t...
...Integrator circuit, 9...Amplifier

Claims (1)

【特許請求の範囲】[Claims] 所定の長さの繊条に帰還を用いて基本波の自励発振をさ
せるのに、繊条の2点が固定され、また帰還路上におい
て繊条の振動とその検出および検出信号と繊条の駆動力
それぞれの間で、位相のずれが無視できるような構成の
ものである場合、この帰還路の途中に積分作用素を組み
込んで繊条と駆動力との間の共振条件を満たし、同時に
その別の作用で自励発振が確実に基本波の定在波になる
ようにした繊条の自励発振方法。
In order to cause self-oscillation of the fundamental wave in a filament of a predetermined length using feedback, two points on the filament are fixed, and on the return path, the vibration of the filament, its detection, and the detection signal and the vibration of the filament are detected. If the configuration is such that the phase shift between each driving force can be ignored, an integral operator is incorporated in the middle of this return path to satisfy the resonance condition between the fiber and the driving force, and at the same time A self-excited oscillation method for fibers that ensures that self-excited oscillation becomes a standing wave of the fundamental wave.
JP22733484A 1984-10-29 1984-10-29 Method for resonating filament by self-excitation with basic wave Pending JPS61105442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22733484A JPS61105442A (en) 1984-10-29 1984-10-29 Method for resonating filament by self-excitation with basic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22733484A JPS61105442A (en) 1984-10-29 1984-10-29 Method for resonating filament by self-excitation with basic wave

Publications (1)

Publication Number Publication Date
JPS61105442A true JPS61105442A (en) 1986-05-23

Family

ID=16859176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22733484A Pending JPS61105442A (en) 1984-10-29 1984-10-29 Method for resonating filament by self-excitation with basic wave

Country Status (1)

Country Link
JP (1) JPS61105442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317333A2 (en) * 1987-11-19 1989-05-24 Btg International Limited Electrical drive circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317333A2 (en) * 1987-11-19 1989-05-24 Btg International Limited Electrical drive circuits

Similar Documents

Publication Publication Date Title
US4851671A (en) Oscillating quartz atomic force microscope
JP2751929B2 (en) Apparatus for generating natural resonance vibration of a mechanical vibration system
US6862923B2 (en) Atomic force microscope
EP0629568B1 (en) Method and apparatus for controlling the drive of self-excited vibrating parts feeder
JP2005526227A (en) Sensor for non-contact electrostatic detector
US3515914A (en) Mechanical oscillator including a torsion bar
JPS61105442A (en) Method for resonating filament by self-excitation with basic wave
JP2004020472A (en) Fatigue testing device and method for thin plate
US4409509A (en) Piezoelectrically driven transducer for electron work function and contact potential measurements
JP3785785B2 (en) Material property measuring device
US9482692B2 (en) Magnetic field value measuring device and method for measuring magnetic field value
RU2274676C2 (en) Device to check the depth of vacuum deposited coatings
JP2004361320A (en) Method of exciting oscillator, method of measuring physical quantity, and instrument for measuring physical quantity
RU2156983C1 (en) Method for measuring of alteration of surface potential
RU2358340C2 (en) Resonance device based on quartz resonator for scanning probe microscope
SU1404891A1 (en) Electroacoustic hardness meter
JP2650429B2 (en) Vibration thermometer
Wang et al. Frequency Stability of Stress-Engineered Nanomechanical Resonator and its Cramer-Rao Lower Bound
JPS60207104A (en) Automatic aligning device for optical fiber
SU145786A1 (en) Pressure Regulator
SU1647223A1 (en) Measuring head
SU1635111A1 (en) Device for measuring electron work function
JPS6050476A (en) Gravimeter
JPS60101982A (en) Ring laser gyroscope
Wakayama et al. An Automatic Vibroscope and How to Use It