JPS6155586B2 - - Google Patents

Info

Publication number
JPS6155586B2
JPS6155586B2 JP11362383A JP11362383A JPS6155586B2 JP S6155586 B2 JPS6155586 B2 JP S6155586B2 JP 11362383 A JP11362383 A JP 11362383A JP 11362383 A JP11362383 A JP 11362383A JP S6155586 B2 JPS6155586 B2 JP S6155586B2
Authority
JP
Japan
Prior art keywords
heat treatment
titanium
degassing
softening
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11362383A
Other languages
Japanese (ja)
Other versions
JPS605867A (en
Inventor
Seishiro Yoshihara
Takao Kawanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11362383A priority Critical patent/JPS605867A/en
Publication of JPS605867A publication Critical patent/JPS605867A/en
Publication of JPS6155586B2 publication Critical patent/JPS6155586B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はチタンクラツド材の熱処理法に関する
ものである。チタンクラツド材はチタンまたはチ
タン合金(以下単にチタンと呼ぶ)を合せ材と
し、鋼、アルミ、銅、ニツケル、クロムまたはそ
れらの合金のほか、チタンより安価な材料を母材
とする板、管、棒、型材などの金属材料である。 (従来技術) チタンクラツド材は熱処理によつて接着部が剥
離しやすく、多くの場合は仕上熱処理が行なわれ
ておらず、従つて加工によつて変化した材質特性
を熱処理によつて改善することは望めない状態に
あつた。 (発明の目的) 本発明は仕上熱処理によつて接着部が剥離しな
いチタンクラツド材の熱処理法を提供することを
目的とする。 (発明の構成・作用) 本発明は次の様に構成される。 (1) チタンまたはチタン合金を水素および水素化
合物を排除した雰囲気で脱ガス軟化熱処理し、
次いで圧延により母材と接触したのち、仕上熱
処理を前記脱ガス軟化熱処理に対し低くない圧
力で行なうことを特徴とするチタンクラツド材
の熱処理法。 (2) チタンまたはチタン合金を水素および水素化
合物を排除した雰囲気で減圧下において脱ガス
軟化熱処理し、圧延により母材と接着したの
ち、仕上熱処理を前記脱ガス軟化熱処理に対し
低くない圧力で行なうことを特徴とするチタン
クラツド材の熱処理法。 (3) チタンまたはチタン合金と母材の鋼とを水素
および水素化合物を排除した雰囲気で減圧下に
おいて脱ガス軟化熱処理し、次いで圧延により
チタンまたはチタン合金と母材を接着したの
ち、仕上熱処理を前記脱ガス軟化熱処理に対し
低くない圧力で行ない、該仕上熱処理の温度
(T2)と前記脱ガス軟化熱処理温度(T1)との間
に次の関係式を満足せしめることを特徴とする
チタンクラツド材の熱処理法。 T2≦T1+100,ただし400≦T1<700(℃)T2
≦800,ただしT1≧700(℃) 本発明者らはチタンクラツド材を仕上熱処理す
ると未接着部が拡大すること、そしてその傾向は
圧延前にチタンを脱ガス軟化熱処理していない場
合や、加熱雰囲気が水素や水素化合物を含む場合
や脱ガス軟化熱処理に対して仕上熱処理の炉内圧
力が低い場合に著るしいことを知見した。そして
未接着部拡大に水素が関与していること、その防
止には脱水素処理が重要であることを知見した。 チタンを脱ガス軟化熱処理するには水素および
水素化合物を排除した雰囲気で40〜1000℃に加熱
する。水素は200℃程度から放出が著るしくなる
が、チタンを軟化させるには400℃以上に加熱す
ることが望ましい。加熱上限温度は特に制限され
るものではないが、1000℃を超えるとチタン結晶
粒の粗大化が進み好ましくない。 加熱炉は石油類やガス類などを燃焼して直接加
熱を行なうと、燃焼ガス内の水素がチタン内に侵
入するので、間接加熱とするか、他の加熱方式と
しなければならない。炉内圧力を減圧する場合に
は公知の真空加熱炉を用いることができる。 チタンあるいは母材は脱ガス熱処理を行なつて
おくと、その圧力より高圧ではガスの放出は極め
て少ない。また同様に脱ガス軟化熱処理の加熱温
度より低温ではガスの放出は極めて少ないが、減
圧下で脱ガス軟化熱処理を行ない、仕上熱処理の
炉内圧力がこれより高ければ、第3図に示すよう
に接着前の脱ガス軟化熱処理に対し接着後の仕上
熱処理温度を高くできる範囲が存在する。 (実施例) 表1に実験条件を、第1図ないし第3図に実験
結果を圧延接着前後の熱処理温度と未接着面積率
(=未接着面積/板面積×100%)との関係を示し
た。ここで未接着面積率が2%以下であれば接着
は良好である。図中のマークは第1図に示した。 第1図は熱処理炉炉内圧力が接着前後とも大気
圧の場合で、接着後の熱処理温度(T2)と接着前
熱処理温度(T1)に対して次の関係にある範囲で
接着良好である。すなわち T2≦T1/2+350(℃)ただし 400≦T1≦900
(℃) 第2図は熱処理炉炉内圧力が接着前は大気圧で
あり、接着後は10-2Torrの場合である。このと
き接着の良好なT1とT2の関係式は次のとおりで
ある。 T2≦T1/3+300(℃)ただし 400≦T1≦900
(℃) 第3図は熱処理炉炉内圧力が接着前は
10-2Torrに減圧されており、接着後は大気圧で
ある。このとき接着の良好なT1とT2の関係式は
次のとおりである。 T2≦T1+100(℃)ただし 400≦T1<700
(℃)T2≦800(℃)ただし T1≧700(℃) すなわち、接着良好な熱処理温度の範囲は第2
図が最も狭く、第3図が最も広い。
(Industrial Application Field) The present invention relates to a method for heat treating titanium clad materials. Titanium clad materials are made of titanium or titanium alloy (hereinafter simply referred to as titanium), and are made of steel, aluminum, copper, nickel, chromium, or their alloys, as well as plates, tubes, and rods made of materials cheaper than titanium. , metal materials such as mold materials. (Prior art) Bonded parts of titanium clad materials tend to peel off when heat treated, and in many cases finishing heat treatment is not performed, so it is not possible to improve material properties that have changed due to processing by heat treatment. I was in a situation I couldn't hope for. (Object of the Invention) An object of the present invention is to provide a method for heat treating a titanium clad material in which the bonded portion does not peel off during finishing heat treatment. (Structure and operation of the invention) The present invention is structured as follows. (1) Titanium or titanium alloy is degassed and softened in an atmosphere that excludes hydrogen and hydrogen compounds.
A method for heat treatment of a titanium clad material, characterized in that after the titanium clad material is brought into contact with the base material by rolling, a finishing heat treatment is performed at a pressure not lower than the degassing and softening heat treatment. (2) After degassing and softening titanium or titanium alloy under reduced pressure in an atmosphere excluding hydrogen and hydrogen compounds, and adhering it to the base material by rolling, finishing heat treatment is performed at a pressure not lower than the degassing and softening heat treatment. A heat treatment method for titanium clad materials characterized by: (3) Titanium or titanium alloy and base metal steel are subjected to degassing softening heat treatment under reduced pressure in an atmosphere excluding hydrogen and hydride compounds, and then, after bonding titanium or titanium alloy and base metal by rolling, finishing heat treatment is performed. A titanium cladding characterized in that the degassing softening heat treatment is performed at a pressure that is not low, and the following relational expression is satisfied between the finishing heat treatment temperature (T 2 ) and the degassing softening heat treatment temperature (T 1 ). Heat treatment method for materials. T 2 ≦T 1 +100, but 400≦T 1 <700 (℃) T 2
≦800, but T 1 ≧700 (℃) The present inventors found that when titanium clad material is subjected to finishing heat treatment, the unbonded area expands, and this tendency is observed when the titanium is not degassed and softened before rolling, or when the titanium is heated It has been found that this effect is significant when the atmosphere contains hydrogen or hydrogen compounds, or when the furnace pressure for finishing heat treatment is lower than that for degassing softening heat treatment. They also discovered that hydrogen is involved in the expansion of unbonded areas, and that dehydrogenation treatment is important to prevent this. To degas and soften titanium, it is heated to 40-1000°C in an atmosphere excluding hydrogen and hydrogen compounds. Hydrogen starts to be released significantly from around 200°C, but it is desirable to heat it to 400°C or higher to soften titanium. The upper limit heating temperature is not particularly limited, but if it exceeds 1000°C, the titanium crystal grains will become coarser, which is not preferable. If a heating furnace burns petroleum or gas for direct heating, hydrogen in the combustion gas will enter the titanium, so indirect heating or other heating methods must be used. In the case of reducing the pressure inside the furnace, a known vacuum heating furnace can be used. If titanium or the base material is subjected to degassing heat treatment, there will be very little gas released at higher pressures. Similarly, gas release is extremely small at temperatures lower than the heating temperature for degassing softening heat treatment, but if degassing softening heat treatment is performed under reduced pressure and the furnace pressure for finishing heat treatment is higher than this, as shown in Figure 3. There is a range in which the finishing heat treatment temperature after bonding can be higher than the degassing softening heat treatment before bonding. (Example) Table 1 shows the experimental conditions, and Figures 1 to 3 show the experimental results and the relationship between the heat treatment temperature before and after rolling bonding and the unbonded area ratio (=unbonded area/board area x 100%). Ta. Here, if the unbonded area ratio is 2% or less, the bonding is good. The marks in the figure are shown in Figure 1. Figure 1 shows the case where the pressure inside the heat treatment furnace is atmospheric pressure both before and after bonding, and the bond is good within the range of the following relationship between the heat treatment temperature after bonding (T 2 ) and the heat treatment temperature before bonding (T 1 ). be. That is, T 2 ≦T 1 /2 + 350 (℃) However, 400≦T 1 ≦900
(℃) Figure 2 shows the case where the pressure inside the heat treatment furnace was atmospheric pressure before bonding, and 10 -2 Torr after bonding. At this time, the relational expression between T 1 and T 2 for good adhesion is as follows. T 2 ≦T 1 /3+300 (℃) However, 400≦T 1 ≦900
(℃) Figure 3 shows that the pressure inside the heat treatment furnace is
The pressure is reduced to 10 -2 Torr, and the pressure is atmospheric after bonding. At this time, the relational expression between T 1 and T 2 for good adhesion is as follows. T 2 ≦T 1 +100 (℃) However, 400≦T 1 <700
(℃) T 2 ≦800 (℃) However, T 1 ≧700 (℃) In other words, the heat treatment temperature range for good adhesion is the second
Figure 3 is the narrowest and Figure 3 is the widest.

【表】【table】

【表】 (発明の効果) 以上述べたように本発明によればチタンクラツ
ド材の仕上熱処理が可能となり、しかも仕上熱処
理温度範囲が工業的に十分な温度である800℃ま
で拡大され、仕上熱処理によつてチタンクラツド
の材質の改善が可能となつた。 なお本発明はチタンクラツド鋼板の例について
説明したが、チタンクラツド鋼の他の形状の製
品、例えば管、棒、形材などにも応用でき、さら
にチタンとほとんど性質を同じくするジルコニウ
ムクラツド材にも応用できるものである。
[Table] (Effects of the invention) As described above, according to the present invention, it is possible to perform finish heat treatment on titanium clad materials, and the finish heat treatment temperature range is expanded to 800°C, which is an industrially sufficient temperature. As a result, it became possible to improve the material quality of titanium cladding. Although the present invention has been explained using titanium clad steel sheets as an example, it can also be applied to titanium clad steel products in other shapes, such as pipes, rods, shapes, etc. Furthermore, it can also be applied to zirconium clad materials, which have almost the same properties as titanium. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の効果の説明図で
あつて、第1図と第3図は本発明の条件を示して
いる。
1 to 3 are explanatory diagrams of the effects of the present invention, and FIGS. 1 and 3 show the conditions of the present invention.

【表】【table】

Claims (1)

【特許請求の範囲】 1 チタンまたはチタン合金を水素および水素化
合物を排除した雰囲気で脱ガス軟化熱処理し、次
いで圧延により母材と接着したのち、仕上熱処理
を前記脱ガス軟化熱処理に対し低くない圧力で行
なうことを特徴とするチタンクラツド材の熱処理
法。 2 チタンまたはチタン合金を水素および水素化
合物を排除した雰囲気で減圧下において脱ガス軟
化熱処理し、圧延により母材と接着したのち、仕
上熱処理を前記脱ガス軟化熱処理に対し低くない
圧力で行なうことを特徴とするチタンクラツド材
の熱処理法。 3 チタンまたはチタン合金と母材の鋼とを水素
および水素化合物を排除した雰囲気で減圧下にお
いて脱ガス軟化熱処理し、次いで圧延によりチタ
ンまたはチタン合金と母材を接着したのち、仕上
熱処理を前記脱ガス軟化熱処理に対し低くない圧
力で行ない、該仕上熱処理の温度(T2)と前記脱
ガス軟化熱処理温度(T1)との間に次の関係式を
満足せしめることを特徴とするチタンクラツド材
の熱処理法。 T2≦T1+100,ただし400≦T1<700(℃)T2
≦800,ただしT1≦700(℃)
[Claims] 1 Titanium or a titanium alloy is subjected to a degassing softening heat treatment in an atmosphere excluding hydrogen and hydrogen compounds, and then bonded to the base material by rolling, and then finishing heat treatment is performed at a pressure not lower than that of the degassing softening heat treatment. A heat treatment method for titanium clad materials. 2. After degassing and softening titanium or titanium alloy under reduced pressure in an atmosphere excluding hydrogen and hydrogen compounds, and adhering it to the base material by rolling, finishing heat treatment is performed at a pressure not lower than the degassing and softening heat treatment. Features a heat treatment method for titanium clad materials. 3 Titanium or a titanium alloy and the steel base material are subjected to a degassing softening heat treatment under reduced pressure in an atmosphere excluding hydrogen and hydride compounds, and then the titanium or titanium alloy and the base material are bonded by rolling, and then a finishing heat treatment is performed on the base material. A titanium clad material characterized in that the gas softening heat treatment is performed at a pressure that is not low, and the following relational expression is satisfied between the finishing heat treatment temperature (T 2 ) and the degassing softening heat treatment temperature (T 1 ). Heat treatment method. T 2 ≦T 1 +100, but 400≦T 1 <700 (℃) T 2
≦800, but T 1 ≦700 (℃)
JP11362383A 1983-06-25 1983-06-25 Heat treating method of titanium clad material Granted JPS605867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11362383A JPS605867A (en) 1983-06-25 1983-06-25 Heat treating method of titanium clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11362383A JPS605867A (en) 1983-06-25 1983-06-25 Heat treating method of titanium clad material

Publications (2)

Publication Number Publication Date
JPS605867A JPS605867A (en) 1985-01-12
JPS6155586B2 true JPS6155586B2 (en) 1986-11-28

Family

ID=14616905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11362383A Granted JPS605867A (en) 1983-06-25 1983-06-25 Heat treating method of titanium clad material

Country Status (1)

Country Link
JP (1) JPS605867A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363585A (en) * 1986-09-04 1988-03-19 Nippon Steel Corp Production of titanium clad steel
KR19990020370A (en) * 1997-08-30 1999-03-25 윤종용 Cold soldering soldering device and method
CN113020772B (en) * 2021-03-09 2022-05-31 上海交通大学 Low-temperature rapid diffusion welding method for titanium alloy

Also Published As

Publication number Publication date
JPS605867A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
US2473712A (en) Procedure for making multiply metal stock
US2786265A (en) Process of producing composite metal products
US4811890A (en) Method of eliminating core distortion in diffusion bonded and uperplastically formed structures
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
US4483478A (en) Method for fabricating superplastically formed/diffusion bonded aluminum or aluminum alloy structures
EP0350220B1 (en) Diffusion bonding of aluminium and aluminium alloys
US3713207A (en) Method for diffusion bonding utilizing superplastic interlayer
US4919323A (en) Diffusion bonding nickel base alloys
EP0117671A1 (en) Bonding metals
US3564585A (en) Method for making stainless steel clad aluminum
JPS6155586B2 (en)
US2100255A (en) Method of making composite bodies of zinc and aluminum
US3693242A (en) Composite material and production thereof
US3693243A (en) Method and apparatus for cladding metals
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
US3055096A (en) Method for cladding and product resulting therefrom
US3299503A (en) Process for the production of bonded metal structures
US2037733A (en) Process of manufacturing composite metals containing nickel
JPS62214887A (en) Production of clad steel plate
JPH0452181B2 (en)
JPS6213294A (en) Method for restoring and reutilizing tool for rolling
JPH03204125A (en) Composite forming method for superplastic metallic plate high in reactivity at high temperature
SU1673348A1 (en) Method for diffusion welding of hard alloy with steel
SU1397225A1 (en) Method of producing multilayer panels by diffusion welding
JPH0371953B2 (en)