JP2008304171A - Dryer - Google Patents

Dryer Download PDF

Info

Publication number
JP2008304171A
JP2008304171A JP2007154548A JP2007154548A JP2008304171A JP 2008304171 A JP2008304171 A JP 2008304171A JP 2007154548 A JP2007154548 A JP 2007154548A JP 2007154548 A JP2007154548 A JP 2007154548A JP 2008304171 A JP2008304171 A JP 2008304171A
Authority
JP
Japan
Prior art keywords
drying
heat exchanger
atm
blower
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007154548A
Other languages
Japanese (ja)
Other versions
JP5311248B2 (en
Inventor
Masato Shibata
正人 柴田
Yasuhiro Sugimura
康浩 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN KIKAI KAIHATSU KK
Original Assignee
SHOKUHIN KIKAI KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN KIKAI KAIHATSU KK filed Critical SHOKUHIN KIKAI KAIHATSU KK
Priority to JP2007154548A priority Critical patent/JP5311248B2/en
Publication of JP2008304171A publication Critical patent/JP2008304171A/en
Application granted granted Critical
Publication of JP5311248B2 publication Critical patent/JP5311248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dryer capable of setting a drying temperature below 30&deg;C. <P>SOLUTION: A drying sample is arranged in an atmosphere of a convection gas at a pressure below 0.1-0.5 atm, and dried at a drying temperature below 30&deg;C by this vacuum dryer as shown in Fig.1. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、品質変化の少ない乾燥装置に関する。 The present invention relates to a drying apparatus with little quality change.

従来の技術Conventional technology

品質変化の少ない乾燥は真空乾燥装置または凍結乾燥装置または冬季の寒風を利用して行われる自然乾燥などで行う。真空乾燥装置や凍結乾燥装置の品質を決定する乾燥温度は蒸発物質(通常は水)の真空度と沸点の関係で求められる温度とされる。乾燥物の蒸発のエネルギーは試料を積載するトレーからの伝熱エネルギーおよび容器壁面からの輻射熱に依存する。 Drying with little change in quality is performed by vacuum drying, freeze drying, or natural drying using winter cold wind. The drying temperature that determines the quality of the vacuum drying device or freeze drying device is a temperature determined by the relationship between the degree of vacuum and the boiling point of the evaporated substance (usually water). The energy of evaporation of the dry matter depends on the heat transfer energy from the tray on which the sample is loaded and the radiant heat from the container wall.

しかしながら、上記のような従来の方法では乾燥物への熱供給速度が少なく、また熱供給速度を多くするためにトレーの温度を高くすることは品質に大きな影響が発生する原因となっていた。 However, in the conventional method as described above, the heat supply rate to the dried product is low, and increasing the temperature of the tray in order to increase the heat supply rate has caused a great influence on the quality.

本発明は、上記のような問題に鑑み、高品質の乾燥物を短時間でかつ低コストで製造することができる方法を提供することを課題とする。 This invention makes it a subject to provide the method which can manufacture a high quality dried material in a short time and low cost in view of the above problems.

本発明は、高品質の乾燥が短時間で低コストで製造することができ、かつ真空冷却が低コストでできる。 In the present invention, high-quality drying can be produced in a short time and at low cost, and vacuum cooling can be performed at low cost.

課題で乾燥温度を30℃としたが、これは一応の目標値であり、試料によって品質変化の温度は異なるため特に固定するものでない。 Although the drying temperature was set to 30 ° C. as a problem, this is a temporary target value, and the temperature of quality change differs depending on the sample, so it is not particularly fixed.

本発明は、圧力が0.1〜0.5atm以下の空気の対流で乾燥する棚式以外に、流動層乾燥(図4)、噴霧乾燥(図5)、振動乾燥、板表面に乾燥物を付着させて乾燥する方式、真空冷却などに応用できる。
In the present invention, in addition to the shelf type which is dried by convection of air having a pressure of 0.1 to 0.5 atm or less, fluidized bed drying (FIG. 4), spray drying (FIG. 5), vibration drying, dry matter on the plate surface It can be applied to the method of adhering and drying, vacuum cooling, etc.

課題が解決するための手段Means for solving the problem

上記課題を解決するために、次のいくつかの課題について考案した。 In order to solve the above problems, the following several problems have been devised.

まず、真空空気の対流乾燥を基本とした。そのために必要な条件を考える。 First, it was based on convection drying of vacuum air. Consider the conditions necessary for that.

まず、送風機の大きさについて考案する。真空気体中でもその圧力に相当するいくらかの気体が存在する。その気体を質量的に移動する方法を考案する。送風機の気体の輸送量は翼の大きさと回転数による。例えば常圧で100kwの輸送能力を持つ送風機は1/100の真空下では1kwの能力と考える。送風機の形式は輸送量と輸送抵抗により決まる。抵抗はプロペラ、シロッコ、ターボ、ルーツ、ピストン等必要圧力によって選択する。乾燥時のエネルギー輸送量は質量である。送風機の実際に必要な動力は羽根面の滑りなどによる効率によって大きく異なる。当特許は乾燥目的に適切な真空度や乾燥品温や装置構造等に適した方式によって乾燥方式を選定し、装置構成機器を選定し、動力を選定する。動力の変動幅はインバーターで制御する範囲を大きく越える。特許請求の講で示すように、常圧下での運転時の必要動力の1/2、望ましくは1/5から1/20の、常圧下で運転に必要な動力より大幅に少ない動力で構成する送風機とした。 First, the size of the blower is devised. There is some gas in the vacuum gas corresponding to the pressure. A method of moving the gas in mass is devised. The amount of gas transported by the blower depends on the blade size and the number of rotations. For example, a blower having a transport capacity of 100 kw at normal pressure is considered to have a capacity of 1 kw under a vacuum of 1/100. The type of blower is determined by the transport volume and transport resistance. The resistance is selected according to the required pressure such as propeller, sirocco, turbo, roots, piston. The amount of energy transport during drying is mass. The actual power required for the blower varies greatly depending on the efficiency due to the sliding of the blade surface. In this patent, the drying method is selected according to the method suitable for the degree of vacuum appropriate for the purpose of drying, the temperature of the dried product, the device structure, etc., the device components are selected, and the power is selected. The fluctuation range of power greatly exceeds the range controlled by the inverter. As shown in the claim, it is composed of 1/2 of the required power during operation under normal pressure, preferably 1/5 to 1/20, much less than the power required for operation under normal pressure. A blower was used.

ついで、真空下の空気の飽和水分量を考える。非特許文献1(化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会、p34)の図1.28に示される「高圧空気の飽和温度」の線図を低圧条件に外挿して得た20℃の値は、0.1、0.2、0.3kg/cm2のそれぞれの水分は0.2、0.09、0.06kg/kgである。1気圧の20℃の空気の水分が0.015kg/kgであることと比較すると、真空空気1kgの水分輸送量は、圧力が0.1、0.2、0.3kg/cm2それぞれについて、1/13,1/6,1/4で可能である。この現象を乾燥空気の輸送現象に利用する効果は非常に大きな意味を持つ。
化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会
Next, consider the saturated moisture content of air under vacuum. Non-Patent Document 1 (Chemical Engineering Handbook, May 10, 1968, revised edition 3rd edition issued, editor. Chemical Engineering Association of Japan, p34) "Saturation temperature of high-pressure air" shown in Fig. 1.28 The values of 20 ° C. obtained by extrapolating the diagram to the low-pressure conditions are 0.1, 0.2, 0.3 kg / cm 2 , and the water contents are 0.2, 0.09, 0.06 kg / kg, respectively. is there. Compared with the fact that the moisture content of air at 20 ° C. at 1 atm is 0.015 kg / kg, the moisture transport amount of 1 kg of vacuum air is about 0.1, 0.2 and 0.3 kg / cm 2 respectively. 1/13, 1/6, and 1/4 are possible. The effect of using this phenomenon for the transport phenomenon of dry air is very significant.
Chemical Engineering Handbook, 3rd edition, revised on May 10, 1968, editor. Japan Society for Chemical Engineering

0.2kg/cm2の圧力は水封式真空ポンプで容易に可能な真空度の範囲である。 The pressure of 0.2 kg / cm 2 is in the range of the degree of vacuum that is easily possible with a water ring vacuum pump.

次に、乾燥物が対流気体の雰囲気にある乾燥温度を考える。乾燥物の周囲温度は乾燥物へのエネルギー輸送速度に影響するが、乾燥物の品質に直接影響を与える温度ではない。乾燥物の品質は水分が蒸発している部位の温度である。これらの常圧下の乾燥現象での一般理論が真空下の希薄な空気の対流乾燥現象にも適用できることを実験的に確認した。
当発明の方法では対流気体の露点温度が乾燥温度を示す。当特許の方法での露点は、熱交換器の冷却熱媒の温度であり、外気を使用したクーリングタワーで冷却する場合は冷却水の温度、冷凍機で作る温度ではその温度が露点温度となる。
Next, consider the drying temperature at which the dried product is in a convection gas atmosphere. The ambient temperature of the dried product affects the energy transfer rate to the dried product, but not the temperature that directly affects the quality of the dried product. The quality of the dried product is the temperature at the site where moisture is evaporated. It was experimentally confirmed that these general theories in the drying phenomenon under normal pressure can be applied to the convection drying phenomenon of dilute air under vacuum.
In the method of the present invention, the dew point temperature of the convection gas indicates the drying temperature. The dew point in the method of this patent is the temperature of the cooling heat medium of the heat exchanger. When cooling with a cooling tower using outside air, the dew point is the temperature of the cooling water, and the temperature made with the refrigerator is the dew point temperature.

1.真空下の空気の質量輸送を考えた送風機を選択し、
2.真空下の空気を圧力、温度、水分を考慮し、
3.真空下の乾燥物の品質は水分のある位置の温度が大きく影響することを考慮し、
4.真空装置を構成する乾燥室、真空ポンプ、熱供給、熱排出、空気流れなど幾多の設備コスト、運転コストを考慮し、
5.上記の1〜4の事項を総合的に考えて、最良の乾燥装置を考案した結果、図1に示す乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で回転したときに必要とする動力の1/2,望ましくは1/5〜1/10の動力で構成する送風機4を設置し、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置を基本構成とした。本特許の基本理念は多くの乾燥方式に適用できる。その一例として棚式置き式、流動式、噴霧式を示した。
1. Select a blower that considers mass transport of air under vacuum,
2. Consider the pressure, temperature, moisture in the air under vacuum,
3. Considering that the quality of the dried product under vacuum is greatly affected by the temperature of the moisture location,
4). Considering many equipment costs such as the drying chamber, vacuum pump, heat supply, heat discharge, air flow, etc.
5. As a result of comprehensively considering the above items 1 to 4 and devising the best drying device, the indoor pressure of the drying device 1 shown in FIG. 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, A heat exchanger 5 that installs a blower 4 configured with a power of 1/2, preferably 1/5 to 1/10 of the power required when rotating under atmospheric pressure, and gives energy to the indoor gas of the drying apparatus 1. A heat source generator 6 that supplies a heat source to the heat exchanger 5, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, and a heat exchanger that converts the moisture of the indoor gas of the drying device 1 into liquid or ice. 7, a cooling device 8 that cools the energy obtained by the heat exchanger 7, a conduit 9 that maintains the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10 are used as a basic configuration. The basic idea of this patent can be applied to many drying methods. As an example, a shelf type, a flow type and a spray type are shown.

循環気体の湿度は循環気体の一部を凝縮水回収用熱交換器に導入しすることによって可能とした。 The humidity of the circulating gas was made possible by introducing a part of the circulating gas into the heat exchanger for collecting condensed water.

真空乾燥下の乾燥においても、乾燥物の周囲温度と露点温度との温度差は試料に供給される熱流速度に影響することを確認した。 In drying under vacuum drying, it was confirmed that the temperature difference between the ambient temperature of the dried product and the dew point temperature affects the heat flow rate supplied to the sample.

図1に示す設備を用いて乾燥した。図1の構成を説明する。乾燥室1は真空を保持できる容器であり、その室内には送風機翼2と送風機翼2を回転する動力3とでなる送風機4と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に蒸気を供給するボイラー6と、乾燥で発生した水蒸気を液体の水に凝縮する熱交換器7と、熱交換器7で得たエネルギーを冷却する装置8と、真空気体を室外に導出するダクト9と、真空ポンプ10と、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12とで構成する。   It dried using the apparatus shown in FIG. The configuration of FIG. 1 will be described. The drying chamber 1 is a container that can hold a vacuum. In the chamber, a blower 4 composed of a blower blade 2 and a power 3 that rotates the blower blade 2, and a heat exchanger 5 that gives energy to the indoor gas of the drying device 1, A boiler 6 for supplying steam to the heat exchanger 5, a heat exchanger 7 for condensing the water vapor generated by drying into liquid water, a device 8 for cooling the energy obtained in the heat exchanger 7, and a vacuum gas It comprises a duct 9 led out to the outdoors, a vacuum pump 10, a tray 14 on which a dried sample 13 is loaded, and guide plates 11 and 12 that circulate the room gas of the drying apparatus 1.

図1の構成内容について補足説明をする。
トレー14は試料が積載保持できる金網や多孔板でよく、試料にトレーから乾燥エネルギーを与えるためのボイラーからの蒸気を導管で導く熱板にするとか、ヒーターで加熱するなどの必要はない。
A supplementary description will be given of the configuration contents of FIG.
The tray 14 may be a wire mesh or a perforated plate on which a sample can be loaded and held, and it is not necessary to use a hot plate that guides vapor from a boiler for giving drying energy to the sample from the tray by a conduit or heating with a heater.

送風機4で発生する気体流れ17は、熱交換機5を通って気体流れ18となり、試料13を経て気体流れ19となり、気体流れ19の一部は案内板11、12でできるダクトを通る気体流れ15となり、気体流れ19の一部は熱交換器7を通る気体流れ16となり、気体流れ15、16は合流して気体流れ17となり、送風機4に至る気体循環を構成する。
図1,2,3の乾燥装置の気体流れ方向は上記説明の逆の方向で行っても同様の効果が期待できる。
The gas flow 17 generated in the blower 4 becomes a gas flow 18 through the heat exchanger 5, passes through the sample 13 and becomes a gas flow 19, and a part of the gas flow 19 passes through a duct formed by the guide plates 11 and 12. Thus, a part of the gas flow 19 becomes a gas flow 16 passing through the heat exchanger 7, and the gas flows 15 and 16 merge to form a gas flow 17, which constitutes a gas circulation reaching the blower 4.
The same effect can be expected even if the gas flow direction of the drying apparatus of FIGS.

従来、真空乾燥の乾燥温度は水の沸点で論じられてきたが、当発明の乾燥温度は室内循環気体の露点温度によって決まるため、乾燥物周辺の温度が例えば60℃であっても30℃の乾燥が可能である。 Conventionally, the drying temperature of vacuum drying has been discussed in terms of the boiling point of water, but since the drying temperature of the present invention is determined by the dew point temperature of the indoor circulation gas, the temperature around the dried product is, for example, 30 ° C. even if it is 60 ° C. Drying is possible.

ここで上記文章では真空と表現したが、一般にこの程度の圧力では減圧と表現することが多い。しかし、真空または減圧の語彙は同じことを表現しているため、本特許文は、常圧より低い圧力全てを真空で表現した。また、常圧を1atmとし、絶対真空を0atmとした。 Here, in the above sentence, the term “vacuum” is used. However, in general, this level of pressure is often expressed as “decompression”. However, since the vocabulary of vacuum or decompression expresses the same thing, this patent sentence expressed all the pressures lower than normal pressure in vacuum. The normal pressure was 1 atm and the absolute vacuum was 0 atm.

乾燥試料への熱供給は循環気体から対流によって与えられるエネルギーによるため、当特許装置のいずれの乾燥においても、対流を停止すればエネルギーの供給が無くなり乾燥が進行しない。 Since the heat supply to the dried sample depends on the energy provided by the convection from the circulating gas, in any drying of this patent apparatus, if the convection is stopped, the energy is not supplied and the drying does not proceed.

試料への熱供給は一義的に循環気体のエンタルピー線上の温度と品温との温度差に支配される。 The heat supply to the sample is primarily governed by the temperature difference between the temperature on the enthalpy line of the circulating gas and the product temperature.

当発明による乾燥は凍結乾燥装置にも応用できる。凍結乾燥の乾燥温度は氷が蒸発する温度であるため氷の蒸発温度の0℃が露点温度であり、対流気体の乾燥法で凍結乾燥が可能である。 The drying according to the invention can also be applied to freeze-drying equipment. The drying temperature of lyophilization is the temperature at which ice evaporates, so the ice evaporation temperature of 0 ° C. is the dew point temperature, and lyophilization is possible by a convection gas drying method.

さらに、当発明装置は真空冷却に応用できる。真空冷却に応用する場合はボイラーからの熱補給は必要なく、熱交換器7で得たエネルギーを冷却する装置8を通した循環気体の中に試料を設置するのみでよい。 Furthermore, the device of the present invention can be applied to vacuum cooling. In the case of application to vacuum cooling, it is not necessary to supply heat from the boiler, and it is only necessary to place the sample in the circulating gas through the device 8 that cools the energy obtained by the heat exchanger 7.

当装置による冷却は真空冷却法より装置コスト、運転コストに大きな経済効果が期待できる。 Cooling with this device can be expected to have a greater economic effect on the device cost and operation cost than the vacuum cooling method.

乾燥試験結果Drying test results

人参厚さ2cm、大根厚さ3cmを、真空度0.2atm、温度60℃で乾燥試験を行った結果、乾燥温度は25〜28℃で維持できた。乾燥物は変色のない製品が得られた。 As a result of performing a drying test with a carrot thickness of 2 cm and a radish thickness of 3 cm at a degree of vacuum of 0.2 atm and a temperature of 60 ° C., the drying temperature could be maintained at 25 to 28 ° C. A product without discoloration of the dried product was obtained.

当乾燥温度経過は露点温度で乾燥することを示し、野菜組織中の水の状態が液体か固体かで温度が異なるものではない。 This drying temperature course shows that it is dried at the dew point temperature, and the temperature does not differ depending on whether the water in the vegetable tissue is liquid or solid.

水封式真空ポンプで目的とする品質の変化の少ない野菜の乾燥が可能である。 It is possible to dry vegetables with little change in target quality with a water-sealed vacuum pump.

乾燥対象試料として蒸発成分のある試料は全て可能である。 All samples having an evaporating component as a sample to be dried are possible.

地域、時期によって異なるが、冷却装置11はクーリングタワー方式で可能である。実施例は冬季実験のため、水温15℃であった。   Although it changes with areas and time, the cooling device 11 can be a cooling tower system. In the examples, the water temperature was 15 ° C. for the winter experiment.

本発明方法の実施に用いる設備の1例を概略的に図1に示す。 An example of equipment used for carrying out the method of the present invention is schematically shown in FIG.

符号の説明Explanation of symbols

1.乾燥装置
2.送風翼
3.モーター
4.送風機
5.A熱交換器(加熱用)
6.ボイラー
7.B熱交換器(冷却用)
8.冷却機
9.真空空気排出管
10.真空ポンプ
11.A案内板
12.B案内板
13.乾燥試料
14.試料置きトレー
15.循環空気19の通過ダクト
16.B熱交換器7を通過した通過ダクト
17.通過ダクト15、16を通過した空気の混合気体
18.A熱交換器5を通過した空気
19.乾燥物13を通過した空気
20.乾燥試料供給装置
21.分離網
22.乾燥物排出装置
23.多孔板
24.噴霧乾燥室
25.乾燥物滞留部
26.濾過布
27.噴霧装置
28.乾燥物排出装置
29.攪拌機
30.攪拌動力装置
31.被乾燥物滞留槽
32.外気導入弁
1. 1. Drying device 2. Blower blade Motor 4. Blower 5 A heat exchanger (for heating)
6). Boiler 7. B heat exchanger (for cooling)
8). Cooler 9. Vacuum air discharge pipe 10. Vacuum pump 11. A guide plate 12. B guide plate 13. Dry sample 14. Sample tray 15. A passage duct for circulating air 19. B. Passing duct passed through the heat exchanger 7. 15. A mixed gas of air that has passed through the passage ducts 15 and 16. Air that has passed through the A heat exchanger 5 19. Air that has passed through the dried product 13 20. Dry sample supply device
21. Separation network
22. Dry matter discharge device
23. Perforated plate
24. Spray drying room
25. Dry matter retention part
26. Filter cloth
27. Spraying equipment
28. Dry matter discharge device
29. Stirrer
30. Stirring power unit
31. Drainage retention tank
32. Outside air introduction valve

本発明の一実施形態を示す棚式の乾燥装置の構成図を示す。The block diagram of the shelf-type drying apparatus which shows one Embodiment of this invention is shown. 本特許の一実施形態を示す棚式の冷却装置の構成図を示す。The block diagram of the shelf-type cooling device which shows one Embodiment of this patent is shown. 本特許の一実施形態を示す攪拌式乾燥装置の構成図を示す。The block diagram of the stirring-type drying apparatus which shows one Embodiment of this patent is shown. 本特許の一実施形態を示す流動層式乾燥装置の構成図を示す。The block diagram of the fluidized-bed-type drying apparatus which shows one Embodiment of this patent is shown. 本特許の一実施形態を示す循環気体雰囲気の噴霧乾燥装置の構成図を示す。The block diagram of the spray-drying apparatus of the circulating gas atmosphere which shows one Embodiment of this patent is shown. 本特許の一実施形態を示す一過気体式噴霧乾燥装置の構成図を示す。1 shows a block diagram of a single-overgas spray drying apparatus showing an embodiment of the present patent. FIG.

この発明は、品質変化の少ない食品用乾燥装置に関する。 The present invention relates to a food drying apparatus with little change in quality.

従来の技術Conventional technology

品質変化の少ない乾燥は真空乾燥装置または凍結乾燥装置または冬季の寒風を利用して行われる自然乾燥などで行う。真空乾燥装置や凍結乾燥装置の品質を決定する乾燥温度は蒸発物質(通常は水)の真空度と沸点の関係で求められる温度とされる。乾燥物の蒸発のエネルギーは試料を積載するトレーからの伝熱エネルギーおよび容器壁面からの輻射熱に依存する。 Drying with little change in quality is performed by vacuum drying, freeze drying, or natural drying using winter cold wind. The drying temperature that determines the quality of the vacuum drying device or freeze drying device is a temperature determined by the relationship between the degree of vacuum and the boiling point of the evaporated substance (usually water). The energy of evaporation of the dry matter depends on the heat transfer energy from the tray on which the sample is loaded and the radiant heat from the container wall.

しかしながら、上記のような従来の方法では乾燥物への熱供給速度が少なく、また熱供給速度を多くするためにトレーの温度を高くすることは品質に大きな影響が発生する原因となっていた。 However, in the conventional method as described above, the heat supply rate to the dried product is low, and increasing the temperature of the tray in order to increase the heat supply rate has caused a great influence on the quality.

本発明は、上記のような問題に鑑み、高品質の乾燥物を短時間でかつ低コストで製造することができる方法を提供することを課題とする。 This invention makes it a subject to provide the method which can manufacture a high quality dried material in a short time and low cost in view of the above problems.

本発明は、高品質の乾燥が短時間で低コストで製造することができ、かつ真空冷却が低コストでできる。 In the present invention, high-quality drying can be produced in a short time and at low cost, and vacuum cooling can be performed at low cost.

課題で乾燥温度を30℃としたが、これは一応の目標値であり、試料によって品質変化の温度は異なるため特に固定するものでない。 Although the drying temperature was set to 30 ° C. as a problem, this is a temporary target value, and the temperature of quality change differs depending on the sample, so it is not particularly fixed.

本発明は、圧力が0.1〜0.5atm以下の空気の対流で乾燥する棚式以外に、流動層乾燥(図4)、噴霧乾燥(図5)、振動乾燥、板表面に乾燥物を付着させて乾燥する方式、真空冷却などに応用できる。
In the present invention, in addition to the shelf type which is dried by convection of air having a pressure of 0.1 to 0.5 atm or less, fluidized bed drying (FIG. 4), spray drying (FIG. 5), vibration drying, dry matter on the plate surface It can be applied to the method of adhering and drying, vacuum cooling, etc.

課題が解決するための手段Means for solving the problem

上記課題を解決するために、次のいくつかの課題について考案した。 In order to solve the above problems, the following several problems have been devised.

まず、真空空気の対流乾燥を基本とした。そのために必要な条件を考える。 First, it was based on convection drying of vacuum air. Consider the conditions necessary for that.

まず、送風機の大きさについて考案する。真空気体中でもその圧力に相当するいくらかの気体が存在する。その気体を質量的に移動する方法を考案する。送風機の気体の輸送量は翼の大きさと回転数による。例えば常圧で100kwの輸送能力を持つ送風機は1/100の真空下では1kwの能力と考える。送風機の形式は輸送量と輸送抵抗により決まる。抵抗はプロペラ、シロッコ、ターボ、ルーツ、ピストン等必要圧力によって選択する。乾燥時のエネルギー輸送量は質量である。送風機の実際に必要な動力は羽根面の滑りなどによる効率によって大きく異なる。当特許は乾燥目的に適切な真空度や乾燥品温や装置構造等に適した方式によって乾燥方式を選定し、装置構成機器を選定し、動力を選定する。動力の変動幅はインバーターで制御する範囲を大きく越える。特許請求の講で示すように、常圧下での運転時の必要動力の1/2、望ましくは1/5から1/20の、常圧下で運転に必要な動力より大幅に少ない動力で構成する送風機とした。 First, the size of the blower is devised. There is some gas in the vacuum gas corresponding to the pressure. A method of moving the gas in mass is devised. The amount of gas transported by the blower depends on the blade size and the number of rotations. For example, a blower having a transport capacity of 100 kw at normal pressure is considered to have a capacity of 1 kw under a vacuum of 1/100. The type of blower is determined by the transport volume and transport resistance. The resistance is selected according to the required pressure such as propeller, sirocco, turbo, roots, piston. The amount of energy transport during drying is mass. The actual power required for the blower varies greatly depending on the efficiency due to the sliding of the blade surface. In this patent, the drying method is selected according to the method suitable for the degree of vacuum appropriate for the purpose of drying, the temperature of the dried product, the device structure, etc., the device components are selected, and the power is selected. The fluctuation range of power greatly exceeds the range controlled by the inverter. As shown in the claim, it is composed of 1/2 of the required power during operation under normal pressure, preferably 1/5 to 1/20, much less than the power required for operation under normal pressure. A blower was used.

ついで、真空下の空気の飽和水分量を考える。非特許文献1(化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会、p34)の図1.28に示される「高圧空気の飽和温度」の線図を低圧条件に外挿して得た20℃の値は、0.1、0.2、0.3kg/cm2のそれぞれの水分は0.2、0.09、0.06kg/kgである。1気圧の20℃の空気の水分が0.015kg/kgであることと比較すると、真空空気1kgの水分輸送量は、圧力が0.1、0.2、0.3kg/cm2それぞれについて、1/13,1/6,1/4で可能である。この現象を乾燥空気の輸送現象に利用する効果は非常に大きな意味を持つ。

化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会
Next, consider the saturated moisture content of air under vacuum. Non-Patent Document 1 (Chemical Engineering Handbook, May 10, 1968, revised edition 3rd edition issued, editor. Chemical Engineering Association of Japan, p34) "Saturation temperature of high-pressure air" shown in Fig. 1.28 The values of 20 ° C. obtained by extrapolating the diagram to the low-pressure conditions are 0.1, 0.2, 0.3 kg / cm 2 , and the water contents are 0.2, 0.09, 0.06 kg / kg, respectively. is there. Compared with the fact that the moisture content of air at 20 ° C. at 1 atm is 0.015 kg / kg, the moisture transport amount of 1 kg of vacuum air is about 0.1, 0.2 and 0.3 kg / cm 2 respectively. 1/13, 1/6, and 1/4 are possible. The effect of using this phenomenon for the transport phenomenon of dry air is very significant.

Chemical Engineering Handbook, 3rd edition, revised on May 10, 1968, editor. Japan Society for Chemical Engineering

0.2kg/cm2の圧力は水封式真空ポンプで容易に可能な真空度の範囲である。 The pressure of 0.2 kg / cm 2 is in the range of the degree of vacuum that is easily possible with a water ring vacuum pump.

次に、乾燥物が対流気体の雰囲気にある乾燥温度を考える。乾燥物の周囲温度は乾燥物へのエネルギー輸送速度に影響するが、乾燥物の品質に直接影響を与える温度ではない。乾燥物の品質は水分が蒸発している部位の温度である。これらの常圧下の乾燥現象での一般理論が真空下の希薄な空気の対流乾燥現象にも適用できることを実験的に確認した。
当発明の方法では対流気体の露点温度が乾燥温度を示す。当特許の方法での露点は、熱交換器の冷却熱媒の温度であり、外気を使用したクーリングタワーで冷却する場合は冷却水の温度、冷凍機で作る温度ではその温度が露点温度となる。
Next, consider the drying temperature at which the dried product is in a convection gas atmosphere. The ambient temperature of the dried product affects the energy transfer rate to the dried product, but not the temperature that directly affects the quality of the dried product. The quality of the dried product is the temperature at the site where moisture is evaporated. It was experimentally confirmed that these general theories in the drying phenomenon under normal pressure can be applied to the convection drying phenomenon of dilute air under vacuum.
In the method of the present invention, the dew point temperature of the convection gas indicates the drying temperature. The dew point in the method of this patent is the temperature of the cooling heat medium of the heat exchanger. When cooling with a cooling tower using outside air, the dew point is the temperature of the cooling water, and the temperature made with the refrigerator is the dew point temperature.

1.真空下の空気の質量輸送を考えた送風機を選択し、
2.真空下の空気を圧力、温度、水分を考慮し、
3.真空下の乾燥物の品質は水分のある位置の温度が大きく影響することを考慮し、
4.真空装置を構成する乾燥室、真空ポンプ、熱供給、熱排出、空気流れなど幾多の設備コスト、運転コストを考慮し、
5.上記の1〜4の事項を総合的に考えて、最良の乾燥装置を考案した結果、図1に示す乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で回転したときに必要とする動力の1/2,望ましくは1/5〜1/10の動力で構成する送風機4を設置し、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置を基本構成とした。本特許の基本理念は多くの乾燥方式に適用できる。その一例として棚式置き式、流動式、噴霧式を示した。
1. Select a blower that considers mass transport of air under vacuum,
2. Consider the pressure, temperature, moisture in the air under vacuum,
3. Considering that the quality of the dried product under vacuum is greatly affected by the temperature of the moisture location,
4). Considering many equipment costs such as the drying chamber, vacuum pump, heat supply, heat discharge, air flow, etc.
5. As a result of comprehensively considering the above items 1 to 4 and devising the best drying device, the indoor pressure of the drying device 1 shown in FIG. 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, A heat exchanger 5 that installs a blower 4 configured with a power of 1/2, preferably 1/5 to 1/10 of the power required when rotating under atmospheric pressure, and gives energy to the indoor gas of the drying apparatus 1. A heat source generator 6 that supplies a heat source to the heat exchanger 5, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, and a heat exchanger that converts the moisture of the indoor gas of the drying device 1 into liquid or ice. 7, a cooling device 8 that cools the energy obtained by the heat exchanger 7, a conduit 9 that maintains the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10 are used as a basic configuration. The basic idea of this patent can be applied to many drying methods. As an example, a shelf type, a flow type and a spray type are shown.

循環気体の湿度は循環気体の一部を凝縮水回収用熱交換器に導入しすることによって可能とした。 The humidity of the circulating gas was made possible by introducing a part of the circulating gas into the heat exchanger for collecting condensed water.

真空乾燥下の乾燥においても、乾燥物の周囲温度と露点温度との温度差は試料に供給される熱流速度に影響することを確認した。 In drying under vacuum drying, it was confirmed that the temperature difference between the ambient temperature of the dried product and the dew point temperature affects the heat flow rate supplied to the sample.

図1に示す設備を用いて乾燥した。図1の構成を説明する。乾燥室1は真空を保持できる容器であり、その室内には送風機翼2と送風機翼2を回転する動力3とでなる送風機4と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に蒸気を供給するボイラー6と、乾燥で発生した水蒸気を液体の水に凝縮する熱交換器7と、熱交換器7で得たエネルギーを冷却する装置8と、真空気体を室外に導出するダクト9と、真空ポンプ10と、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12とで構成する。   It dried using the apparatus shown in FIG. The configuration of FIG. 1 will be described. The drying chamber 1 is a container that can hold a vacuum. In the chamber, a blower 4 composed of a blower blade 2 and a power 3 that rotates the blower blade 2, and a heat exchanger 5 that gives energy to the indoor gas of the drying device 1, A boiler 6 for supplying steam to the heat exchanger 5, a heat exchanger 7 for condensing the water vapor generated by drying into liquid water, a device 8 for cooling the energy obtained in the heat exchanger 7, and a vacuum gas It comprises a duct 9 led out to the outdoors, a vacuum pump 10, a tray 14 on which a dried sample 13 is loaded, and guide plates 11 and 12 that circulate the room gas of the drying apparatus 1.

図1の構成内容について補足説明をする。
トレー14は試料が積載保持できる金網や多孔板でよく、試料にトレーから乾燥エネルギーを与えるためのボイラーからの蒸気を導管で導く熱板にするとか、ヒーターで加熱するなどの必要はない。
A supplementary description will be given of the configuration contents of FIG.
The tray 14 may be a wire mesh or a perforated plate on which a sample can be loaded and held, and it is not necessary to use a hot plate that guides vapor from a boiler for giving drying energy to the sample from the tray by a conduit or heating with a heater.

送風機4で発生する気体流れ17は、熱交換機5を通って気体流れ18となり、試料13を経て気体流れ19となり、気体流れ19の一部は案内板11、12でできるダクトを通る気体流れ15となり、気体流れ19の一部は熱交換器7を通る気体流れ16となり、気体流れ15、16は合流して気体流れ17となり、送風機4に至る気体循環を構成する。
図1,2,3の乾燥装置の気体流れ方向は上記説明の逆の方向で行っても同様の効果が期待できる。
The gas flow 17 generated in the blower 4 becomes a gas flow 18 through the heat exchanger 5, passes through the sample 13 and becomes a gas flow 19, and a part of the gas flow 19 passes through a duct formed by the guide plates 11 and 12. Thus, a part of the gas flow 19 becomes a gas flow 16 passing through the heat exchanger 7, and the gas flows 15 and 16 merge to form a gas flow 17, which constitutes a gas circulation reaching the blower 4.
The same effect can be expected even if the gas flow direction of the drying apparatus of FIGS.

図1で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a tray 14 on which a dried sample 13 is loaded, a heat exchanger 5 that gives energy to the indoor gas of the drying apparatus 1, and a heat exchanger 5 A heat source generator 6 that supplies a heat source, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, a heat exchanger 7 that converts the moisture of the indoor gas of the drying device 1 into liquid or ice, and a heat exchanger 7 The drying device is composed of a cooling device 8 for cooling the energy obtained in the above, a conduit 9 for maintaining the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10.

図2で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a tray 14 on which a dried sample 13 is loaded, guide plates 11 and 12 for circulating the indoor gas of the drying apparatus 1, and the interior of the drying apparatus 1. A heat exchanger 7 that converts gaseous moisture into liquid or ice, a cooling device 8 that cools the energy obtained in the heat exchanger 7, a conduit 9 that maintains the room pressure of the drying device 1 in vacuum, and a vacuum pump 10 Drying equipment composed of

図3で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料容器25に堆積する乾燥試料13を攪拌する攪拌機29を乾燥室1内に設置し、攪拌機29を駆動する動力30と、乾燥試料を供給する装置20と、乾燥物13を排出する排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥試料13の乾燥装置。This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a stirrer 29 for stirring the dry sample 13 deposited in the dry sample container 25 is installed in the drying chamber 1, and a power 30 for driving the stirrer 29 A device 20 for supplying a dry sample, a discharge device 22 for discharging the dried product 13, a heat exchanger 5 for providing energy to the indoor gas of the drying device 1, and a heat source generator for supplying a heat source to the heat exchanger 5. 6, the guide plates 11 and 12 that circulate the indoor gas of the drying device 1, the heat exchanger 7 that converts the moisture of the indoor gas of the drying device 1 to liquid or ice, and the energy obtained by the heat exchanger 7 is cooled. A cooling device 8 and a conduit 9 for maintaining the drying chamber in a vacuum; Drying device Drying the sample 13 composed of a vacuum pump 10.

図4で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を多孔板23上で浮遊させ、乾燥試料供給装置20と、乾燥物が流出する板21と、乾燥物排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with a power of 1/5 to 1/20, floats the dried sample 13 on the perforated plate 23, discharges the dried sample supply device 20, the plate 21 through which the dried product flows, and discharges the dried product A heat exchanger 5 that gives energy to the indoor gas of the drying device 1, a heat source generator 6 that supplies a heat source to the heat exchanger 5, and guide plates 11 and 12 that circulate the indoor gas of the drying device 1. , A heat exchanger 7 that converts the moisture in the room gas of the drying apparatus 1 to liquid or ice, a cooling device 8 that cools the energy obtained in the heat exchanger 7, a conduit 9 that maintains the drying chamber in vacuum, and a vacuum pump 10 is a drying apparatus.

図5で説明する。乾燥装置1の室内圧力を0.2atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風を返風するダクト19と、返風がそのまま送風機4に流動する風15と、熱交換器7を経る風16と、風16を冷却する熱交換器7と、熱交換機7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.2 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with power of 1/5 to 1/20 in the drying chamber 1, and supplies a heat source to the heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, and the heat exchanger 5. A heat source generator 6, a spray drying chamber 24 in the drying chamber 1, a duct 18 connected to the spray drying chamber, a spray device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, A dry powder storage unit 25, a discharge valve 28, a duct 19 for returning the wind that has passed through the filter cloth 26, a wind 15 in which the returned air flows to the blower 4 as it is, and a wind 16 that passes through the heat exchanger 7, The heat exchanger 7 that cools the wind 16, the cooling device 8 of the heat exchanger 7, and the drying device 1 A conduit 9 to maintain a chamber pressure of vacuum drying apparatus constituted by a vacuum pump 10.

図6で説明する。乾燥装置1の室内圧力を0.2atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風が返風するダクト19と、そのまま循環する風15と、熱交換器7を経る風16と、熱交換器7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.2 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with power of 1/5 to 1/20 in the drying chamber 1, and supplies a heat source to the heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, and the heat exchanger 5. A heat source generator 6, a spray drying chamber 24 in the drying chamber 1, a duct 18 connected to the spray drying chamber, a spray device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, Cooling of the dry powder storage unit 25, the discharge valve 28, the duct 19 that returns the wind that has passed through the filter cloth 26, the wind 15 that circulates as it is, the wind 16 that passes through the heat exchanger 7, and the cooling of the heat exchanger 7 Apparatus 8, conduit 9 for maintaining the room pressure of drying apparatus 1 in vacuum, and vacuum pump 0 to constitute a dry apparatus.

従来、真空乾燥の乾燥温度は水の沸点で論じられてきたが、当発明の乾燥温度は室内循環気体の露点温度によって決まるため、乾燥物周辺の温度が例えば60℃であっても30℃の乾燥が可能である。 Conventionally, the drying temperature of vacuum drying has been discussed in terms of the boiling point of water. However, since the drying temperature of the present invention is determined by the dew point temperature of the indoor circulating gas, the temperature around the dried product is, for example, 30 ° C. Drying is possible.

ここで上記文章では真空と表現したが、一般にこの程度の圧力では減圧と表現することが多い。しかし、真空または減圧の語彙は同じことを表現しているため、本特許文は、常圧より低い圧力全てを真空で表現した。また、常圧を1atmとし、絶対真空を0atmとした。 Here, in the above sentence, the term “vacuum” is used. However, in general, this level of pressure is often expressed as “decompression”. However, since the vocabulary of vacuum or decompression expresses the same thing, this patent sentence expressed all the pressures lower than normal pressure in vacuum. The normal pressure was 1 atm and the absolute vacuum was 0 atm.

乾燥試料への熱供給は循環気体から対流によって与えられるエネルギーによるため、当特許装置のいずれの乾燥においても、対流を停止すればエネルギーの供給が無くなり乾燥が進行しない。 Since the heat supply to the dried sample depends on the energy provided by the convection from the circulating gas, in any drying of this patent apparatus, if the convection is stopped, the energy is not supplied and the drying does not proceed.

試料への熱供給は一義的に循環気体のエンタルピー線上の温度と品温との温度差に支配される。 The heat supply to the sample is primarily governed by the temperature difference between the temperature on the enthalpy line of the circulating gas and the product temperature.

本発明による乾燥は凍結乾燥装置にも応用できる。凍結乾燥の乾燥温度は氷が蒸発する温度であるため氷の蒸発温度の0℃が露点温度であり、対流気体の乾燥法で凍結乾燥が可能である。 The drying according to the invention can also be applied to freeze-drying equipment. The drying temperature of lyophilization is the temperature at which ice evaporates, so the ice evaporation temperature of 0 ° C. is the dew point temperature, and lyophilization is possible by a convection gas drying method.

さらに、当発明装置は真空冷却に応用できる。真空冷却に応用する場合はボイラーからの熱補給は必要なく、熱交換器7で得たエネルギーを冷却する装置8を通した循環気体の中に試料を設置するのみでよい。 Furthermore, the device of the present invention can be applied to vacuum cooling. In the case of application to vacuum cooling, it is not necessary to supply heat from the boiler, and it is only necessary to place the sample in the circulating gas through the device 8 that cools the energy obtained by the heat exchanger 7.

本発明の装置による冷却は真空冷却法より装置コスト、運転コストに大きな経済効果が期待できる。 Cooling by the apparatus of the present invention can be expected to have a greater economic effect on apparatus cost and operation cost than the vacuum cooling method.

乾燥試験結果Drying test results

人参厚さ2cm、大根厚さ3cmを、真空度0.2atm、温度60℃で乾燥試験を行った結果、乾燥温度は25〜28℃で維持できた。乾燥物は変色のない製品が得られた。 As a result of performing a drying test with a carrot thickness of 2 cm and a radish thickness of 3 cm at a degree of vacuum of 0.2 atm and a temperature of 60 ° C., the drying temperature could be maintained at 25 to 28 ° C. A product without discoloration of the dried product was obtained.

当乾燥温度経過は露点温度で乾燥することを示し、野菜組織中の水の状態が液体か固体かで温度が異なるものではない。 This drying temperature course shows that it is dried at the dew point temperature, and the temperature does not differ depending on whether the water in the vegetable tissue is liquid or solid.

水封式真空ポンプで目的とする品質の変化の少ない野菜の乾燥が可能である。 It is possible to dry vegetables with little change in target quality with a water-sealed vacuum pump.

乾燥対象試料として蒸発成分のある試料は全て可能である。 All samples having an evaporating component as a sample to be dried are possible.

地域、時期によって異なるが、冷却装置11はクーリングタワー方式で可能である。実施例は冬季実験のため、水温15℃であった。   Although it changes with areas and time, the cooling device 11 can be a cooling tower system. In the examples, the water temperature was 15 ° C. for the winter experiment.

本発明方法の実施に用いる乾燥装置の1例を概略図である。It is a schematic diagram of an example of a drying device used for carrying out the method of the present invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention.

符号の説明Explanation of symbols

1.乾燥装置
2.送風翼
3.モーター
4.送風機
5.A熱交換器(加熱用)
6.ボイラー
7.B熱交換器(冷却用)
8.冷却機
9.真空空気排出管
10.真空ポンプ
11.A案内板
12.B案内板
13.乾燥試料
14.試料置きトレー
15.循環空気19の通過ダクト
16.B熱交換器7を通過した通過ダクト
17.通過ダクト15、16を通過した空気の混合気体
18.A熱交換器5を通過した空気
19.乾燥物13を通過した空気
20.乾燥試料供給装置
21.分離網
22.乾燥物排出装置
23.多孔板
24.噴霧乾燥室
25.乾燥物滞留部
26.濾過布
27.噴霧装置
28.乾燥物排出装置
29.攪拌機
30.攪拌動力装置
31.被乾燥物滞留槽
32.外気導入弁
1. 1. Drying device 2. Blower blade Motor 4. Blower 5 A heat exchanger (for heating)
6). Boiler 7. B heat exchanger (for cooling)
8). Cooler 9. Vacuum air discharge pipe 10. Vacuum pump 11. A guide plate 12. B guide plate 13. Dry sample 14. Sample tray 15. A passage duct for circulating air 19. B. Passing duct passed through the heat exchanger 7. 15. A mixed gas of air that has passed through the passage ducts 15 and 16. Air that has passed through the A heat exchanger 5 19. Air that has passed through the dried product 13 20. Dry sample supply device
21. Separation network
22. Dry matter discharge device
23. Perforated plate
24. Spray drying room
25. Dry matter retention part
26. Filter cloth
27. Spraying equipment
28. Dry matter discharge device
29. Stirrer
30. Stirring power unit
31. Drainage retention tank
32. Outside air introduction valve

この発明は、品質変化の少ない食品用乾燥装置に関する。 The present invention relates to a food drying apparatus with little change in quality.

従来の技術Conventional technology

品質変化の少ない乾燥は真空乾燥装置または凍結乾燥装置または冬季の寒風を利用して行われる自然乾燥などで行う。真空乾燥装置や凍結乾燥装置の品質を決定する乾燥温度は蒸発物質(通常は水)の真空度と沸点の関係で求められる温度とされる。乾燥物の蒸発のエネルギーは試料を積載するトレーからの伝熱エネルギーおよび容器壁面からの輻射熱に依存する。 Drying with little change in quality is performed by vacuum drying, freeze drying, or natural drying using winter cold wind. The drying temperature that determines the quality of the vacuum drying device or freeze drying device is a temperature determined by the relationship between the degree of vacuum and the boiling point of the evaporated substance (usually water). The energy of evaporation of the dry matter depends on the heat transfer energy from the tray on which the sample is loaded and the radiant heat from the container wall.

しかしながら、上記のような従来の方法では乾燥物への熱供給速度が少なく、また熱供給速度を多くするためにトレーの温度を高くすることは品質に大きな影響が発生する原因となっていた。 However, in the conventional method as described above, the heat supply rate to the dried product is low, and increasing the temperature of the tray in order to increase the heat supply rate has caused a great influence on the quality.

本発明は、上記のような問題に鑑み、高品質の乾燥物を短時間でかつ低コストで製造することができる方法を提供することを課題とする。 This invention makes it a subject to provide the method which can manufacture a high quality dried material in a short time and low cost in view of the above problems.

本発明は、高品質の乾燥が短時間で低コストで製造することができ、かつ真空冷却が低コストでできる。 In the present invention, high-quality drying can be produced in a short time and at low cost, and vacuum cooling can be performed at low cost.

課題で乾燥温度を30℃としたが、これは一応の目標値であり、試料によって品質変化の温度は異なるため特に固定するものでない。 Although the drying temperature was set to 30 ° C. as a problem, this is a temporary target value, and the temperature of quality change differs depending on the sample, so it is not particularly fixed.

本発明は、圧力が0.1〜0.5atm以下の空気の対流で乾燥する棚式以外に、流動層乾燥(図4)、噴霧乾燥(図5)、振動乾燥、板表面に乾燥物を付着させて乾燥する方式、真空冷却などに応用できる。
In the present invention, in addition to the shelf type which is dried by convection of air having a pressure of 0.1 to 0.5 atm or less, fluidized bed drying (FIG. 4), spray drying (FIG. 5), vibration drying, dry matter on the plate surface It can be applied to the method of adhering and drying, vacuum cooling, etc.

課題が解決するための手段Means for solving the problem

上記課題を解決するために、次のいくつかの課題について考案した。 In order to solve the above problems, the following several problems have been devised.

まず、真空空気の対流乾燥を基本とした。そのために必要な条件を考える。 First, it was based on convection drying of vacuum air. Consider the conditions necessary for that.

まず、送風機の大きさについて考案する。真空気体中でもその圧力に相当するいくらかの気体が存在する。その気体を質量的に移動する方法を考案する。送風機の気体の輸送量は翼の大きさと回転数による。例えば常圧で100kwの輸送能力を持つ送風機は1/100の真空下では1kwの能力と考える。送風機の形式は輸送量と輸送抵抗により決まる。抵抗はプロペラ、シロッコ、ターボ、ルーツ、ピストン等必要圧力によって選択する。乾燥時のエネルギー輸送量は質量である。送風機の実際に必要な動力は羽根面の滑りなどによる効率によって大きく異なる。当特許は乾燥目的に適切な真空度や乾燥品温や装置構造等に適した方式によって乾燥方式を選定し、装置構成機器を選定し、動力を選定する。動力の変動幅はインバーターで制御する範囲を大きく越える。特許請求の講で示すように、常圧下での運転時の必要動力の1/2、望ましくは1/5から1/20の、常圧下で運転に必要な動力より大幅に少ない動力で構成する送風機とした。 First, the size of the blower is devised. There is some gas in the vacuum gas corresponding to the pressure. A method of moving the gas in mass is devised. The amount of gas transported by the blower depends on the blade size and the number of rotations. For example, a blower having a transport capacity of 100 kw at normal pressure is considered to have a capacity of 1 kw under a vacuum of 1/100. The type of blower is determined by the transport volume and transport resistance. The resistance is selected according to the required pressure such as propeller, sirocco, turbo, roots, piston. The amount of energy transport during drying is mass. The actual power required for the blower varies greatly depending on the efficiency due to the sliding of the blade surface. In this patent, the drying method is selected according to the method suitable for the degree of vacuum appropriate for the purpose of drying, the temperature of the dried product, the device structure, etc., the device components are selected, and the power is selected. The fluctuation range of power greatly exceeds the range controlled by the inverter. As shown in the claim, it is composed of 1/2 of the required power during operation under normal pressure, preferably 1/5 to 1/20, much less than the power required for operation under normal pressure. A blower was used.

ついで、真空下の空気の飽和水分量を考える。非特許文献1(化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会、p34)の図1.28に示される「高圧空気の飽和温度」の線図を低圧条件に外挿して得た20℃の値は、0.1、0.2、0.3kg/cm2のそれぞれの水分は0.2、0.09、0.06kg/kgである。1気圧の20℃の空気の水分が0.015kg/kgであることと比較すると、真空空気1kgの水分輸送量は、圧力が0.1、0.2、0.3kg/cm2それぞれについて、1/13,1/6,1/4で可能である。この現象を乾燥空気の輸送現象に利用する効果は非常に大きな意味を持つ。

化学工学便覧、昭和43年5月10日全訂改版第3版発行、編者.社団法人化学工学協会
Next, consider the saturated moisture content of air under vacuum. Non-Patent Document 1 (Chemical Engineering Handbook, May 10, 1968, revised edition 3rd edition issued, editor. Chemical Engineering Association of Japan, p34) "Saturation temperature of high-pressure air" shown in Fig. 1.28 The values of 20 ° C. obtained by extrapolating the diagram to the low-pressure conditions are 0.1, 0.2, 0.3 kg / cm 2 , and the water contents are 0.2, 0.09, 0.06 kg / kg, respectively. is there. Compared with the fact that the moisture content of air at 20 ° C. at 1 atm is 0.015 kg / kg, the moisture transport amount of 1 kg of vacuum air is about 0.1, 0.2 and 0.3 kg / cm 2 respectively. 1/13, 1/6, and 1/4 are possible. The effect of using this phenomenon for the transport phenomenon of dry air is very significant.

Chemical Engineering Handbook, 3rd edition, revised on May 10, 1968, editor. Japan Society for Chemical Engineering

0.2kg/cm2の圧力は水封式真空ポンプで容易に可能な真空度の範囲である。 The pressure of 0.2 kg / cm 2 is in the range of the degree of vacuum that is easily possible with a water ring vacuum pump.

次に、乾燥物が対流気体の雰囲気にある乾燥温度を考える。乾燥物の周囲温度は乾燥物へのエネルギー輸送速度に影響するが、乾燥物の品質に直接影響を与える温度ではない。乾燥物の品質は水分が蒸発している部位の温度である。これらの常圧下の乾燥現象での一般理論が真空下の希薄な空気の対流乾燥現象にも適用できることを実験的に確認した。
当発明の方法では対流気体の露点温度が乾燥温度を示す。当特許の方法での露点は、熱交換器の冷却熱媒の温度であり、外気を使用したクーリングタワーで冷却する場合は冷却水の温度、冷凍機で作る温度ではその温度が露点温度となる。
Next, consider the drying temperature at which the dried product is in a convection gas atmosphere. The ambient temperature of the dried product affects the energy transfer rate to the dried product, but not the temperature that directly affects the quality of the dried product. The quality of the dried product is the temperature at the site where moisture is evaporated. It was experimentally confirmed that these general theories in the drying phenomenon under normal pressure can be applied to the convection drying phenomenon of dilute air under vacuum.
In the method of the present invention, the dew point temperature of the convection gas indicates the drying temperature. The dew point in the method of this patent is the temperature of the cooling heat medium of the heat exchanger. When cooling with a cooling tower using outside air, the dew point is the temperature of the cooling water, and the temperature made with the refrigerator is the dew point temperature.

1.真空下の空気の質量輸送を考えた送風機を選択し、
2.真空下の空気を圧力、温度、水分を考慮し、
3.真空下の乾燥物の品質は水分のある位置の温度が大きく影響することを考慮し、
4.真空装置を構成する乾燥室、真空ポンプ、熱供給、熱排出、空気流れなど幾多の設備コスト、運転コストを考慮し、
5.上記の1〜4の事項を総合的に考えて、最良の乾燥装置を考案した結果、図1に示す乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で回転したときに必要とする動力の1/2,望ましくは1/5〜1/10の動力で構成する送風機4を設置し、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置を基本構成とした。本特許の基本理念は多くの乾燥方式に適用できる。その一例として棚式置き式、流動式、噴霧式を示した。
1. Select a blower that considers mass transport of air under vacuum,
2. Consider the pressure, temperature, moisture in the air under vacuum,
3. Considering that the quality of the dried product under vacuum is greatly affected by the temperature of the moisture location,
4). Considering many equipment costs such as the drying chamber, vacuum pump, heat supply, heat discharge, air flow, etc.
5. As a result of comprehensively considering the above items 1 to 4 and devising the best drying device, the indoor pressure of the drying device 1 shown in FIG. 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, A heat exchanger 5 that installs a blower 4 configured with a power of 1/2, preferably 1/5 to 1/10 of the power required when rotating under atmospheric pressure, and gives energy to the indoor gas of the drying apparatus 1. A heat source generator 6 that supplies a heat source to the heat exchanger 5, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, and a heat exchanger that converts the moisture of the indoor gas of the drying device 1 into liquid or ice. 7, a cooling device 8 that cools the energy obtained by the heat exchanger 7, a conduit 9 that maintains the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10 are used as a basic configuration. The basic idea of this patent can be applied to many drying methods. As an example, a shelf type, a flow type and a spray type are shown.

循環気体の湿度は循環気体の一部を凝縮水回収用熱交換器に導入しすることによって可能とした。 The humidity of the circulating gas was made possible by introducing a part of the circulating gas into the heat exchanger for collecting condensed water.

真空乾燥下の乾燥においても、乾燥物の周囲温度と露点温度との温度差は試料に供給される熱流速度に影響することを確認した。 In drying under vacuum drying, it was confirmed that the temperature difference between the ambient temperature of the dried product and the dew point temperature affects the heat flow rate supplied to the sample.

図1に示す設備を用いて乾燥した。図1の構成を説明する。乾燥室1は真空を保持できる容器であり、その室内には送風機翼2と送風機翼2を回転する動力3とでなる送風機4と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に蒸気を供給するボイラー6と、乾燥で発生した水蒸気を液体の水に凝縮する熱交換器7と、熱交換器7で得たエネルギーを冷却する装置8と、真空気体を室外に導出するダクト9と、真空ポンプ10と、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12とで構成する。   It dried using the apparatus shown in FIG. The configuration of FIG. 1 will be described. The drying chamber 1 is a container that can hold a vacuum. In the chamber, a blower 4 composed of a blower blade 2 and a power 3 that rotates the blower blade 2, and a heat exchanger 5 that gives energy to the indoor gas of the drying device 1, A boiler 6 for supplying steam to the heat exchanger 5, a heat exchanger 7 for condensing the water vapor generated by drying into liquid water, a device 8 for cooling the energy obtained in the heat exchanger 7, and a vacuum gas It comprises a duct 9 led out to the outdoors, a vacuum pump 10, a tray 14 on which a dried sample 13 is loaded, and guide plates 11 and 12 that circulate the room gas of the drying apparatus 1.

図1の構成内容について補足説明をする。
トレー14は試料が積載保持できる金網や多孔板でよく、試料にトレーから乾燥エネルギーを与えるためのボイラーからの蒸気を導管で導く熱板にするとか、ヒーターで加熱するなどの必要はない。
A supplementary description will be given of the configuration contents of FIG.
The tray 14 may be a wire mesh or a perforated plate on which a sample can be loaded and held, and it is not necessary to use a hot plate that guides vapor from a boiler for giving drying energy to the sample from the tray by a conduit or heating with a heater.

送風機4で発生する気体流れ17は、熱交換機5を通って気体流れ18となり、試料13を経て気体流れ19となり、気体流れ19の一部は案内板11、12でできるダクトを通る気体流れ15となり、気体流れ19の一部は熱交換器7を通る気体流れ16となり、気体流れ15、16は合流して気体流れ17となり、送風機4に至る気体循環を構成する。
図1,2,3の乾燥装置の気体流れ方向は上記説明の逆の方向で行っても同様の効果が期待できる。
The gas flow 17 generated in the blower 4 becomes a gas flow 18 through the heat exchanger 5, passes through the sample 13 and becomes a gas flow 19, and a part of the gas flow 19 passes through a duct formed by the guide plates 11 and 12. Thus, a part of the gas flow 19 becomes a gas flow 16 passing through the heat exchanger 7, and the gas flows 15 and 16 merge to form a gas flow 17, which constitutes a gas circulation reaching the blower 4.
The same effect can be expected even if the gas flow direction of the drying apparatus of FIGS.

図1で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a tray 14 on which a dried sample 13 is loaded, a heat exchanger 5 that gives energy to the indoor gas of the drying apparatus 1, and a heat exchanger 5 A heat source generator 6 that supplies a heat source, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, a heat exchanger 7 that converts the moisture of the indoor gas of the drying device 1 into liquid or ice, and a heat exchanger 7 The drying device is composed of a cooling device 8 for cooling the energy obtained in the above, a conduit 9 for maintaining the room pressure of the drying device 1 in vacuum, and a vacuum pump 10.

図2で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a tray 14 on which a dried sample 13 is loaded, guide plates 11 and 12 for circulating the indoor gas of the drying apparatus 1, and the interior of the drying apparatus 1. A heat exchanger 7 that converts gaseous moisture into liquid or ice, a cooling device 8 that cools the energy obtained in the heat exchanger 7, a conduit 9 that maintains the room pressure of the drying device 1 in vacuum, and a vacuum pump 10 Drying equipment composed of

図3で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料容器25に堆積する乾燥試料13を攪拌する攪拌機29を乾燥室1内に設置し、攪拌機29を駆動する動力30と、乾燥試料を供給する装置20と、乾燥物13を排出する排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥試料13の乾燥装置。 This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Is provided with a blower 4 configured with a power of 1/5 to 1/20, a stirrer 29 for stirring the dry sample 13 deposited in the dry sample container 25 is installed in the drying chamber 1, and a power 30 for driving the stirrer 29 A device 20 for supplying a dry sample, a discharge device 22 for discharging the dried product 13, a heat exchanger 5 for providing energy to the indoor gas of the drying device 1, and a heat source generator for supplying a heat source to the heat exchanger 5. 6, the guide plates 11 and 12 that circulate the indoor gas of the drying device 1, the heat exchanger 7 that converts the moisture of the indoor gas of the drying device 1 to liquid or ice, and the energy obtained by the heat exchanger 7 is cooled. A cooling device 8 and a conduit 9 for maintaining the drying chamber in a vacuum; Drying device Drying the sample 13 composed of a vacuum pump 10.

図4で説明する。乾燥装置1の室内圧力を0.1atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を多孔板23上で浮遊させ、乾燥試料供給装置20と、乾燥物が流出する板21と、乾燥物排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The room pressure of the drying apparatus 1 is maintained at 0.1 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with a power of 1/5 to 1/20, floats the dried sample 13 on the perforated plate 23, discharges the dried sample supply device 20, the plate 21 through which the dried product flows, and discharges the dried product A heat exchanger 5 that gives energy to the indoor gas of the drying device 1, a heat source generator 6 that supplies a heat source to the heat exchanger 5, and guide plates 11 and 12 that circulate the indoor gas of the drying device 1. , A heat exchanger 7 that converts the moisture in the room gas of the drying apparatus 1 to liquid or ice, a cooling device 8 that cools the energy obtained in the heat exchanger 7, a conduit 9 that maintains the drying chamber in vacuum, and a vacuum pump 10 is a drying apparatus.

図5で説明する。乾燥装置1の室内圧力を0.2atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風を返風するダクト19と、返風がそのまま送風機4に流動する風15と、熱交換器7を経る風16と、風16を冷却する熱交換器7と、熱交換機7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.2 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with power of 1/5 to 1/20 in the drying chamber 1, and supplies a heat source to the heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, and the heat exchanger 5. A heat source generator 6, a spray drying chamber 24 in the drying chamber 1, a duct 18 connected to the spray drying chamber, a spray device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, A dry powder storage unit 25, a discharge valve 28, a duct 19 for returning the wind that has passed through the filter cloth 26, a wind 15 in which the returned air flows to the blower 4 as it is, and a wind 16 that passes through the heat exchanger 7, The heat exchanger 7 that cools the wind 16, the cooling device 8 of the heat exchanger 7, and the drying device 1 A conduit 9 to maintain the chamber pressure in the vacuum drying apparatus constituted by a vacuum pump 10.

図6で説明する。乾燥装置1の室内圧力を0.2atm〜0.5atmに、望ましくは0.2atm〜0.3atmに維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風が返風するダクト19と、そのまま循環する風15と、熱交換器7を経る風16と、熱交換器7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.2 atm to 0.5 atm, preferably 0.2 atm to 0.3 atm, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably Installs the blower 4 configured with power of 1/5 to 1/20 in the drying chamber 1, and supplies a heat source to the heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, and the heat exchanger 5. A heat source generator 6, a spray drying chamber 24 in the drying chamber 1, a duct 18 connected to the spray drying chamber, a spray device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, Cooling of the dry powder storage unit 25, the discharge valve 28, the duct 19 that returns the wind that has passed through the filter cloth 26, the wind 15 that circulates as it is, the wind 16 that passes through the heat exchanger 7, and the cooling of the heat exchanger 7 Apparatus 8, conduit 9 for maintaining the room pressure of drying apparatus 1 in vacuum, and vacuum pump 0 to constitute a dry apparatus.

従来、真空乾燥の乾燥温度は水の沸点で論じられてきたが、当発明の乾燥温度は室内循環気体の露点温度によって決まるため、乾燥物周辺の温度が例えば60℃であっても30℃の乾燥が可能である。 Conventionally, the drying temperature of vacuum drying has been discussed in terms of the boiling point of water. However, since the drying temperature of the present invention is determined by the dew point temperature of the indoor circulating gas, the temperature around the dried product is, for example, 30 ° C. Drying is possible.

ここで上記文章では真空と表現したが、一般にこの程度の圧力では減圧と表現することが多い。しかし、真空または減圧の語彙は同じことを表現しているため、本特許文は、常圧より低い圧力全てを真空で表現した。また、常圧を1atmとし、絶対真空を0atmとした。 Here, in the above sentence, the term “vacuum” is used. However, in general, this level of pressure is often expressed as “decompression”. However, since the vocabulary of vacuum or decompression expresses the same thing, this patent sentence expressed all the pressures lower than normal pressure in vacuum. The normal pressure was 1 atm and the absolute vacuum was 0 atm.

乾燥試料への熱供給は循環気体から対流によって与えられるエネルギーによるため、当特許装置のいずれの乾燥においても、対流を停止すればエネルギーの供給が無くなり乾燥が進行しない。 Since the heat supply to the dried sample depends on the energy provided by the convection from the circulating gas, in any drying of this patent apparatus, if the convection is stopped, the energy is not supplied and the drying does not proceed.

試料への熱供給は一義的に循環気体のエンタルピー線上の温度と品温との温度差に支配される。 The heat supply to the sample is primarily governed by the temperature difference between the temperature on the enthalpy line of the circulating gas and the product temperature.

本発明による乾燥は凍結乾燥装置にも応用できる。凍結乾燥の乾燥温度は氷が蒸発する温度であるため氷の蒸発温度の0℃が露点温度であり、対流気体の乾燥法で凍結乾燥が可能である。 The drying according to the invention can also be applied to freeze-drying equipment. The drying temperature of lyophilization is the temperature at which ice evaporates, so the ice evaporation temperature of 0 ° C. is the dew point temperature, and lyophilization is possible by a convection gas drying method.

さらに、当発明装置は真空冷却に応用できる。真空冷却に応用する場合はボイラーからの熱補給は必要なく、熱交換器7で得たエネルギーを冷却する装置8を通した循環気体の中に試料を設置するのみでよい。 Furthermore, the device of the present invention can be applied to vacuum cooling. In the case of application to vacuum cooling, it is not necessary to supply heat from the boiler, and it is only necessary to place the sample in the circulating gas through the device 8 that cools the energy obtained by the heat exchanger 7.

本発明の装置による冷却は真空冷却法より装置コスト、運転コストに大きな経済効果が期待できる。 Cooling by the apparatus of the present invention can be expected to have a greater economic effect on apparatus cost and operation cost than the vacuum cooling method.

乾燥試験結果Drying test results

人参厚さ2cm、大根厚さ3cmを、真空度0.2atm、温度60℃で乾燥試験を行った結果、乾燥温度は25〜28℃で維持できた。乾燥物は変色のない製品が得られた。 As a result of performing a drying test with a carrot thickness of 2 cm and a radish thickness of 3 cm at a degree of vacuum of 0.2 atm and a temperature of 60 ° C., the drying temperature could be maintained at 25 to 28 ° C. A product without discoloration of the dried product was obtained.

当乾燥温度経過は露点温度で乾燥することを示し、野菜組織中の水の状態が液体か固体かで温度が異なるものではない。 This drying temperature course shows that it is dried at the dew point temperature, and the temperature does not differ depending on whether the water in the vegetable tissue is liquid or solid.

水封式真空ポンプで目的とする品質の変化の少ない野菜の乾燥が可能である。 It is possible to dry vegetables with little change in target quality with a water-sealed vacuum pump.

乾燥対象試料として蒸発成分のある試料は全て可能である。 All samples having an evaporating component as a sample to be dried are possible.

地域、時期によって異なるが、冷却装置11はクーリングタワー方式で可能である。実施例は冬季実験のため、水温15℃であった。   Although it changes with areas and time, the cooling device 11 can be a cooling tower system. In the examples, the water temperature was 15 ° C. for the winter experiment.

本発明方法の実施に用いる乾燥装置の1例を概略図である。It is a schematic diagram of an example of a drying device used for carrying out the method of the present invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention. 本発明の他の実施例を示す乾燥装置の概略図である。It is the schematic of the drying apparatus which shows the other Example of this invention.

符号の説明Explanation of symbols

1.乾燥装置
2.送風翼
3.モーター
4.送風機
5.熱交換器
6.ボイラー
7.熱交換器
8.冷却機
9.導管
10.真空ポンプ
11.A案内板
12.B案内板
13.乾燥試料
14.試料置きトレー
15.風
16.風
17.通過ダクト15、16を通過した空気の混合気体
18.A熱交換器5を通過した空気
19.乾燥物13を通過した空気
20.乾燥試料供給装置
21.分離網
22.乾燥物排出装置
23.多孔板
24.噴霧乾燥室
25.乾燥物滞留部
26.濾過布
27.噴霧装置
28.乾燥物排出装置
29.攪拌機
30.攪拌動力装置
31.欠番
32.外気導入弁
1. 1. Drying device 2. Blower blade Motor 4. Blower
5. Heat exchanger 6. boiler
7). Heat exchanger 8. Cooler
9. Conduit 10. Vacuum pump 11. A guide plate 12. B guide plate 13. Dry sample 14. Sample tray
15. Wind
16. Wind 17. 15. A mixed gas of air that has passed through the passage ducts 15 and 16. Air that has passed through the A heat exchanger 5 19. Air that has passed through the dried product 13 20. Dry sample supply device
21. Separation network
22. Dry matter discharge device
23. Perforated plate
24. Spray drying room
25. Dry matter retention part
26. Filter cloth
27. Spraying equipment
28. Dry matter discharge device
29. Stirrer
30. Stirring power unit
31. Missing number
32. Outside air introduction valve

Claims (6)

図1で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / A fan 4 configured with 20 motive power, a tray 14 on which a dried sample 13 is loaded, a heat exchanger 5 that gives energy to the indoor gas of the drying apparatus 1, and a heat source generator that supplies a heat source to the heat exchanger 5 6, the guide plates 11 and 12 that circulate the indoor gas of the drying device 1, the heat exchanger 7 that converts the moisture of the indoor gas of the drying device 1 to liquid or ice, and the energy obtained by the heat exchanger 7 is cooled. A drying device comprising a cooling device 8, a conduit 9 for maintaining the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10. 図2で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を積載するトレー14と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / A blower 4 configured with 20 motive power is installed, a tray 14 on which a dried sample 13 is loaded, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, and moisture in the indoor gas of the drying device 1 is liquid or ice. A drying apparatus comprising: a heat exchanger 7 for cooling, a cooling device 8 for cooling the energy obtained by the heat exchanger 7, a conduit 9 for maintaining the room pressure of the drying device 1 in a vacuum, and a vacuum pump 10. 図3で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料容器25に堆積する乾燥試料13を攪拌する攪拌機29を乾燥室1内に設置し、攪拌機29を駆動する動力30と、乾燥試料を供給する装置20と、乾燥物13を排出する排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥試料13の乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / A blower 4 configured with power of 20 is installed, a stirrer 29 for stirring the dry sample 13 deposited in the dry sample container 25 is installed in the drying chamber 1, and a power 30 for driving the stirrer 29 and a dry sample are supplied. A device 20, a discharge device 22 that discharges the dried product 13, a heat exchanger 5 that gives energy to the indoor gas of the drying device 1, a heat source generator 6 that supplies a heat source to the heat exchanger 5, and a drying device 1 Guide plates 11 and 12 that circulate the indoor gas, a heat exchanger 7 that converts the moisture in the indoor gas of the drying device 1 to liquid or ice, a cooling device 8 that cools the energy obtained by the heat exchanger 7, and a drying chamber And the vacuum pump 1 Drying device Drying the sample 13 composed of a. 図4で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を設置し、乾燥試料13を多孔板23上で浮遊させ、乾燥試料供給装置20と、乾燥物が流出する板21と、乾燥物排出装置22と、乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥装置1の室内気体を循環する案内板11および12と、乾燥装置1の室内気体の水分を液体または氷にする熱交換器7と、熱交換器7で得たエネルギーを冷却する冷却装置8と、乾燥室を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / The blower 4 configured with power of 20 is installed, the dried sample 13 is floated on the perforated plate 23, the dried sample supply device 20, the plate 21 through which the dried product flows out, the dried product discharge device 22, and the drying device 1 A heat exchanger 5 that gives energy to the indoor gas, a heat source generator 6 that supplies a heat source to the heat exchanger 5, guide plates 11 and 12 that circulate the indoor gas of the drying device 1, and an indoor gas of the drying device 1. A drying apparatus comprising a heat exchanger 7 for converting the water content into liquid or ice, a cooling device 8 for cooling the energy obtained by the heat exchanger 7, a conduit 9 for maintaining the drying chamber in a vacuum, and a vacuum pump 10. . 図5で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風を返風するダクト19と、返風がそのまま送風機4に流動する風15と、熱交換器7を経る風16と、風16を冷却する熱交換器7と、熱交換機7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / A blower 4 configured with power of 20 is installed in the drying chamber 1, a heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, a heat source generator 6 that supplies a heat source to the heat exchanger 5, and drying A spray drying chamber 24 in the chamber 1, a duct 18 connected to the spray drying chamber, a spraying device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, a dry powder reservoir 25, The exhaust valve 28, the duct 19 for returning the wind that has passed through the filter cloth 26, the wind 15 in which the returned wind flows directly to the blower 4, the wind 16 passing through the heat exchanger 7, and the heat exchange for cooling the wind 16 The chamber pressure of the heat exchanger 7, the cooling device 8 of the heat exchanger 7, and the drying device 1. A conduit 9 to keep the drying apparatus consists of a vacuum pump 10. 図6で説明する。乾燥装置1の室内圧力を0.5atm以下、望ましくは0.3atm以下に維持し、大気圧下で送風翼を回転したときに必要とする動力の1/2,望ましくは1/5〜1/20の動力で構成する送風機4を乾燥室1内に設置し、乾燥乾燥装置1の室内気体にエネルギーを与える熱交換器5と、熱交換器5に熱源を供給する熱源発生器6と、乾燥室1にある噴霧乾燥室24と、噴霧乾燥室へ接続するダクト18と、乾燥試料を噴霧する噴霧装置27と、乾燥した乾燥粉を捕集する濾過布26と、乾燥粉貯留部25と、排出バルブ28と、濾過布26を通過した風が返風するダクト19と、そのまま循環する風15と、熱交換器7を経る風16と、熱交換器7の冷却装置8と、乾燥装置1の室内圧力を真空に維持する導管9と、真空ポンプ10とで構成する乾燥装置。 This will be described with reference to FIG. The indoor pressure of the drying apparatus 1 is maintained at 0.5 atm or lower, preferably 0.3 atm or lower, and is 1/2 of the power required when the blower blades are rotated under atmospheric pressure, preferably 1/5 to 1 / A blower 4 configured with power of 20 is installed in the drying chamber 1, a heat exchanger 5 that gives energy to the indoor gas of the drying and drying apparatus 1, a heat source generator 6 that supplies a heat source to the heat exchanger 5, and drying A spray drying chamber 24 in the chamber 1, a duct 18 connected to the spray drying chamber, a spraying device 27 for spraying a dried sample, a filter cloth 26 for collecting dried dry powder, a dry powder reservoir 25, The exhaust valve 28, the duct 19 that returns the wind that has passed through the filter cloth 26, the wind 15 that circulates as it is, the wind 16 that passes through the heat exchanger 7, the cooling device 8 of the heat exchanger 7, and the drying device 1 And a vacuum pump 10 for maintaining the chamber pressure in a vacuum. Drying apparatus.
JP2007154548A 2007-06-11 2007-06-11 Drying equipment Expired - Fee Related JP5311248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154548A JP5311248B2 (en) 2007-06-11 2007-06-11 Drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154548A JP5311248B2 (en) 2007-06-11 2007-06-11 Drying equipment

Publications (2)

Publication Number Publication Date
JP2008304171A true JP2008304171A (en) 2008-12-18
JP5311248B2 JP5311248B2 (en) 2013-10-09

Family

ID=40233041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154548A Expired - Fee Related JP5311248B2 (en) 2007-06-11 2007-06-11 Drying equipment

Country Status (1)

Country Link
JP (1) JP5311248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513299B2 (en) 2017-02-09 2019-05-15 株式会社アルバック Vacuum drying apparatus and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104075A (en) * 1980-12-18 1982-06-28 Mitsui Petrochemical Ind Fluidized bed type dryer
JPS61105091A (en) * 1984-10-27 1986-05-23 株式会社 中国地所 Drying method
JPS63116084A (en) * 1986-11-01 1988-05-20 岡村 邦康 Decompression dehumidifying drying method and device thereof
JPH11287553A (en) * 1998-04-01 1999-10-19 Kubota Corp Drying device
JP3075752U (en) * 2000-07-26 2001-03-06 株式会社井内盛栄堂 Vacuum dryer
JP2001287206A (en) * 2000-02-04 2001-10-16 Mokuzai Kanso Teicostka Gijutsu Kenkyu Kumiai Method and apparatus for drying lumber
JP2007075039A (en) * 2005-09-15 2007-03-29 Mitsuo Suzuki Vacuum dryer for foods, and vacuum drying method for foods
JP2008516182A (en) * 2004-10-12 2008-05-15 グレイト リバー エナジー Heat treatment equipment for granular materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104075A (en) * 1980-12-18 1982-06-28 Mitsui Petrochemical Ind Fluidized bed type dryer
JPS61105091A (en) * 1984-10-27 1986-05-23 株式会社 中国地所 Drying method
JPS63116084A (en) * 1986-11-01 1988-05-20 岡村 邦康 Decompression dehumidifying drying method and device thereof
JPH11287553A (en) * 1998-04-01 1999-10-19 Kubota Corp Drying device
JP2001287206A (en) * 2000-02-04 2001-10-16 Mokuzai Kanso Teicostka Gijutsu Kenkyu Kumiai Method and apparatus for drying lumber
JP3075752U (en) * 2000-07-26 2001-03-06 株式会社井内盛栄堂 Vacuum dryer
JP2008516182A (en) * 2004-10-12 2008-05-15 グレイト リバー エナジー Heat treatment equipment for granular materials
JP2007075039A (en) * 2005-09-15 2007-03-29 Mitsuo Suzuki Vacuum dryer for foods, and vacuum drying method for foods

Also Published As

Publication number Publication date
JP5311248B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
EP2714585B1 (en) Ph20cp-portable water and climatic production system
US8551230B2 (en) PH2OCP—portable water and climatic production system
CN102353238B (en) Intermittent type vacuum microwave drying device and method for processing core material of vacuum heat insulation plate by using intermittent type vacuum microwave drying device
JP2001227869A (en) Drier
Merone et al. Energy and environmental analysis of ultrasound-assisted atmospheric freeze-drying of food
KR101629409B1 (en) drying apparatus for uniform drying
SE1650994A1 (en) Device for continuous water absorption and an air cooler
JP5311248B2 (en) Drying equipment
US8241399B2 (en) Thermo-chemical heat pump and methods of generating heat from a gas stream
US20190364746A1 (en) Greenhouse Desiccant Dehumidifier and Carbon Dioxide Generator
JP3180412U (en) Food dryer
CN206831930U (en) A kind of freeze drier
Hepbasli et al. An exergetic performance assessment of three different food driers
KR20000000040A (en) a low temperature and reduce the pressure dryer for the farm products,marine products,forest products
KR102094226B1 (en) Dryer for blowing cooled air
Akpinar et al. Energy and exergy analyses of drying of apricots in a rotary solar dryer
Owolarafe et al. Performance evaluation of a small-scale dryer for agricultural products.
KR102402683B1 (en) Vacuum dryer without vacuum pump
Minea Industrial drying heat pumps
DK200600246U3 (en) Mobile pipe drying plant
RU2784759C1 (en) Dryer
Owolarafe et al. Development of a Multipurpose Small Scale Dryer for Agricultural Products
Espinoza et al. Construction of a prototype heat pump dehydrator for mango pulp and peel
RU2673657C1 (en) Method of drying and active ventilation of grain
KR20170105659A (en) Dehimidifier by used heat pump with switch fuction of condenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees