JPS61104028A - Method for improving residual stress of welded part of metallic pipe - Google Patents

Method for improving residual stress of welded part of metallic pipe

Info

Publication number
JPS61104028A
JPS61104028A JP22329784A JP22329784A JPS61104028A JP S61104028 A JPS61104028 A JP S61104028A JP 22329784 A JP22329784 A JP 22329784A JP 22329784 A JP22329784 A JP 22329784A JP S61104028 A JPS61104028 A JP S61104028A
Authority
JP
Japan
Prior art keywords
stress
welding
layer
residual stress
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22329784A
Other languages
Japanese (ja)
Inventor
Tadahiro Umemoto
忠宏 梅本
Hitoshi Nakamura
均 中村
Masao Yamadera
山寺 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP22329784A priority Critical patent/JPS61104028A/en
Publication of JPS61104028A publication Critical patent/JPS61104028A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To give compressive residual stress to the inner and the outer surface of a metallic pipe by composing one part of the layer of a welding metal to be filled into a welding groove of the metallic pipe of a welding material having a smaller expansion coefficient and a lower stress annealing temp. than the other part of the layer, and stress-annealing at the stress annealing temp. of the one part after welding. CONSTITUTION:A welding metal to be filled into a groove 2 is made to have a 2-layered structure, when the groove 2 of a metallic pipe 1 consisting of carbon steel is welded. Namely, the initial layer part 3 on the inner surface side of the metallic pipe 1 is composed of a carbon steel welding material, and the terminal layer part 4 on the part 3 is welded with a stainless steel welding material having a relatively smaller linear expansion coefficient and a lower stress annealing temp. than the carbon steel welding material. After welding, stress annealing is applied at about 650 deg.C which is the annealing temp. of the carbon steel welding material.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は金属管溶接11りの残留応力改19方法に係り
、特に金属管の内面または外面に圧縮残留応力を付与す
る場合に好適な残留応力改善方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for improving residual stress in metal pipe welding, and is particularly suitable for applying compressive residual stress to the inner or outer surface of a metal pipe. This invention relates to a stress improvement method.

「従来の技術」 従来、金属管が溶接部によって接続されている場合は、
溶接後の素材の収縮現象等により、溶接部の付近に引っ
張り残留応力が発生することが知られており、鋼管の場
合であると、引っ張り残留応力を除去する等の目的で、
溶接後に600〜650℃の温度で焼鈍することが行な
われる。
"Conventional technology" Conventionally, when metal pipes are connected by welds,
It is known that tensile residual stress is generated near the welded part due to shrinkage of the material after welding, and in the case of steel pipes, for the purpose of removing tensile residual stress, etc.
After welding, annealing is performed at a temperature of 600-650°C.

「発明が解決しようとする問題点」 しかしながら、この焼鈍による残留応力改善方法は、い
わゆる中間層なましてあり、素材をいくぶん軟化するこ
と及び内部応力の一部除去ができるものの完全なもので
はない。また、鋼管等においては、引っ張り応力と腐食
因子とが共存する場合、腐食割れが進行する現象か生じ
るという問題点がある。
``Problems to be Solved by the Invention'' However, this method of improving residual stress by annealing involves so-called intermediate layer annealing, and although it can soften the material to some extent and remove some of the internal stress, it is not perfect. Further, in steel pipes and the like, when tensile stress and corrosion factors coexist, there is a problem in that corrosion cracking progresses.

本発明は、このような従来技術の問題点をn効に解決4
゛るととらに、金属管の内4面の溶接部の付近に圧縮残
留応力を付与することを目的とするものである。
The present invention effectively solves the problems of the prior art.
In addition, the purpose is to apply compressive residual stress to the vicinity of the welds on the four inner surfaces of the metal tube.

[問題点を解決するための手段] 本発明はこのような目的を達成するための2つの方法を
提案するもので、第1の発明は、金属管の溶接開先に充
填される溶接金属の一表面層を、他の表面層よりも相対
的に線膨張率が小さく応力焼鈍温度の低い溶材により構
成し、溶接後に前記一表面層の応力焼鈍温度により応力
焼鈍を実施することにより、金属管の内面に圧縮残留応
力を付与するものであり、また、第2の発明は、金属管
の溶接開先に充填される溶接金属の両表面層を、中間層
よりも相対的に線膨張率が小さく応力焼鈍温度の低い溶
材により構成し、溶接後に航記両表面層の応力焼鈍・温
度により応力焼鈍を実施することにより、金属管の内外
面に圧縮残留応力を付与するようにしたものである。
[Means for Solving the Problems] The present invention proposes two methods to achieve such an object. One surface layer is made of a weld material with a relatively smaller coefficient of linear expansion and a lower stress annealing temperature than the other surface layers, and stress annealing is performed at the stress annealing temperature of the one surface layer after welding. The second invention applies compressive residual stress to the inner surface of the weld metal tube, and the second invention provides both surface layers of the weld metal filled in the weld groove of the metal pipe with a coefficient of linear expansion that is relatively higher than that of the intermediate layer. It is made of a small weld metal with a low stress annealing temperature, and after welding, stress annealing is applied to both surface layers at a high temperature to impart compressive residual stress to the inner and outer surfaces of the metal tube. .

「実施例」 以下、第1の発明の一実施例を第1図及び第2図にJJ
づいて説明・l−る1、この 実施例では、カーボンス
チールからなる金属管1の開先2に溶接を施す場合、開
先2に充填される溶接金属を2層構造とするように、金
属管1の内面側となる初層部(一表面層)3をカーボン
スチール系連打とし、また、その上の最終層部(他の表
面層)4をステンレス系溶材とする溶接を行ない、次い
て、初層部3の溶接焼鈍温度を基準にして、つまり 6
50℃付近で応力焼鈍を行なった後、徐々に冷却するし
のである。
"Example" Hereinafter, an example of the first invention is shown in FIGS. 1 and 2.
In this example, when welding the groove 2 of the metal tube 1 made of carbon steel, welding is performed so that the weld metal filled in the groove 2 has a two-layer structure. The first layer (one surface layer) 3, which is the inner surface of the tube 1, is made of continuous carbon steel, and the final layer (another surface layer) 4 is made of stainless steel, and then welded. , based on the welding annealing temperature of the initial layer 3, that is, 6
After stress annealing at around 50°C, the material is gradually cooled.

このような一連の工程の処理を行なうと、開先2に充填
された溶接金属の一表面層である初層部3は、応力焼鈍
によって高温時に熱膨張による熱塑性変形がとらなう中
間焼きなまし状頼となるが、溶接金属の他の表面層であ
る焼鈍温間の高い最終層部4は、650℃の温度では弾
性変形状態を維持しているために、冷却時に一初層部3
を収縮させる現象が生じて、第2図に示すように、金属
管lの外表面が引っ張り残留応力+σ、内表面か圧縮残
      1留応カーσとなる。これらの残留応力の
大きさは、次のような関係式で表される。
When this series of steps is carried out, the initial layer 3, which is one surface layer of the weld metal filled in the groove 2, becomes an intermediate annealed shape in which thermoplastic deformation due to thermal expansion does not occur at high temperatures due to stress annealing. However, since the final layer 4, which is another surface layer of the weld metal and has a high annealing temperature, maintains an elastically deformed state at a temperature of 650°C, the first layer 3 deforms during cooling.
As shown in FIG. 2, the outer surface of the metal tube 1 has a tensile residual stress +σ, and the inner surface has a compressive residual stress σ. The magnitude of these residual stresses is expressed by the following relational expression.

as=EΔTCas−αc)B/(A+B)−−(1)
ac=EΔTCas−αc)(−A)/(A+B)・−
=(2)ただし、 八−最終層部4の断面積 B−初層部3の断面積 最終層部4の線膨張率αs= +9X 10−@初層部
3の線膨張率αc= 14X 1G−’である。
as=EΔTCas−αc)B/(A+B)−(1)
ac=EΔTCas−αc)(−A)/(A+B)・−
= (2) However, 8 - Cross-sectional area B of the final layer part 4 - Cross-sectional area of the first layer part 3 Linear expansion coefficient αs of the final layer part 4 = +9X 10 - @ Linear expansion coefficient αc of the first layer part 3 = 14X 1G -'.

したがって、必要とする圧縮残留応力の大きさを考慮し
てA及びBが設定され、試算によると、例えば溶接金属
がカーボンスチール系、ステンレス系溶材、A=B、金
属管1の運転温度が288℃、応力焼鈍温度が650℃
である場合は、σC弁1Bkg/am’となる。
Therefore, A and B are set in consideration of the magnitude of the required compressive residual stress, and according to a trial calculation, for example, the weld metal is carbon steel, stainless steel weld metal, A=B, and the operating temperature of the metal pipe 1 is 288. ℃, stress annealing temperature is 650℃
In this case, the σC valve is 1 Bkg/am'.

また、第3図は、第1の発明の他の実施例を示すもので
、最終層部4の断面積を大きくして、金属管1の内面の
圧縮残留応力発生範囲を拡大し、溶接時の入熱によって
影響を受けると推定される部分全部に、圧縮残留応力を
付与するようにしfニものである。
Further, FIG. 3 shows another embodiment of the first invention, in which the cross-sectional area of the final layer portion 4 is increased to expand the range of compressive residual stress generation on the inner surface of the metal tube 1. Compressive residual stress is applied to all parts estimated to be affected by heat input.

次いで、第2の発明の一実施例を第4図及び第5図によ
り説明すると、カーボンスチールからなる金属管■の開
先2に溶接を施す場合、開先2に充填される溶接金属を
3層構造として、初層部3をカーボンスチール系連打、
その上の中間層5をステンレス系溶材、さらに最終層部
4をインコネル系溶材とする溶接を行ない、次いで、初
層部3及び最終層部4を基準とする温度、つまり 65
0℃付近で応力焼鈍をして、徐々に冷却するものである
。この実施例の場合は、インコネル系の最終層部4がイ
ンコネル等の高ニッケル合金のように、ステンレス系溶
材の上に溶接できる乙ので、カーボンスチールと類似す
る応力焼鈍温度及び線膨張率を有する溶材であることが
要求される。インコネル系溶材の場合、線膨張率αi−
約12X 10−’であるため、初層部3及び最終層部
4に、第5図に示すようにそれぞれ圧縮残留応力−σC
及び−σ!を付与することができる。
Next, an embodiment of the second invention will be explained with reference to FIGS. 4 and 5. When welding the groove 2 of a metal tube made of carbon steel, the weld metal filled in the groove 2 is As a layer structure, the first layer 3 is made of carbon steel series,
The intermediate layer 5 thereon is welded with a stainless steel welding material, and the final layer 4 is welded with an Inconel welding material, and then the temperature based on the initial layer 3 and the final layer 4 is set to 65.
Stress annealing is performed at around 0°C and then gradually cooled. In the case of this embodiment, the Inconel-based final layer 4 can be welded onto a stainless steel weld material like a high nickel alloy such as Inconel, so it has a stress annealing temperature and linear expansion coefficient similar to that of carbon steel. It is required to be a welding material. In the case of Inconel welding material, linear expansion coefficient αi-
Since it is about 12X 10-', the initial layer part 3 and the final layer part 4 each have a compressive residual stress -σC as shown in FIG.
and −σ! can be granted.

「発明の効果」 以上説明したように、本発明は、金属管の溶接開先に充
填される溶接金属の一部の層を、他の部分の層よりも相
対的に線膨張率が小さく応力焼鈍温度の低い溶材により
構成し、溶接後に1iii記一部の層の応力焼鈍温度に
より応力焼鈍を実施して、熱膨張率の大きな他の部分の
層の熱収縮により、金属管の内外面の少なくとも一方を
圧縮残留応力を付与した状態とすることができる。した
がって、鋼管等の内外面に腐食因子が存在する場合等に
おいて、欠陥となり易い溶接部及びその近傍部分におけ
る腐食割れが進行する現象を効果的に防止して、金属管
の信頼性を向上させることができる等の効果を奏するも
のである。
"Effects of the Invention" As explained above, the present invention provides a layer of weld metal that is filled into a welding groove of a metal tube, which has a relatively smaller coefficient of linear expansion than other layers and which is under stress. It is made of a weld material with a low annealing temperature, and after welding, stress annealing is performed on some layers at the stress annealing temperature described in 1iii, and the inner and outer surfaces of the metal tube are At least one of them can be in a state where compressive residual stress is applied. Therefore, in cases where corrosion factors exist on the inner and outer surfaces of steel pipes, etc., it is possible to effectively prevent the progression of corrosion cracking in the welded portion and its vicinity, which are likely to cause defects, thereby improving the reliability of the metal pipe. It has the following effects:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の残留応力改善方法の一実施例の説
明図、第2図はその残留応力の説明図、第3図は第1の
発明の他の実施例の説明図、第4図は第2の発明の残留
応力改善方法の一実施例の説明図、第5図はその残留応
力の説明図である。 ! ・金属管、2・ ・開先、3・ ・切屑+]<(一
表面層)、4  最終層部(他の表面層)、5 ・中間
層。 出願人  石川島播磨重工業味式会辻 第1図 第3圃
FIG. 1 is an explanatory diagram of one embodiment of the residual stress improvement method of the first invention, FIG. 2 is an explanatory diagram of the residual stress, and FIG. 3 is an explanatory diagram of another embodiment of the first invention. FIG. 4 is an explanatory diagram of an embodiment of the residual stress improvement method of the second invention, and FIG. 5 is an explanatory diagram of the residual stress. !・Metal tube, 2. ・Bevel, 3. ・Chip+]<(one surface layer), 4 Final layer (other surface layer), 5. Intermediate layer. Applicant: Ishikawajima Harima Heavy Industries Ajishikikai Tsuji, Figure 1, Field 3

Claims (1)

【特許請求の範囲】 (i)金属管の溶接開先に充填される溶接金属の一表面
層を、他の表面層よりも相対的に線膨張率が小さく応力
焼鈍温度の低い溶材により構成し、溶接後に前記一表面
層の応力焼鈍温度により応力焼鈍を実施することを特徴
とする金属管溶接部の残留応力改善方法。 (ii)金属管の溶接開先に充填される溶接金属の両表
面層を、中間層よりも相対的に線膨張率が小さく応力焼
鈍温度の低い溶材により構成し、溶接後に前記両表面層
の応力焼鈍温度により応力焼鈍を実施することを特徴と
する金属管溶接部の残留応力改善方法。
[Claims] (i) One surface layer of the weld metal filled into the weld groove of the metal tube is made of a weld material having a relatively smaller coefficient of linear expansion and a lower stress annealing temperature than other surface layers. . A method for improving residual stress in a metal pipe welded part, characterized in that stress annealing is performed at a stress annealing temperature of the one surface layer after welding. (ii) Both surface layers of the weld metal filled into the welding groove of the metal tube are composed of a weld metal having a relatively smaller coefficient of linear expansion and a lower stress annealing temperature than the intermediate layer, and after welding, both surface layers of the weld metal are A method for improving residual stress in a metal pipe weld, characterized by carrying out stress annealing at a stress annealing temperature.
JP22329784A 1984-10-24 1984-10-24 Method for improving residual stress of welded part of metallic pipe Pending JPS61104028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22329784A JPS61104028A (en) 1984-10-24 1984-10-24 Method for improving residual stress of welded part of metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22329784A JPS61104028A (en) 1984-10-24 1984-10-24 Method for improving residual stress of welded part of metallic pipe

Publications (1)

Publication Number Publication Date
JPS61104028A true JPS61104028A (en) 1986-05-22

Family

ID=16795931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22329784A Pending JPS61104028A (en) 1984-10-24 1984-10-24 Method for improving residual stress of welded part of metallic pipe

Country Status (1)

Country Link
JP (1) JPS61104028A (en)

Similar Documents

Publication Publication Date Title
US4348131A (en) Welded structure having improved mechanical strength and process for making same
US2906006A (en) Method of making a sheet metal article
US2233455A (en) Method of welding
JP2747610B2 (en) Manufacturing method of high pressure fluid supply pipe
EP1256411B1 (en) Welding method for a welded joint in high strength, ferrite type heat resistant steels
US3912152A (en) Method for cladding a ferrous substrate with non-ferrous metals
RU2098247C1 (en) Method for welding iron articles
CA2194229C (en) Bonded pipe and method for bonding pipes
US3602978A (en) Method of forming bimetallic transition joints
US3019513A (en) Method of manufacture
JPS61104028A (en) Method for improving residual stress of welded part of metallic pipe
US2657298A (en) Method and apparatus for manufacturing composite plates
JPS5936145B2 (en) pressure vessel
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPS58387A (en) Production of composite roll
JPH0246654B2 (en) CHUKUTAINOZANRYUORYOKUKAIZENHOHO
JPS58210123A (en) Heat treatment of clad steel pipe
JPS5852428A (en) Heat treatment for improving stress of shaft
JPS58151987A (en) Treatment of weld zone of cast martensitic stainless steel
JPH01240622A (en) Improvement of residual stress in weld zone of vessel
JPH0255619A (en) Straightening method for flatness of metallic plate
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPS6263620A (en) Method for improving residual stress of hollow body
JPS6155586B2 (en)