JPS61105091A - Drying method - Google Patents

Drying method

Info

Publication number
JPS61105091A
JPS61105091A JP22607984A JP22607984A JPS61105091A JP S61105091 A JPS61105091 A JP S61105091A JP 22607984 A JP22607984 A JP 22607984A JP 22607984 A JP22607984 A JP 22607984A JP S61105091 A JPS61105091 A JP S61105091A
Authority
JP
Japan
Prior art keywords
temperature
drying
air
low
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22607984A
Other languages
Japanese (ja)
Inventor
和田 雅知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUGOKU JISHO KK
Original Assignee
CHUGOKU JISHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUGOKU JISHO KK filed Critical CHUGOKU JISHO KK
Priority to JP22607984A priority Critical patent/JPS61105091A/en
Publication of JPS61105091A publication Critical patent/JPS61105091A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海藻、魚貝類等の海産物や一般食品等を乾燥
するのに供される乾燥方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drying method used for drying marine products such as seaweed, fish and shellfish, and general foods.

(従来の技術) 従来、この種の乾燥方法としては、乾燥室内からの低温
多湿空気をまず冷凍サイクルにおける凝縮器に通して加
熱することで高温多湿空気にし、次にこれを冷却器に通
して除湿することで低温低湿空気にし、更にこれを凝縮
器に通して加熱することで高温低湿空気にし、この高温
低湿空気を乾燥室内に供給することで乾燥を行なうもの
であった。
(Prior art) Conventionally, in this type of drying method, low-temperature and humid air from a drying chamber is first passed through a condenser in a refrigeration cycle and heated to become high-temperature and humid air, and then this is passed through a cooler. Drying is performed by dehumidifying the air to produce low-temperature, low-humidity air, passing it through a condenser and heating it to produce high-temperature, low-humidity air, and supplying this high-temperature, low-humidity air into the drying chamber.

(発明か解決しようとする問題点) 前記した従来の乾燥方法は、乾燥室内からの空気を冷却
器で除湿する前に予め凝縮器で加熱し、冷却器による冷
却温度との温度差を大トクシて除湿効果を向上させ、更
に、再び凝縮器で加熱することで乾燥に適した高温低湿
空気を冷凍サイクルのみの利用によって得るようにした
点に特徴があるが、反面、この高温低湿空気の供給によ
って乾燥室内の温度が上昇してくると、乾燥室の空気膨
張に伴なって乾燥室の気圧が大気圧よりも高くなり、こ
れが乾燥作用を妨げる結果となっていた。
(Problem to be solved by the invention) In the conventional drying method described above, the air from the drying chamber is heated in advance in a condenser before being dehumidified in a cooler, and the temperature difference between the temperature and the temperature at which the air is cooled by the cooler is greatly reduced. The feature is that the dehumidifying effect is improved by using only the refrigeration cycle, and the high temperature, low humidity air suitable for drying is obtained by heating it again in the condenser, but on the other hand, the supply of this high temperature, low humidity air is When the temperature inside the drying chamber increases, the air pressure in the drying chamber becomes higher than atmospheric pressure as the air in the drying chamber expands, which impedes the drying effect.

(問題点を解決するための手段) 本発明は、従来の乾燥方法を基本に置きながら従来より
も減圧下で乾燥を行なうようにすることで、更に効果的
な乾燥が行なえるようにした乾燥方法を提供することを
目的とし、この目的を達成するための技術的手段として
本発明の乾燥方法は、乾燥室と機器室との間で空気を循
環させる空気循環系路を形成し、前記機器室に吸入口の
側から順に加熱用凝縮器、冷却器、加熱用凝縮器を配設
させるとともに、空気循環系路外Pントロール凝縮器を
配設させ、乾燥室内に設けたサーモスタットによる設定
温度以下の場合は前記機器室内で加熱用凝縮器お!び冷
却器を作動させて乾燥室内に高温低湿空気を供給させ、
かつサーモスタットによる設定温度以上の場合には機器
室内で冷却器のみ作動させて乾燥室内に低温低湿空気を
供給させ、かつ前記加熱用凝縮器の作動時において高温
低湿空気の供給による温度上昇で生じた膨張空気を一方
向弁を介して大気に排気するようにした構成を採用する
こととした。
(Means for Solving the Problems) The present invention is based on the conventional drying method, but by performing drying under reduced pressure than in the past, more effective drying can be achieved. The purpose of the drying method of the present invention is to provide a method, and as a technical means to achieve this purpose, the drying method of the present invention forms an air circulation system path for circulating air between a drying chamber and an equipment room, and A heating condenser, a cooler, and a heating condenser are installed in the room in order from the inlet side, and an air circulation system outside P control condenser is installed to keep the temperature below the set temperature by the thermostat installed inside the drying room. In this case, install the heating condenser in the equipment room! and the cooler to supply high-temperature, low-humidity air into the drying room.
If the temperature is higher than the temperature set by the thermostat, only the cooler is operated in the equipment room to supply low-temperature, low-humidity air into the drying chamber, and when the heating condenser is activated, the temperature rise due to the supply of high-temperature, low-humidity air is detected. A configuration was adopted in which the expanded air was exhausted to the atmosphere via a one-way valve.

(作用) 従って、本発明の乾燥方法では、従来の高温低湿空気の
供給に伴なう乾燥効果が得られるし、又、この高温低湿
空気を供給することによる温度上昇で生じた膨張空気を
大気に排気することか呟乾燥室内の圧力上昇を防止して
高温低湿空気の供給時には乾燥室内を大気圧に維持し、
次の低温低湿空気の供給時には、乾燥室内の空気が収縮
して乾燥室内が減圧されることから、乾燥室内は常に大
気圧以下に維持され、この減圧下における乾燥と高温低
湿空気による乾燥と、の相乗作用で効果的な乾燥が行な
えることになる。
(Function) Therefore, in the drying method of the present invention, the drying effect associated with the conventional supply of high-temperature, low-humidity air can be obtained, and the expanded air caused by the temperature rise caused by supplying this high-temperature, low-humidity air can be transferred to the atmosphere. It prevents pressure rise inside the drying chamber and maintains the inside of the drying chamber at atmospheric pressure when supplying high-temperature, low-humidity air.
During the next supply of low-temperature, low-humidity air, the air inside the drying chamber contracts and the pressure inside the drying chamber is reduced, so the inside of the drying chamber is always maintained at below atmospheric pressure, and drying under this reduced pressure and drying with high-temperature, low-humidity air are performed. The synergistic action of these will result in effective drying.

(実施例) 以下、本発明の実施例を図面に示して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の乾燥方法を実施するための乾燥装置
Aを示している。
FIG. 1 shows a drying apparatus A for carrying out the drying method of this embodiment.

図において、1は乾燥室、2は機器室であり、この機器
室2の吸込口2aを乾燥室1の下部に開口させ、かつ吐
出口2bを乾燥室1の上部に開口させ、また、乾燥室1
の天井面から奥部壁面に沿って区画板3および鎧板4に
よって仕切られた送風路5を形成して、乾燥室1からの
空気を機器室2から送風路5を経て鎧板4の間から再び
乾燥室1内に流入させるという空気循環系路を外気と密
封形成させている。尚、この場合、上記各鎧板4は変向
自在に支持されて、風の向きの調整や風量調整ができる
ようにしている。また、6は機器室2の上部に設けた送
風7アペ7はその駆動モータ、8は補助ファン、9は機
器室2の吸入口2aに張設したスクリーン、10はドレ
ンパンである。
In the figure, 1 is a drying room and 2 is an equipment room.The equipment room 2 has a suction port 2a opened at the bottom of the drying room 1, and a discharge port 2b opened at the top of the drying room 1. Room 1
A ventilation path 5 partitioned by the partition plate 3 and the armor plate 4 is formed along the inner wall surface from the ceiling surface of the drying room 1, and the air from the drying room 1 is routed from the equipment room 2 through the ventilation path 5 and between the armor plates 4 again. The air circulation path that flows into the drying chamber 1 is sealed tightly from the outside air. In this case, each of the armor plates 4 is supported so that the direction can be freely changed, so that the direction of the wind and the amount of air can be adjusted. Reference numeral 6 designates a drive motor for the air blower 7 provided in the upper part of the equipment room 2, 8 represents an auxiliary fan, 9 represents a screen extended over the suction port 2a of the equipment room 2, and 10 represents a drain pan.

次に、第2図は乾燥装置Aに用いる冷凍サイクルの回路
説明図で、図において、11は圧縮機、12および13
は加熱用凝縮器、14はコントロール凝縮器、15.1
5 は膨張弁、1 e、i 6 はキャピラリチューブ
、17.17 は冷却器、18はアキュームレータ、1
9はレシーバ、20,21は逆止弁、22.23 は電
磁弁、又、24は冷却器I Ll 7の切換弁で、一方
の冷却器を作動させた場合には他方の冷却器を除霜する
というように、これをタイマーで交互に功換えるように
している。
Next, FIG. 2 is a circuit explanatory diagram of a refrigeration cycle used in drying device A. In the figure, 11 is a compressor, 12 and 13
is a heating condenser, 14 is a control condenser, 15.1
5 is an expansion valve, 1 e, i 6 is a capillary tube, 17.17 is a cooler, 18 is an accumulator, 1
9 is a receiver, 20 and 21 are check valves, 22 and 23 are solenoid valves, and 24 is a switching valve for the cooler I Ll 7, so that when one cooler is operated, the other cooler is removed. I use a timer to alternately do this, such as frosting.

そして、この冷凍サイクルにおいて、前記加熱用−凝縮
器12.13  と冷却器17.17  とを、第1図
に示すように機器室2内に吸入口2aの側から加熱用凝
縮器12、冷却器17.17 、加熱用凝縮器13の順
に配設させ、他の機器、即ちコントロール凝縮器14、
圧縮器11等を機器室2外に設置させている。
In this refrigeration cycle, the heating condenser 12.13 and the cooler 17.17 are inserted into the equipment room 2 from the suction port 2a side as shown in FIG. 17, the heating condenser 13, and the other equipment, namely the control condenser 14,
The compressor 11 and the like are installed outside the equipment room 2.

また、25は乾燥室1内に設けたサーモスタットで、乾
燥室1内の温度が設定温度以下の場合には、一方の電磁
弁22を開にするとともに他方の電磁弁23を閉にして
、圧縮器11がらの冷媒(−高圧〃ス)を加熱用凝縮器
12.13 の側に流入させ、他方設定温度以下の場合
は、電磁弁22゜23を切換えて、圧縮機11からの高
圧ガスをコントロール凝縮器14の側に流入させるよう
に、このサーモスタット25と電磁弁22.23  と
を連動させている。尚、実施例では、前記サーモスタソ
ト25による設定温度を20’C〜25°Cとして、乾
燥対象物としての魚貝類に高温によるタンパク変性や脂
肪変敗が生じないようにしている。
In addition, 25 is a thermostat installed in the drying chamber 1, and when the temperature in the drying chamber 1 is below the set temperature, one solenoid valve 22 is opened and the other solenoid valve 23 is closed to control the compression. The refrigerant (-high pressure gas) from the compressor 11 is allowed to flow into the heating condenser 12, 13, and if the temperature is below the set temperature, the solenoid valves 22 and 23 are switched to remove the high pressure gas from the compressor 11. This thermostat 25 and solenoid valves 22 and 23 are linked to allow the flow into the control condenser 14 side. In the embodiment, the temperature set by the thermostat 25 is set at 20'C to 25C to prevent protein denaturation and fat deterioration due to high temperatures in the fish and shellfish to be dried.

又、26は一方向弁としての逆止弁で、−次側が乾燥室
1内に連通されるとともに、二次側は大気に開放されて
いる。又、27はドレン用の配管で、該配管27にち逆
止弁28が設けられている。
Reference numeral 26 designates a check valve as a one-way valve, the negative side of which communicates with the interior of the drying chamber 1, and the secondary side open to the atmosphere. Further, 27 is a drain pipe, and a check valve 28 is provided on the pipe 27.

従って、前記乾燥装置Aを用いて海産物等を乾燥させる
に際しては、まず、乾燥室1に海産物を収容させる。そ
して、圧縮機11を作動させて、圧縮機11→加熱用凝
縮器12,13 →冷却器17→圧縮磯11という冷凍
サイクルで運転させるとともに、送風機6を作動させる
と、乾燥室1内で湿気を含んだ低温多湿(2°C〜3°
C程度)の空気が機器室2内に流入し、ここでまず加熱
用凝縮器12により加熱されて高温多湿(30°C程度
)の空気となり、次に冷却器17により冷却されて、除
湿された低温低湿空気(5°C程度)となる。この場合
、冷却器17を通る空気は手前の加熱用凝縮器12によ
って加熱されているため、冷却器17による冷却温度と
の温度差が大きく、これが冷却器17の冷却機能を十分
に活用させながら効果的な除湿を行なわせることになる
のである。尚、実験例では、加熱用凝縮器12を使用し
ない場合は相対温度が40%以上であったのに対し、本
実施例では35%以下まで下げることができ、乾燥時間
を大幅に短縮させることができた。そして、上記冷却器
17を通って低温低湿となった空気は加熱用凝縮器13
によって再び加熱されて高温1氏湿(25℃〜30℃)
の空気となり、この高温低湿空気の状態で送風機6によ
り送・風路5を通って乾燥室1内に流入し、ここで被乾
燥物から湿気をと1)、再び上述同様の循環を繰り返す
ものである。
Therefore, when drying marine products or the like using the drying apparatus A, first, the marine products are placed in the drying chamber 1. Then, when the compressor 11 is operated and operated in a refrigeration cycle of compressor 11 → heating condensers 12 and 13 → cooler 17 → compression rock 11, and when the blower 6 is operated, moisture inside the drying chamber 1 increases. low temperature and high humidity (2°C to 3°
Air (about 30°C) flows into the equipment room 2, where it is first heated by the heating condenser 12 to become high temperature and humid air (about 30°C), and then cooled by the cooler 17 and dehumidified. The air will be low temperature and low humidity (approximately 5°C). In this case, since the air passing through the cooler 17 is heated by the front heating condenser 12, there is a large temperature difference between the air and the cooling temperature of the cooler 17. This results in effective dehumidification. In addition, in the experimental example, when the heating condenser 12 was not used, the relative temperature was 40% or more, but in this example, it could be lowered to 35% or less, and the drying time was significantly shortened. was completed. The air that has passed through the cooler 17 and has become low temperature and low humidity is then transferred to a heating condenser 13.
heated again by high temperature 1 degree humidity (25℃~30℃)
This high-temperature, low-humidity air flows into the drying chamber 1 through the air passage 5 by the blower 6, where the moisture is removed from the material to be dried (1), and the same circulation as described above is repeated again. It is.

このようにして高温低湿の空気によl)乾燥を行なって
いくと、乾燥室内の温度が上昇していくことになるが、
この場合、本乾燥装置Aでは乾燥室1内の温度が設定温
度以上になると、サーモスタット25に連動して電磁弁
23が開になるとともに、電磁弁22が閉に切換わり、
加熱用凝縮器12゜13を休止させて、圧縮機11→コ
ントロール凝縮器14→冷却器17→圧縮磯11という
冷凍サイクルで、乾燥室1内に低温低湿空気を供給して
、乾燥室1の温度を設定温度以下に下げ、これで乾燥室
1が設定温度以下になると再びサーモスタット25によ
り電磁弁22.23 が切換わり、以後は加熱用凝縮器
12.13 の作動による高温低湿空気の供給と、この
加熱用2疑縮器12.13 の休止による低温低湿空気
の供給を繰返しながら乾燥を行なうものである。
As drying is carried out in this way using high-temperature, low-humidity air, the temperature inside the drying chamber will rise.
In this case, in this drying apparatus A, when the temperature inside the drying chamber 1 exceeds the set temperature, the solenoid valve 23 is opened in conjunction with the thermostat 25, and the solenoid valve 22 is switched to close.
The heating condensers 12 and 13 are stopped, and low-temperature, low-humidity air is supplied into the drying chamber 1 through a refrigeration cycle consisting of the compressor 11 → control condenser 14 → cooler 17 → compressor 11. The temperature is lowered to below the set temperature, and when the temperature of the drying chamber 1 becomes below the set temperature, the thermostat 25 switches the solenoid valves 22.23 again, and from then on, the heating condenser 12.13 operates to supply high-temperature, low-humidity air. Drying is performed while repeatedly supplying low-temperature, low-humidity air by stopping the two heating condensers 12 and 13.

又、前述の加熱用凝縮器12.13 の作動時において
は高温低湿の空気が供給されることがら乾燥室1の温度
上昇に伴なって空気が膨張し、この膨張空気によって乾
燥室1内は大気圧よりも高圧になろうとするが、この膨
張空気は逆止弁26を介して大気に排気されるため、乾
燥室1内は大気圧に維持されることになる。これは逆止
弁26を設けない場合には大気圧よりも高圧状態となる
ことから、この場合と比較すれば減圧されたことになる
。そして、次にサーモスタット25の切換わりにより低
温低湿空気が供給されると、今度は乾燥室1の温度低下
に伴なって空気が収縮し、これに伴な9て乾燥室1内は
前記逆止弁26によって得られた大気圧状態から減圧さ
れていくことになり、したがって、乾燥室1は常に大気
圧以下に維持され、それだけ乾燥作用が促進されるもの
である。
In addition, when the aforementioned heating condenser 12.13 is operated, high temperature and low humidity air is supplied, so the air expands as the temperature of the drying chamber 1 rises, and this expanded air causes the inside of the drying chamber 1 to Although the pressure tends to be higher than atmospheric pressure, this expanded air is exhausted to the atmosphere via the check valve 26, so the inside of the drying chamber 1 is maintained at atmospheric pressure. This means that if the check valve 26 is not provided, the pressure will be higher than atmospheric pressure, so the pressure is reduced compared to this case. Then, when low-temperature, low-humidity air is supplied by switching the thermostat 25, the air contracts as the temperature of the drying chamber 1 decreases, and as a result, the inside of the drying chamber 1 is closed to the above-mentioned back check. The pressure is reduced from the atmospheric pressure state obtained by the valve 26, so that the drying chamber 1 is always maintained below atmospheric pressure, and the drying action is promoted accordingly.

以上、本発明の一実施例について図面により説明したが
、本発明の具体的な構成は前記実施例に限定されるもの
ではなく、例えば、実施例で示した乾燥装置は両加熱用
凝縮器の間に冷却器を2台配設しているが、冷却器を1
台だけ配設してもよいし、また加熱用凝縮器および冷却
器の具体的な配置についても、実施例に限定されること
なく、例えば、下側の加熱用凝縮器を又クリーンに対向
状態で配設してもよい。
Although one embodiment of the present invention has been described above with reference to the drawings, the specific configuration of the present invention is not limited to the above embodiment. For example, the drying device shown in the embodiment has a double heating condenser. There are two coolers installed between them, but one cooler
Only the stand may be provided, and the specific arrangement of the heating condenser and cooler is not limited to the embodiments. It may be placed in

又、一方向弁は1個でも、2個以上の複数個設けるよう
にしてもよく、その、配設箇所についても乾燥室に限ら
ず、空気循環系路内の適当箇所に配設すればよい。
Further, one one-way valve or two or more one-way valves may be provided, and the location thereof is not limited to the drying room, but may be provided at an appropriate location within the air circulation system path. .

以上、説明したように本発明によれば、冷却器の前後に
加熱用凝縮器を配設しrこので、冷却器を通る空気が予
め加熱された高温多湿空気となり、冷却温度との大きな
温度差によって十分な除湿効果が得られるし、しかもこ
れを再加熱して高温低湿空気として乾燥室に供給するた
め、より一層の乾燥効果が得られる。更には、乾燥室内
を簡単な手段によって大気圧以下に維持で外るし、従来
と比較して減圧下での乾燥となるため、極めて効果的な
乾燥か行なえるものである。
As explained above, according to the present invention, heating condensers are disposed before and after the cooler, so that the air passing through the cooler becomes pre-heated high-temperature and humid air, which has a large temperature difference from the cooling temperature. A sufficient dehumidification effect can be obtained due to the difference, and since this air is reheated and supplied to the drying chamber as high-temperature, low-humidity air, an even greater drying effect can be obtained. Furthermore, the inside of the drying chamber can be kept at or below atmospheric pressure by a simple means, and the drying can be carried out under reduced pressure compared to conventional methods, making it possible to perform extremely effective drying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の乾燥方法の実施に使用しrこ乾燥装
置の断面図、第2図は該乾燥装置に使用した冷凍サイク
ルの回路説明図である。 A:乾燥装置 1:乾燥室 2:機器室 12.13:加熱用凝縮器 14:コントロール凝縮器 17 + 17 :冷却器 25:サーモスタット 26二逆止弁(一方向弁) 第1図 Δ 2日  27 第2図
FIG. 1 is a sectional view of a drying device used in carrying out the drying method of this embodiment, and FIG. 2 is a circuit diagram of a refrigeration cycle used in the drying device. A: Drying device 1: Drying room 2: Equipment room 12.13: Heating condenser 14: Control condenser 17 + 17: Cooler 25: Thermostat 26 Two check valves (one-way valve) Figure 1 Δ 2 days 27 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)乾燥室と機器室との間で空気を循環させる空気循環
系路を形成し、前記機器室に吸入口の側から順に加熱用
凝縮器、冷却器、加熱用凝縮器を配設させるとともに、
空気循環系路外にコントロール凝縮器を配設させ、乾燥
室内に設けたサーモスタットによる設定温度以下の場合
は前記機器室内で加熱用凝縮器および冷却器を作動させ
て乾燥室内に高温低湿空気を供給させ、かつサーモスタ
ットによる設定温度以上の場合には機器室内で冷却器の
み作動させて乾燥室内に低温低湿空気を供給させ、かつ
前記加熱用凝縮器の作動時において高温低湿空気の供給
による温度上昇で生じた膨張空気を一方向弁を介して大
気に排気するようにしたことを特徴とする乾燥方法。
1) Forming an air circulation system path for circulating air between the drying room and the equipment room, and arranging a heating condenser, a cooler, and a heating condenser in order from the inlet side in the equipment room, and ,
A control condenser is installed outside the air circulation system, and if the temperature is below the set temperature by the thermostat installed inside the drying chamber, the heating condenser and cooler are operated in the equipment room to supply high-temperature, low-humidity air into the drying chamber. and when the temperature is higher than the set temperature by the thermostat, only the cooler is operated in the equipment room to supply low-temperature, low-humidity air into the drying chamber, and when the heating condenser is activated, the temperature rise due to the supply of high-temperature, low-humidity air is prevented. A drying method characterized in that the expanded air generated is exhausted to the atmosphere through a one-way valve.
JP22607984A 1984-10-27 1984-10-27 Drying method Pending JPS61105091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22607984A JPS61105091A (en) 1984-10-27 1984-10-27 Drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22607984A JPS61105091A (en) 1984-10-27 1984-10-27 Drying method

Publications (1)

Publication Number Publication Date
JPS61105091A true JPS61105091A (en) 1986-05-23

Family

ID=16839487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22607984A Pending JPS61105091A (en) 1984-10-27 1984-10-27 Drying method

Country Status (1)

Country Link
JP (1) JPS61105091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304171A (en) * 2007-06-11 2008-12-18 Shokuhin Kikai Kaihatsu:Kk Dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304171A (en) * 2007-06-11 2008-12-18 Shokuhin Kikai Kaihatsu:Kk Dryer

Similar Documents

Publication Publication Date Title
JP5049495B2 (en) Artificial drying method and system for wood
JP2001227869A (en) Drier
KR20130019881A (en) Red pepper drier using low-temperature and cold wind dehumidification process
JP2006285454A (en) Constant temperature and constant humidity apparatus
JPH04320399A (en) Cooling device for electronic apparatus
JP3220286B2 (en) Operating method of heat source system for environmental test room
JPS61105091A (en) Drying method
JP2002022214A (en) Low frost environment testing device
US3364590A (en) Dryer unit
KR102133676B1 (en) Hot-water production apparatus
JPH1163818A (en) Cereal drying device
JPH0461251B2 (en)
KR20210056709A (en) Compound Food Drying apparatus
JP3096673B2 (en) Cold air dryer
JPS5916177B2 (en) air conditioner
JPS60210926A (en) Temperature and humidity control apparatus for hydroponic culture
JPS5840036A (en) Drying of shiitake mushroom in dehumidified atmosphere at low temperature
JPH062920A (en) Controller for air conditioner
JP2009109115A (en) Humidity conditioner
JPH02193039A (en) Thermal shock tester
JPS6142183B2 (en)
JPS60111876A (en) Drier
JPS6091180A (en) Heat pump type drier
JPS6015101Y2 (en) Refrigerated open showcase
JPS5941729A (en) Dehumidifier