JPS61105420A - Range measurement system - Google Patents

Range measurement system

Info

Publication number
JPS61105420A
JPS61105420A JP59227230A JP22723084A JPS61105420A JP S61105420 A JPS61105420 A JP S61105420A JP 59227230 A JP59227230 A JP 59227230A JP 22723084 A JP22723084 A JP 22723084A JP S61105420 A JPS61105420 A JP S61105420A
Authority
JP
Japan
Prior art keywords
light
projection
laser beam
electrical output
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59227230A
Other languages
Japanese (ja)
Inventor
Kozaburo Shibayama
耕三郎 柴山
Takashi Ikeda
隆 池田
Hidehiko Nakao
英彦 中尾
Kazuo Takashima
和夫 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59227230A priority Critical patent/JPS61105420A/en
Publication of JPS61105420A publication Critical patent/JPS61105420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To select a normal detected value and detect the displacement of the reference surface of an object to be machined with high accuracy by projecting plural measurement laser spots near the point of laser projection on the object, and detecting projected beam and scattered beam correspondingly. CONSTITUTION:The object 4 to be machined is irradiated with beam from a laser 5 for machining. Further, laser beam from measurement use lasers 6(6a-6d) are projected on plural spots 8a-8d near the irradiation point of the object 4 and scattered beam is photodetected by a photodetector 12. Then, the displacement detection signal is inputted from the photodetector 12 to a computing element to detect the displacement of the reference surface of the object 4. At this time, the laser beam from the measurement lasers 6 are projected on the incidence spots 8a-8d successively and corresponding scattered beam is photodetected by the photodetector 12. Those projection and photodetection are detected electrically, and then the displacement is detected from an electric output directly when normal or after correction when abnormal. Therefore, the position of a beam spot having a defect is corrected, so the displacement of the object surface is detected accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被加工物ヘレーザビームを投射して溶接また
は切断等の加工を行なう際、被加工物との対向距離を測
定する方式に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring the opposing distance to a workpiece when performing processing such as welding or cutting by projecting a laser beam onto the workpiece. be.

〔従来の技術〕[Conventional technology]

レーザビームの投射により加工を行なう際には、レーザ
ビームを集束するレンズの焦点距離に応じた被加工物と
の対向距離を保つため、被加工物との対向距離を測定す
る必要があり、光スポットを被加工物へ投射し、これの
反射光を撮像レンズにより撮像のうえ、光線の入射位置
に応じた電気的出力を生ずる受光素子へ撮像レンズによ
る結像を投影し、との電気的出力に基づいて対向距離を
求めるものとなっている。
When processing by projecting a laser beam, it is necessary to measure the facing distance to the workpiece in order to maintain the facing distance to the workpiece according to the focal length of the lens that focuses the laser beam. A spot is projected onto the workpiece, the reflected light is imaged by an imaging lens, and the image formed by the imaging lens is projected onto a light receiving element that generates an electrical output according to the incident position of the light beam, and an electrical output is generated. The facing distance is calculated based on the following.

ただし、単一の光スポットのみでは、被加工物の対象面
に凹凸があれば、測定上誤差を生ずるため、レーザビー
ムの投射点近傍周囲へ複数の光スポットを投射し、これ
の反射光を受光素子へ同時に結像として投影することに
よ)、各党スポットによる平均的な対向距離を求める手
段が提案されている。
However, using only a single light spot will cause measurement errors if there are irregularities on the target surface of the workpiece, so multiple light spots are projected around the laser beam projection point and the reflected light is A method has been proposed in which the average facing distance of each spot is determined by simultaneously projecting the images onto a light-receiving element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、複数の光スポットを用いる場合には、レーザビ
ームにより切断された部位、または、同様に穿孔された
部位へいずれかの光スポットが投射されると、これの反
射晃が生じないため、対向距離の測定上誤差を生ずるも
のとなる。
However, when using multiple light spots, if one of the light spots is projected onto a part cut by a laser beam or a part similarly drilled, there will be no reflection of the light spot. This will cause an error in distance measurement.

本発明は、従来のかかる問題点を根本的に解決する目的
を有し、複数の光スポツト中、いずれかが反射光を生じ
ない場合にも、測定上の誤差を生じないものとした極め
て効果的な、距離測定方式を提供するものである。
The present invention has the purpose of fundamentally solving such conventional problems, and is extremely effective in eliminating measurement errors even when one of a plurality of light spots does not produce reflected light. This provides a simple distance measurement method.

〔問題点を解決するための手段〕[Means for solving problems]

前述の目的を達成するため、本発明はつぎの手段によプ
構成するものとなっている。
In order to achieve the above-mentioned object, the present invention is constructed by the following means.

すなわち、被加工物のレーザビーム投射点近傍周囲へ互
にほぼ対称な位置として複数の光スポットを順次にかつ
反復して投射し、この投射による反射光を同一の撮像レ
ンズにより撮像し、光線の入射位置に応じた電気的出力
を生ずる受光素子へ撮像レンズによる結像を投影し、こ
の受光素子の電気的出力を光スポットの投射と対応して
検出し、各党スポットの投射毎に受光素子の電気的出力
が正常に生じたときは光スポットの投射毎の電気的出力
に応じてレーザビール投射点の位置を求めてからこの投
射点位置の対向距離を求め、各党スポットの投射毎罠受
光素子の電気的出力が正常に生じないときには補正演算
を行なってレーザビーム投射点の位置を求めてから対向
距離を光めるものとしている。
That is, a plurality of light spots are sequentially and repeatedly projected onto the workpiece near the laser beam projection point at approximately symmetrical positions, and the reflected light from this projection is imaged by the same imaging lens, and the light beams are An image formed by an imaging lens is projected onto a light receiving element that produces an electrical output according to the incident position, and the electrical output of this light receiving element is detected in correspondence with the projection of a light spot. When the electrical output is normally generated, the position of the laser beam projection point is determined according to the electrical output for each projection of the light spot, and then the facing distance of this projection point position is determined, and the trap light receiving element for each projection of each spot is determined. When the electrical output is not produced normally, a correction calculation is performed to find the position of the laser beam projection point, and then the facing distance is determined.

〔作用〕[Effect]

したがって、光スポットの順次投射と対応する受光素子
の電気的出力が正常に生じなければ、このときの光スポ
ットが非反射状態となったことの判断が行なわれ、電気
的出力が正常に生じた光スポットの位置から欠落した光
スポットの位置を補正することが自在となル、対向距離
の測定上誤差を生じないものとなる。
Therefore, if the electrical output of the light receiving element corresponding to the sequential projection of the light spot does not occur normally, it is determined that the light spot at this time is in a non-reflecting state, and the electrical output does not occur normally. It is possible to freely correct the position of the light spot that is missing from the position of the light spot, and no error occurs in the measurement of the facing distance.

〔実施例〕〔Example〕

以下、実施例を示す図によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to figures showing examples.

N2図は、レーザビームを投射するヘッドの断面図であ
う、外筒1の内部へ設けられた加工レンズ2により集束
されたレーザビーム3は、被加工物4へ投射され、この
部位に対して加工を行なうものとなっていると共に、外
筒1の内部空洞5の西側方外壁内には、レーザビーム3
と別個な波長のレーザ光を発生する半導体レーザ発振器
等の光源61〜6dが配され、これらからのレーザ光は
、各個に設は大役光レンズ7a〜7dにより集束された
うえ、被加工物40面上におけるレーザビーム3の近傍
周囲へ、互に対称な位置によ)光スポラ)8a〜8dと
して投射されるものKなっている。
Figure N2 is a cross-sectional view of the head that projects the laser beam. The laser beam 3, which is focused by the processing lens 2 provided inside the outer cylinder 1, is projected onto the workpiece 4 and processes this part. In addition, a laser beam 3 is provided in the outer wall on the west side of the inner cavity 5 of the outer cylinder 1.
Light sources 61 to 6d such as semiconductor laser oscillators that generate laser beams with different wavelengths are disposed. The light beams (K) are projected onto the vicinity of the laser beam 3 on the surface as optical spora (8a to 8d) at mutually symmetrical positions.

光スポラ)8a〜8dは、被加工物40面上において反
射され、外筒1の外側へ設けた撮像レンズ11へ反射光
として入射し、受光素子としてのPSD(Positi
on 8@n5itive Detector、) 1
2へ結像となって投影され、PSDI20両端からは、
結像による光線の入射位置に応じた電流Z A l I
 Bが各個に送出されるものとなる。
The optical spora) 8a to 8d are reflected on the surface of the workpiece 40, and enter the imaging lens 11 provided outside the outer tube 1 as reflected light, and the PSD (Positivity Spora) as a light receiving element.
on 8@n5itive Detector, ) 1
2 and is projected as an image from both ends of PSDI 20.
Current Z A l I depending on the incident position of the light ray due to imaging
B will be sent to each individual.

ことにおいて、PSDI2上の結像位RPは、加工レン
ズ2と被加工物4との対向距離t、レーザビーム3の元
軸9・と撮像レンズ11との水平間隔り、および撮像レ
ンズ11と被加工物4との対向間隔Aに応じて定ま〕、
電流をI A+ I Bとしたとき次式により与えられ
る。
In particular, the imaging position RP on the PSDI 2 is determined by the facing distance t between the processing lens 2 and the workpiece 4, the horizontal distance between the original axis 9 of the laser beam 3 and the imaging lens 11, and the imaging lens 11 and the workpiece. determined according to the facing distance A with the workpiece 4],
When the current is I A + I B, it is given by the following equation.

〔X:光軸13と入射点との間隔、D : PSD12
の端から光軸13までの寸法〕 また、対向間隔人は、レーザビーム3およヒ光スポツ)
8a〜8dの光軸9と、撮像レンズ11の光軸13との
角度θに応じて定ま)、本来は一定値であると共に、対
向間FAAと対向距離tとの差および、水平間隔yも一
定であるため、これらを基準としたPの値に応じ、対向
距離tは次式により求められ7.Z t=に−P               ・・・・・
(2)〔K:定数〕 ただし、光源61〜6dおよび投光レンズ7m〜7dは
、外筒1の内側壁面内ヘレーザビーム3を中心とする四
方へ対称的に配されてオシ、光源6a〜6dが順次にか
つ反復して発光し、これに応するPSDI2からのPを
示す出力値が順次に蓄積されたうえ、各出力値の平均に
よりPを求めるものとなっている。
[X: Distance between optical axis 13 and incident point, D: PSD12
(dimension from the end of the laser beam to the optical axis 13)]
(determined according to the angle θ between the optical axis 9 of lenses 8a to 8d and the optical axis 13 of the imaging lens 11), which is originally a constant value, and the difference between the facing distance FAA and the facing distance t, and the horizontal distance y Since these are also constant, the facing distance t is determined by the following formula according to the value of P based on these values.7. Z t=to-P...
(2) [K: Constant] However, the light sources 61 to 6d and the projection lenses 7m to 7d are arranged symmetrically in four directions centering on the laser beam 3 within the inner wall surface of the outer cylinder 1. emit light sequentially and repeatedly, and the corresponding output values representing P from the PSDI 2 are sequentially accumulated, and P is determined by averaging each output value.

すなわち、第3図に被加工物4の投射面を示すとおり、
レーザビーム3を中心として互に対称な位置へ光スボツ
)8a〜8dが投射されるため、これらと対応する結偉
位置pa〜Pdの平均位置によす、レーザビーム3の投
射点位置が求められる。
That is, as the projection surface of the workpiece 4 is shown in FIG.
Since the light slots 8a to 8d are projected to mutually symmetrical positions with the laser beam 3 as the center, the projection point position of the laser beam 3 is determined based on the average position of the corresponding projection positions pa to Pd. It will be done.

したがって、同図(ロ)の状態から、同図(B)のとお
シ、例えば光スポット8dが切断部21へ投射され、反
射光の欠落を生ずれば、光スポット8&〜8cによる平
均位置は3aへ偏位し、jdの誤差を生ずるが、光スボ
ツ)8a〜8dを順次に投射し、これらに応じてPSD
I2の出力を検出すると、光スポット8dによる反射光
の欠落が判断できると共に、これの投射位置は既知であ
るため、これに応じた補正値−jdを記憶しておき、平
均位置3dに対し補正値による補正を行なえば、正確な
レーザビーム3の投射点位置が求められ、これに基づい
て対向距離tを正確に求めることができる。
Therefore, if the light spot 8d, for example, is projected onto the cutting section 21 from the state shown in FIG. 3(B) to the state shown in FIG. 3a, resulting in an error of
When the output of I2 is detected, it is possible to determine whether the reflected light is missing due to the optical spot 8d, and since the projection position of this is known, the corresponding correction value -jd is memorized and corrected for the average position 3d. By performing the correction based on the value, an accurate projection point position of the laser beam 3 can be determined, and based on this, the facing distance t can be accurately determined.

第4Mは、PSD12の出力を処理すると共に、光源6
1〜6dの制御を行なう制御部のブロック図でアリ、マ
イクロプロセッサ等のプロセッサ〔以下、CPU)31
を中心とし、固定メモリ〔以下、ROM)32 、可変
メモリ〔以下、RAM)33  、インターフェイス[
以下、I/F]34〜3T を周辺に配し、母線により
これらを接続しており、ROM32へ格納された命令を
CPU31が実行し、所定のデータをRAM33へアク
セスしながら制御を行なうものとなっている。
The fourth M processes the output of the PSD 12 and the light source 6
In the block diagram of the control unit that controls 1 to 6d, a processor such as a microprocessor (hereinafter referred to as CPU) 31
The main components are fixed memory (hereinafter referred to as ROM) 32, variable memory (hereinafter referred to as RAM) 33, and interface [
Hereinafter, it is assumed that I/F] 34 to 3T are arranged around the periphery and connected by a bus bar, and the CPU 31 executes instructions stored in the ROM 32 and performs control while accessing predetermined data to the RAM 33. It has become.

また、光源61〜6dと電源部38との間には、スイッ
チ39a〜39dが各個に挿入されており、I/1′3
4を介する制御信号に応じ、各スイッチ39a〜39d
が順次にオン、オフを行ない、これにしたがって光源6
a〜6dが各個に発光および減光を行なう一方、PSD
12からの出力電流i A l l mは、各々が負荷
抵抗器Rへ通じ、これの端子電圧が増幅器41A、 4
1Bにより各個に同一利得として増幅されたうえ、I/
F3.5からの制御信号に応じ、光源6a〜6dの発光
および減光周期よシ速い周期により選択動作を行なうセ
レクタ42を介し、アナログ・ディジタル変換器〔以下
、A/D)43へ与えられ、ここにおいてディジタル信
号へ変換されてから、I/F36へ与えられるものとな
っており、これに基づいて求めた対向距離tを示す信号
Stは、I/’F37を経て送出されるものとなってい
る。
Further, switches 39a to 39d are inserted between the light sources 61 to 6d and the power supply section 38, respectively, and the switches 39a to 39d are connected to I/1'3.
4, each switch 39a to 39d
are turned on and off sequentially, and the light source 6 is turned on and off accordingly.
a to 6d individually emit and dim light, while PSD
The output currents i A l l m from 12 are each passed to a load resistor R whose terminal voltage is the amplifier 41A, 4
1B, each is amplified with the same gain, and I/
In response to the control signal from F3.5, it is applied to an analog-to-digital converter (hereinafter referred to as A/D) 43 via a selector 42 that performs a selection operation at a cycle faster than the light emission and dimming cycles of the light sources 6a to 6d. Here, after being converted into a digital signal, it is given to the I/F 36, and the signal St indicating the opposing distance t calculated based on this is sent out via the I/'F 37. ing.

第1図は、CPO31Kよる制御状況のフローチャート
であり、スイッチ“39aON”101  により光源
6aを発光状態とし、I/F36を介する”〜Φ出力正
常? 102を判断のうえ、これがY(YES)であれ
ば、(1)式に:?)光スボノ)6mの位置”Pa演算
”103を行ない、この結果をlp&→RAM”104
によりRAM33の所定アドレスへ格納してから、スイ
ッチ″39a OFF ” 105により光源6aを減
光し、以下、同様に、スイッチ” 39b ON”11
1〜スイツチ″’39dOFF”135を順次に行ない
、シ因33中のp、〜PdK基づき、これらの平均によ
りレーザビーム3の”投射点位置演11j、″141を
行なってから、反射光の欠落が生じたか否かを1エラー
フラグ・セット?”142によりチェックし、これがN
(No)であれば、ステップ141の結果にしたがって
対向距離″′を演算”143を(2)式によ)行なった
後、RAM33中のPl〜Pd  クリア″145およ
びI/F37を介する信号”SZ送出″146を行ない
、ステップ101以降を反復する。
FIG. 1 is a flowchart of the control situation by the CPO 31K, in which the light source 6a is set to a light emitting state by the switch "39aON" 101, and after determining "Is Φ output normal?" 102 via the I/F 36, this is Y (YES). If so, perform the “Pa operation” 103 at the 6m position using formula (1):
is stored in a predetermined address in the RAM 33, the light source 6a is dimmed by the switch "39a OFF" 105, and the light source 6a is dimmed by the switch "39b ON" 11 in the same manner.
1 to ``39dOFF'' 135 in sequence, and based on p and ~PdK in factor 33, perform ``projection point position calculation 11j,'' 141 of laser beam 3 based on the average of these, and then calculate the loss of reflected light. 1 error flag set whether or not occurred? "Checked by 142, this is N
If (No), the facing distance "' is calculated" (143) according to the formula (2) according to the result of step 141, and then Pl to Pd in the RAM 33 are cleared "145 and the signal via I/F 37". SZ sending'' 146 is performed, and steps 101 and subsequent steps are repeated.

以上に対し、ステップ102 、112 、122 、
132がNであれば、各々、”Paエラーフラグ・セッ
ト”151〜”Pdエラー7ラグ・セット” 154 
を行すうため、これに応じてステップ142がYとなり
、”エラー数く2?”161の判断へ移行し、反射光の
欠落が2回までならば補正が可能であシ、これのYにし
たがってステップ151〜154に応する補正値がRO
M32から読み出され、これに基づく“補正演算”16
2をステップ141の結果に対して行なってから、′エ
ラー72グ・リセット”°163を行なった後、ステッ
プ143へ移行する。
Regarding the above, steps 102, 112, 122,
If 132 is N, "Pa error flag set" 151 to "Pd error 7 lag set" 154, respectively.
In order to perform this, the step 142 becomes Y in response to this, and the process moves to the judgment ``Number of errors equal to 2?'' 161, and if the number of missed reflected lights is up to two times, correction is possible. Therefore, the correction values corresponding to steps 151 to 154 are RO
“Correction calculation” 16 read from M32 and based on this
2 is performed on the result of step 141, and after ``Error 72 G Reset'' 163 is performed, the process moves to step 143.

また、ステップ161がNのときは、補正が不可能であ
り、RAM33中のp@〜p(1クリア”171、およ
び”エラーフラグ・リセット”172を行なってからス
テップ101へ戻る。
Further, when step 161 is N, correction is impossible, and the process returns to step 101 after p@~p(1 clear ``171'' and ``error flag reset'' 172 in the RAM 33 are performed.

したがって、光スポツト6&〜6d中のいずれかが切断
部21中または穿孔中へ一致し、反射光が生じなくとも
、補正の可能な反射光欠落回数以下であれば、補正が自
動的になされ、常に正確な対向距離tを求めることがで
きるため、信号Stに応じてヘッドを駆動し、対向距離
tが一定となる方向へ制御することが自在となる。
Therefore, even if any of the light spots 6&~6d coincides with the cut portion 21 or the hole and no reflected light is generated, if the number of missed reflected lights is less than or equal to the number of missed reflected lights that can be corrected, the correction is automatically made. Since the facing distance t can always be determined accurately, it is possible to drive the head according to the signal St and control the head in a direction in which the facing distance t is constant.

ただし、光源6a〜6dの数は、3とし、または4より
も多いものとしてもよく、これに応じてステップ161
の判断数を定めればよいと共に、光源6a〜6dはレー
ザ発振器のみならず、ランプ、発光ダイオード等の発光
素子を用いても同様でち9、光源の種別にしたがい、こ
れらの発光波長を通過させ、かつ、レーザビーム3およ
び加工点の発熱による発光波長を阻止する光学フィルタ
を撮像レンズ11側へ設ければよい。
However, the number of light sources 6a to 6d may be 3 or more than 4, and accordingly step 161
The light sources 6a to 6d may be not only laser oscillators, but also light emitting elements such as lamps and light emitting diodes. In addition, an optical filter may be provided on the imaging lens 11 side to block the laser beam 3 and the emission wavelength due to heat generation at the processing point.

また、PSDを用いる代りに、7オトダイオードアレイ
等を用いてもよく、これに応じて抵抗器R乃至A/D4
3の回路を選定すれば同様であjo、CPU31を用い
ず、各種の論理回路および演算回路の組み合せを用いて
もよい等、第」図の構成は選定が任意であると共に、第
1図においては、状況によりステップを入替え、または
、同等の他のものと置換し、あるいは、不要のものを省
略してもよい等、種々の変形が自在である。
Also, instead of using the PSD, a 7-otodiode array or the like may be used, and the resistors R to A/D4 may be used accordingly.
The configuration shown in Fig. 1 can be selected arbitrarily, and the same applies if the circuit shown in Fig. Depending on the situation, various modifications can be made, such as replacing the steps, replacing them with other equivalent steps, or omitting unnecessary steps.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らかなとおり本発明によれば、光ス
ポットのいずれかが反射光の欠落を生じても、補正によ
勺測定誤差を生ずることがなく、常に対向距離の測定が
正確となるため、レーザビームにより加工する被加工物
との対向距離測定上、顕著な効果が得られる。
As is clear from the above explanation, according to the present invention, even if any of the light spots is missing reflected light, the correction will not cause any measurement error, and the facing distance will always be accurately measured. , a remarkable effect can be obtained in measuring the facing distance to the workpiece processed by the laser beam.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は制御状況のフロー
チャート、第2図はヘッドの断面図、第3図は被加工物
に対するレーザビームおよび光スポットの投射状況を示
す平面図、第4図は制御部のブロック図である。 1φ@−e外筒、2・・・・加工レンズ、3・・・・レ
ーザビーム、4・・Φ・被加工物、6a〜6d ・・・
・光源、7a〜7d・・・・投光レンズ、8a〜8d・
・・・光スポット、11−・・・撮像レンズ、12・・
・・PSD (受光素子)、21・e・・切断部、31
・・・・CPU (プロセラf)、32・・・−ROM
(固定メモリ)、33・−・・RAM (可変メモリ)
、38・・・・電源部、39a〜39d・・・・スイッ
チ。
The figures show an embodiment of the present invention, in which Fig. 1 is a flowchart of the control situation, Fig. 2 is a sectional view of the head, Fig. 3 is a plan view showing the projection situation of the laser beam and the light spot onto the workpiece, and Fig. FIG. 4 is a block diagram of the control section. 1φ@-e outer cylinder, 2...processing lens, 3...laser beam, 4...φ・workpiece, 6a-6d...
・Light source, 7a to 7d... Light projection lens, 8a to 8d.
...Light spot, 11-...Imaging lens, 12...
・・PSD (light receiving element), 21・e・・cutting part, 31
...CPU (Procera f), 32...-ROM
(fixed memory), 33...RAM (variable memory)
, 38...power supply section, 39a-39d...switch.

Claims (1)

【特許請求の範囲】[Claims] レーザビームにより加工される被加工物との対向距離を
光スポットの投射により測定する方式において、前記被
加工物のレーザビーム投射点近傍周囲へ互にほぼ対称な
位置として複数の光スポットを順次にかつ反復して投射
し、該投射による反射光を同一の撮像レンズにより撮像
し、光線の入射位置に応じた電気的出力を生ずる受光素
子へ前記撮像レンズによる結像を投影し、前記受光素子
の電気的出力を前記光スポットの投射と対応して検出し
、各光スポットの投射毎に前記電気的出力が正常に生じ
たときは前記投射毎の電気的出力に応じて前記レーザビ
ーム投射点の位置を求めてから該投射点位置の対向距離
を求め、前記各光スポットの投射毎に前記電気的出力が
正常に生じないときには補正演算を行なつて前記レーザ
ビーム投射点の位置を求めてから前記対向距離を求める
ことを特徴とする距離測定方式。
In a method of measuring the opposing distance to a workpiece to be machined by a laser beam by projecting a light spot, a plurality of light spots are sequentially projected at substantially symmetrical positions around the workpiece near the laser beam projection point. The reflected light from the projection is imaged by the same imaging lens, and the image formed by the imaging lens is projected onto a light receiving element that generates an electrical output according to the incident position of the light beam. The electrical output is detected in correspondence with the projection of the light spot, and when the electrical output is normally generated for each projection of the light spot, the electrical output of the laser beam projection point is detected in accordance with the electrical output for each projection. After determining the position, the facing distance of the projection point position is determined, and if the electrical output is not generated normally for each projection of each of the light spots, a correction calculation is performed to determine the position of the laser beam projection point. A distance measurement method characterized by determining the facing distance.
JP59227230A 1984-10-29 1984-10-29 Range measurement system Pending JPS61105420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59227230A JPS61105420A (en) 1984-10-29 1984-10-29 Range measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59227230A JPS61105420A (en) 1984-10-29 1984-10-29 Range measurement system

Publications (1)

Publication Number Publication Date
JPS61105420A true JPS61105420A (en) 1986-05-23

Family

ID=16857544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227230A Pending JPS61105420A (en) 1984-10-29 1984-10-29 Range measurement system

Country Status (1)

Country Link
JP (1) JPS61105420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087056A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp System and method for determining laser welding quality
JP2020104156A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087056A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp System and method for determining laser welding quality
JP2020104156A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device

Similar Documents

Publication Publication Date Title
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US20230133662A1 (en) Method for calibrating one or more optical sensors of a laser machining head, laser machining head, and laser machining system
EP0498495B1 (en) Device for optically measuring the height of a surface
EP0332781A2 (en) Optical measuring device
JP2005118815A (en) Laser beam machining method and laser beam machining apparatus
JPS61105420A (en) Range measurement system
JP2003136267A (en) Laser beam machining method and device
JP4339165B2 (en) Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device
JPH09258091A (en) Focus measuring method of laser beam emitting optical unit
JPH0479522B2 (en)
US20220331911A1 (en) Method for comparing laser processing systems and method for monitoring a laser processing process and associated laser processing system
JPH04115109A (en) Surface-roughness measuring apparatus
JPH02226001A (en) Method for detecting pattern edge
JP3479515B2 (en) Displacement measuring device and method
JP3602437B2 (en) Method for determining laser beam focal point position, laser beam focal point position determining device, and hologram laser assembling device
JPH07167627A (en) Detector for external-size abnormality
KR0117212Y1 (en) Solder Inspection Equipment
JPH05272969A (en) Range finder
JPH0661633B2 (en) Focus position detector for laser device
JPS6151727B2 (en)
JP3244348B2 (en) Distance measuring device
JPH10111107A (en) Method and device for measuring distance
JPH0761553B2 (en) Laser output monitor
JP2781823B2 (en) Laser device
JP3146530B2 (en) Non-contact height measuring device