JPS61103851A - Production of benzophenone polycarboxylic acid - Google Patents

Production of benzophenone polycarboxylic acid

Info

Publication number
JPS61103851A
JPS61103851A JP22307084A JP22307084A JPS61103851A JP S61103851 A JPS61103851 A JP S61103851A JP 22307084 A JP22307084 A JP 22307084A JP 22307084 A JP22307084 A JP 22307084A JP S61103851 A JPS61103851 A JP S61103851A
Authority
JP
Japan
Prior art keywords
reaction
nitric acid
acid
amount
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22307084A
Other languages
Japanese (ja)
Inventor
Naoki Ando
直樹 安藤
Hideetsu Fujiwara
秀悦 藤原
Kenji Hosoya
細谷 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP22307084A priority Critical patent/JPS61103851A/en
Publication of JPS61103851A publication Critical patent/JPS61103851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:In producing the titled substance useful as a raw material for polyimide, etc., by nitric acid oxidation method for aromatic hydrocabon, to reduce an amount of nitric acid used by the use of a by-product and to improve yield, by oxidizing a nitrogen oxide as a by-product with oxygen fed to raise concentration of nitric acid and to promote the oxidation reaction. CONSTITUTION:An aromatic hydrocarbon [e.g., bis(dimethylphenyl)ethane, etc.] shown by the formula (R1-R6 are H, or 1-3C alkyl, and at least two of R1-R6 are alkyl; R7 are 1-3C alkylene) as a raw material is reacted with nitric acid. The oxidation reaction is carried out in a pressure reactor, and the reaction pressure is 30-100kg/cm<2>. Then, the reaction is continuously done in the presence of oxygen, to give the aimed compound. The reaction temperature of the secondary oxidation reaction is preferably 160-200 deg.C, the pressure is 30-80kg/cm<2>, and an amount of oxygen fed is 0.05-5mol, preferable 0.1-2mol based on 1mol aromatic hydrocarbon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポリイミド、ポリアミド、ポリエステルの原
料などとして有用なベンゾフェノンポリカルボン酸の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing benzophenone polycarboxylic acid, which is useful as a raw material for polyimide, polyamide, polyester, and the like.

従来の技術 従来、前記一般式(1,、)で表される芳香族炭化水素
を硝酸を用いて酸化することによって、対応するベンゾ
フェノンポリカルボン酸が得費れることが知られている
。(以下「硝酸酸化法」という)。例えば米国特許第4
,173. 573号明細書には、ビス(3,4−ジメ
チルフェニル)エタンを硝酸水溶液とともに圧力容器中
で加熱することにより、3.3’、4.4’−ベンゾフ
ェノンテトラカルボン酸が得られることが記載されてい
る。このような硝酸酸化竺は、特別な酸化触媒も要らず
、生成物の分離も比較的容易な上、反応容器の材質も入
手の容易なステンレスを使用することができ、有利な反
応、方法である。
BACKGROUND ART Conventionally, it has been known that the corresponding benzophenone polycarboxylic acid can be obtained by oxidizing the aromatic hydrocarbon represented by the general formula (1, .) using nitric acid. (hereinafter referred to as "nitric acid oxidation method"). For example, U.S. Pat.
, 173. No. 573 describes that 3.3',4.4'-benzophenonetetracarboxylic acid can be obtained by heating bis(3,4-dimethylphenyl)ethane with an aqueous nitric acid solution in a pressure vessel. has been done. This type of nitric acid oxidation process does not require any special oxidation catalyst, the product can be separated relatively easily, and the reaction vessel can be made of easily available stainless steel, making it an advantageous reaction and method. be.

発明が解決しようとする問題点 しかしながら従来の硝酸酸化法は、酸化反応中に多量の
窒素酸化物を含む廃ガスが生成するが、該ガスはそのま
までは大気中に放出することは公害上防止上杵されず、
それゆえ廃ガスの処理設備を別途膜けなくてはならない
。またかかる硝酸酸化法では、酸化反応に多量の硝酸が
必要であり、硝酸の原単位が高いという欠点をも有する
Problems to be Solved by the Invention However, in the conventional nitric acid oxidation method, waste gas containing a large amount of nitrogen oxides is generated during the oxidation reaction, but it is difficult to release this gas into the atmosphere for pollution prevention reasons. Not beaten,
Therefore, a separate membrane must be installed in the waste gas treatment equipment. Furthermore, the nitric acid oxidation method requires a large amount of nitric acid for the oxidation reaction, and has the disadvantage that the basic unit of nitric acid is high.

本発明は、これら従来の技術的課題を背景としてなされ
たもので、その目的とするところは、酸化剤である硝酸
の使用量が少なくて済み、かつ生成する窒素酸化物を極
めて低く抑えることが可能で、しかも目的生成物の収量
を増大させることが可能なベンゾフェノンポリカルボン
酸の製造方法を提供することにある。
The present invention was made against the background of these conventional technical problems, and its purpose is to reduce the amount of nitric acid used as an oxidizing agent, and to suppress the amount of nitrogen oxides produced to an extremely low level. It is an object of the present invention to provide a method for producing benzophenone polycarboxylic acid that is possible and that can increase the yield of the desired product.

問題点を解決するための手段 即ち本発明は、下記一般式(1)で表される芳香族炭化
水素を、硝酸を用い酸化させ、次いで酸素の存在下で引
き続き反応を行うことを特徴とするベンゾフェノンポリ
カルボン酸の製造方法を提供するものである。
A means for solving the problem, that is, the present invention is characterized in that an aromatic hydrocarbon represented by the following general formula (1) is oxidized using nitric acid, and then the reaction is continued in the presence of oxygen. A method for producing benzophenone polycarboxylic acid is provided.

(一般式(I)において、R1〜R,は、問−または異
なり水素原子または炭素数1〜3のアルキノ?基であり
、かつR+”−Rbの少なくとも2個はアルキル基であ
り、R1は、炭素数1〜8のアルキレン基である。) 前記一般式(1)で表される芳香族炭化水素(以下、単
に「芳香族炭化水素」という)の硝酸を用いる酸化反応
は、例えば芳香族炭化水素としてビス(3,4−ジメチ
ルフェニル)エタンを例にとると、主に下記2種の反応
が平行し゛て進行していると考えることができる。
(In the general formula (I), R1 to R are hydrogen atoms or alkino groups having 1 to 3 carbon atoms, and at least two of R+''-Rb are alkyl groups, and R1 is , is an alkylene group having 1 to 8 carbon atoms.) The oxidation reaction using nitric acid of the aromatic hydrocarbon represented by the above general formula (1) (hereinafter simply referred to as "aromatic hydrocarbon"), for example, Taking bis(3,4-dimethylphenyl)ethane as an example of a hydrocarbon, it can be considered that the following two types of reactions mainly proceed in parallel.

+35/3H,O+34/3N O +4715Hz O+1715Nz このように芳香族炭化水素の硝酸酸化法では、目的とす
るベンゾフェノンポリカルボン酸の他に、二酸化炭素、
水、−酸化窒素、窒素などが生成し、その他の低分子量
化合物、卯ち二酸化窒素、亜酸化窒素、−酸化炭素など
は極く少量しか生成しない。
+35/3H, O+34/3N O +4715Hz O+1715Nz In this way, in the nitric acid oxidation method of aromatic hydrocarbons, in addition to the target benzophenone polycarboxylic acid, carbon dioxide,
Water, nitrogen oxide, nitrogen, etc. are produced, and other low molecular weight compounds such as nitrogen dioxide, nitrous oxide, and carbon oxide are produced in very small amounts.

本発明は、この点に着目してなされたもので、生成する
一酸化窒素、二酸化窒素などを共存する水と外部より供
給される酸素とにより酸化し硝酸となし、酸化反応系の
硝酸濃度の低下を抑えて硝酸の消費量を減少させるとと
もに排ガス中の一酸化窒素、ニー化窒素の含量を著しく
減少せしめて排ガスの後処理工程を軽減するこおを骨子
とするものである。
The present invention was made with attention to this point, and the produced nitrogen monoxide, nitrogen dioxide, etc. are oxidized to nitric acid by coexisting water and oxygen supplied from the outside, and the nitric acid concentration in the oxidation reaction system is reduced. The main objective is to reduce the amount of nitric acid consumed by suppressing the decrease in nitric acid consumption, and to significantly reduce the content of nitrogen monoxide and nitrogen nitride in the exhaust gas, thereby reducing the need for after-treatment of the exhaust gas.

本発明における芳香族炭化水素としては、例えばビス(
ジメチルフェニル)エタン、ビス(ジメチルフェニル)
プロパン、ビス(ジメチルフェニル)ブタン、ビス(ジ
エチルフェニル)オクタン、ビス(ジエチルフェニル)
エタン、ビス(トリノチルフェ五ル)エタン、ビス(メ
チルフェニル)エタン、トリメチルフェニルジメチフェ
ニルエタンなどを挙げることができる。
Examples of aromatic hydrocarbons in the present invention include bis(
dimethylphenyl)ethane, bis(dimethylphenyl)
Propane, bis(dimethylphenyl)butane, bis(diethylphenyl)octane, bis(diethylphenyl)
Examples include ethane, bis(trinotylphegor)ethane, bis(methylphenyl)ethane, trimethylphenyldimethyphenylethane, and the like.

これらの芳香族炭化水素は、例えばトルエン、キシレン
、キュメン、シメン、プソイドキュメンなどのアルキル
ベンゼンとアセトアルデヒドなどの脂肪族アルデヒドと
を硫酸を用い縮合反応することによって得ることができ
る。
These aromatic hydrocarbons can be obtained, for example, by subjecting an alkylbenzene such as toluene, xylene, cumene, cymene, and pseudocumene to a condensation reaction with an aliphatic aldehyde such as acetaldehyde using sulfuric acid.

例えば0−キシレンとアセトアルデヒドとを硫酸の共存
下に反応させると、ビス(3,4−ジメチルフェニル)
エタンを合成することができる。
For example, when 0-xylene and acetaldehyde are reacted in the presence of sulfuric acid, bis(3,4-dimethylphenyl) is produced.
Ethane can be synthesized.

本発明において、前記芳香族炭化水素を硝酸を用いて酸
化することによって得られるベンゾフェノンポリカルボ
ン酸としては、該芳香族炭化水素に対応する酸化物であ
り、例えばヘンシフエノンテトラカルボン酸、ベンゾフ
ェノンヘキサカルボン酸、ヘンシフエノンジカルボン酸
などを挙げることができる。
In the present invention, the benzophenone polycarboxylic acid obtained by oxidizing the aromatic hydrocarbon with nitric acid is an oxide corresponding to the aromatic hydrocarbon, such as hensiphenonetetracarboxylic acid, benzophenone hexacarboxylic acid, etc. Examples include carboxylic acid, hensifhenonedicarboxylic acid, and the like.

本発明では、まずかかる芳香族炭化水素を、硝酸を用い
酸化させるが、このときの反応温度は、通常、140〜
220℃、好ましくは160〜200℃である。(この
酸化反応を以下「第1次酸化反応」ということがある)
In the present invention, such aromatic hydrocarbons are first oxidized using nitric acid, and the reaction temperature at this time is usually 140 to 140°C.
The temperature is 220°C, preferably 160-200°C. (This oxidation reaction is sometimes referred to as the "first oxidation reaction" below)
.

この第1次酸化反応の温度が140℃未満では黄色化合
物が副生じ易くなり、一方220℃を越えると得られる
ベンゾフェノンポリカルボン酸の収率が低下する。
If the temperature of this primary oxidation reaction is less than 140°C, a yellow compound is likely to be produced as a by-product, while if it exceeds 220°C, the yield of benzophenone polycarboxylic acid obtained will decrease.

なお酸化剤として使用される硝酸は、通常、濃度が20
〜40重景%の重量液として用いられる。
Note that nitric acid used as an oxidizing agent usually has a concentration of 20
It is used as a weight liquid of ~40 weight percent.

硝酸濃度が20重量%未満では、反応速度が遅く、硝酸
濃度が薄すぎて多量の硝酸水溶液を使用せねばならず反
応容器の使用効率が悪く、反応後の反応生成液の濃縮、
ベンゾフェノンポリカルボン酸の析出または分離に多量
のエネルギーを必要とする。一方硝酸濃度が40重量%
を越えると反応速度が大きくなりすぎて反応が基走する
恐れがある。
If the nitric acid concentration is less than 20% by weight, the reaction rate will be slow, the nitric acid concentration will be too low and a large amount of nitric acid aqueous solution will have to be used, resulting in poor usage efficiency of the reaction vessel and the concentration of the reaction product liquid after the reaction.
Precipitation or separation of benzophenone polycarboxylic acid requires a large amount of energy. On the other hand, the nitric acid concentration is 40% by weight.
If the reaction rate exceeds 100%, the reaction rate becomes too high and there is a risk that the reaction will run rampant.

硝酸の仕込み量は、芳香族炭化水素1モルに対し100
重量%硝酸換算で、好ましくは5〜20モル、特に好ま
しくは10〜15モルである。
The amount of nitric acid charged is 100 nitric acid per mole of aromatic hydrocarbon.
The amount is preferably 5 to 20 mol, particularly preferably 10 to 15 mol, in terms of weight % nitric acid.

硝酸の仕込み量が、芳香族炭化水素1モルに対し5モル
未満では少なすぎて酸化反応が充分進行せず、一方20
モルを越える大量の硝酸は不必要であり、しかも反応後
の処理において不利となる。
If the amount of nitric acid charged is less than 5 moles per mole of aromatic hydrocarbon, the oxidation reaction will not proceed sufficiently;
Large amounts of nitric acid in excess of a molar amount are unnecessary and are disadvantageous in post-reaction processing.

かかる酸化反応は、密閉系、即ち耐圧反応容器中で行わ
れ、反応時の雰囲気は、窒素、空気などでよく、その反
応圧力は、通常、30〜100kg/−であり、また反
応時間は、通常、0.05〜10時間、好ましくは0.
1〜5時間、更にこの際の反応容器中の原料液の充填率
は、特に限定するものではないが、一般には50〜70
%である。
Such oxidation reaction is carried out in a closed system, that is, in a pressure-resistant reaction vessel, the atmosphere during the reaction may be nitrogen, air, etc., the reaction pressure is usually 30 to 100 kg/-, and the reaction time is Usually 0.05 to 10 hours, preferably 0.05 to 10 hours.
1 to 5 hours, and the filling rate of the raw material liquid in the reaction vessel at this time is not particularly limited, but is generally 50 to 70
%.

このようにして芳香族炭化水素と硝酸とを反応容器中に
充填し攪拌しつつ加熱していくと、通常、略100℃付
近から酸化反応が起こりは       !しめ圧力の
上昇が認められる。
When aromatic hydrocarbons and nitric acid are filled into a reaction vessel in this way and heated while stirring, an oxidation reaction usually occurs from around 100°C! An increase in tightening pressure is observed.

本発明では、第1時酸化反応を行った後、次いで該反応
系に酸素または酸素を含むガス(例えば空気)を供給し
、引き続き反応を行う(この反応を以下「第2次酸化反
応」ということがある)。
In the present invention, after performing the first oxidation reaction, oxygen or a gas containing oxygen (for example, air) is then supplied to the reaction system, and the reaction is continued (this reaction is hereinafter referred to as "second oxidation reaction"). Sometimes).

かくてかかる第2次酸化反応において、第1次(および
第2次)酸化反応の際に生成する一酸化窒素、副生ずる
二酸化窒素などの窒素酸化物は、共存する水と供給され
る酸素とによって硝酸に還元されるとともに前記芳香族
炭化水素のヘンシフエノンポリカルボン酸への酸化反応
が平行して行われることになり、第1次酸化反応に比し
反応系の圧力も減少することになる(空気を使用する場
合は、酸素濃度が低いために圧力の減少がない)。
Thus, in such a secondary oxidation reaction, nitrogen oxides such as nitrogen monoxide and by-product nitrogen dioxide generated during the primary (and secondary) oxidation reaction are combined with coexisting water and supplied oxygen. At the same time, the aromatic hydrocarbon is reduced to nitric acid, and the oxidation reaction of the aromatic hydrocarbon to hensifhenone polycarboxylic acid is carried out in parallel, and the pressure in the reaction system is also reduced compared to the first oxidation reaction. (When using air, there is no pressure reduction due to the low oxygen concentration).

第2次酸化反応の反応温度は、第1次酸化反応温度と同
様の理由により、通常、140〜220℃、好ましくは
160〜200℃で実施され、また反応圧力は、通常、
30〜80kg/ctK、反応時間は、通常、0.05
〜10時間、好ましくは0.1〜5時間である。
The reaction temperature of the second oxidation reaction is usually 140 to 220°C, preferably 160 to 200°C, for the same reason as the first oxidation reaction temperature, and the reaction pressure is usually
30-80kg/ctK, reaction time is usually 0.05
-10 hours, preferably 0.1-5 hours.

なお第2次酸化反応において、酸素の供給量は、芳香族
炭化水素1モルに対し0605〜5モル、好ましくは0
.1〜2モルである。
In the second oxidation reaction, the amount of oxygen supplied is 0.605 to 5 mol, preferably 0.05 to 5 mol per mol of aromatic hydrocarbon.
.. It is 1 to 2 moles.

かかる酸素の供給量が芳香族炭化水素1モルに対し0.
05モル未満であると生成する窒素酸化物を硝酸に還元
するのに不充分であり、一方5モルを越えてもさしてそ
の効果が比例的に上がるものでもなく却って反応系の圧
力を過度に上昇させることとなる。
The amount of oxygen supplied is 0.0% per mole of aromatic hydrocarbon.
If the amount is less than 5 moles, it is insufficient to reduce the produced nitrogen oxides to nitric acid, while if it exceeds 5 moles, the effect will not increase proportionally and on the contrary, the pressure of the reaction system will increase excessively. It will be necessary to do so.

また反応系への酸素の供給は、芳香族炭化水素のベンゾ
フェノンポリカルボン酸または中間対へある程度転化し
てから行うが、酸素を反応系へ供給する時期の目安とし
ては、反応系の圧力が40〜90kg/cfflに達す
るときか、または反応時間が第1次酸化反応開始後0.
05〜10時間、好ましくは0.1〜5時間となる時点
である。
In addition, oxygen is supplied to the reaction system after the aromatic hydrocarbon has been converted to benzophenone polycarboxylic acid or an intermediate pair to some extent, but as a guideline for when to supply oxygen to the reaction system, the pressure of the reaction system is ~90 kg/cffl or the reaction time is 0.5 kg/cffl after the start of the first oxidation reaction.
05 to 10 hours, preferably 0.1 to 5 hours.

反応終了後、得られる反応生成液を好ましくは10〜5
0°C程度に冷却し、ガスを放出・公証し反応系を常圧
に戻すことによって薄黄色の水溶液または水性懸濁液が
得られる。分離されたガス中には、生成する二酸化炭素
の他には、−酸化窒素、二酸化窒素などの窒素酸化物は
殆ど含まれておらず、該ガスは、若干の処理を施すこと
によって、またはそのまま大気中に放出することが可能
である。
After the reaction is completed, the reaction product liquid obtained is preferably 10 to 5
A pale yellow aqueous solution or suspension is obtained by cooling to about 0°C, releasing and notarizing the gas, and returning the reaction system to normal pressure. The separated gas contains almost no nitrogen oxides such as nitrogen oxide or nitrogen dioxide other than the carbon dioxide produced, and the gas can be treated with a slight treatment or as it is. It is possible to release it into the atmosphere.

なお反応生成液中の未反応の硝酸は、アルカリ物質によ
り中和することもできるが、かかる硝酸を酸化反応系に
リサイクルすることも可能であり、特に中和する必要は
ない。
Note that unreacted nitric acid in the reaction product liquid can be neutralized with an alkaline substance, but it is also possible to recycle such nitric acid to the oxidation reaction system, and there is no particular need for neutralization.

またガス分離後の反応生成液は、例えば該反応生成液を
濃縮するか、冷却するか、もしくは?1IIW後冷却し
て粗ベンゾフェノンポリカルボン酸を析出・分離し、次
いで得られた粗ベンゾフェノンポリカルボン酸を例えば
再結晶溶媒として水を用いて再結晶し精製することがで
きる。
Also, the reaction product liquid after gas separation is, for example, concentrated, cooled, or? The crude benzophenone polycarboxylic acid is precipitated and separated by cooling after 1IIW, and then the obtained crude benzophenone polycarboxylic acid can be purified by recrystallization using water as a recrystallization solvent, for example.

作用 本発明は、芳香族炭化水素の硝酸酸化法によりヘンシフ
エノンポリカルボン酸を得るに際し、生成する窒素酸化
物(前記−酸化窒素の他、副生ずる二酸化窒素などの窒
素酸化物)を共存する水と外部より供給され、る酸素と
により酸化し硝酸となし、酸化反応系の硝酸濃度を高め
るとともに生成する水、窒素酸化物の濃度を下げ、全体
として芳香族炭化水素の硝酸による酸化反応を促進させ
るものである。
Effect of the present invention When obtaining hensifhenone polycarboxylic acid by the nitric acid oxidation method of aromatic hydrocarbons, the produced nitrogen oxides (in addition to the above-mentioned nitrogen oxides, nitrogen oxides such as by-produced nitrogen dioxide) are mixed with coexisting water. and oxygen supplied from the outside to oxidize to nitric acid, increasing the nitric acid concentration in the oxidation reaction system and lowering the concentration of water and nitrogen oxides produced, promoting the oxidation reaction of aromatic hydrocarbons with nitric acid as a whole. It is something that makes you

実施例 以下実施例′を挙げ、本発明を更に詳細に説明する。Example The present invention will be explained in more detail with reference to Examples.

なお実施例中、%は重量基準である。In addition, in the examples, % is based on weight.

実施例1 内容積100 ccのステンレス製オートクレーブに、
純度98%のビス(3,4−ジメチルフェニル)エタン
5gと、濃度30%の硝酸水溶液60gを充填し、攪拌
・加熱し、120℃まで急速に温度を上げた後、2℃/
分の速度でゆつくりと温度を上げ、内温を180℃とし
た。
Example 1 In a stainless steel autoclave with an internal volume of 100 cc,
5 g of bis(3,4-dimethylphenyl)ethane with a purity of 98% and 60 g of a nitric acid aqueous solution with a concentration of 30% were charged, stirred and heated, and the temperature was rapidly raised to 120°C.
The temperature was slowly raised at a rate of 180°C to an internal temperature of 180°C.

このときの内圧は、52kg/cI+!であった。  
     11時間後、内圧は68kg/cotとなっ
たが、この時点で酸素ボンベより、ゆっくり酸素を系内
に注入したところ、内圧は一旦43kg/C1A程度ま
で下がったが、系内が65kg/cn(になるまで更に
酸素を注入した。
The internal pressure at this time was 52kg/cI+! Met.
After 11 hours, the internal pressure was 68 kg/cot, but at this point, when oxygen was slowly injected into the system from an oxygen cylinder, the internal pressure temporarily dropped to about 43 kg/C1A, but the pressure in the system was 65 kg/cn ( Further oxygen was injected until

酸素注入後、180℃で更に2時間反応を続けた後放冷
し、反応系が室温まで下がった後、。
After oxygen injection, the reaction was continued at 180°C for another 2 hours, and then allowed to cool, and after the reaction system had cooled to room temperature.

バルブを徐々に開けてガス分を放出した。このガスは無
色であり、ガスクロマトグラムによる分析によっても一
酸化窒素、二酸化窒素ともそれぞれ5ppm、31pp
mと痕跡量であった。
The valve was gradually opened to release the gas. This gas is colorless, and gas chromatogram analysis shows that both nitrogen monoxide and nitrogen dioxide are 5 ppm and 31 ppm, respectively.
It was a trace amount.

得られた反応生成液を減圧蒸溜によって水分を留出させ
、約30ccに濃縮し、缶液を得た。
The resulting reaction product liquid was distilled under reduced pressure to remove moisture and concentrated to about 30 cc to obtain a bottom liquid.

この缶液を室温まで放冷し、−昼夜放置することにより
、粗3.3’、4.4’−ベンゾフェノンテトラカルボ
ン酸を析出させ、該粗ベンゾフェノンテトラカルポン酸
と濾液とに分離した。
This canned liquid was allowed to cool to room temperature and left to stand day and night to precipitate crude 3.3', 4.4'-benzophenonetetracarboxylic acid, which was separated into the crude benzophenonetetracarboxylic acid and the filtrate.

この粗ベンゾフェノンテトラカルボン酸を、約30cc
の蒸留水で水洗濾別した後、乾燥機で125°C16時
間乾燥し、その重量を測定したところ、5.80gであ
った。
Approximately 30 cc of this crude benzophenone tetracarboxylic acid
After washing with distilled water and separating by filtration, it was dried in a dryer at 125° C. for 16 hours, and its weight was measured to be 5.80 g.

一方、未反応の硝酸量を電気伝導度滴定分析により測定
したところ、減圧藤溜時の留出水中に0.05g、濾液
中に9.90g、水洗時の廃水中に1.03g存在し、
未反応硝酸が合計10.98g回収された。この結果、
本実施例において消費された硝酸は、僅か7.02gで
あることが判明した。
On the other hand, when the amount of unreacted nitric acid was measured by electrical conductivity titration analysis, it was found that 0.05 g was present in the distilled water during the vacuum Fujidome, 9.90 g in the filtrate, and 1.03 g in the waste water during washing.
A total of 10.98 g of unreacted nitric acid was recovered. As a result,
It was found that only 7.02 g of nitric acid was consumed in this example.

即ち消費された硝酸は、粗ヘンシフエノンテトラカルポ
ン酸1g当たり1.21gにしか相当しないことが判明
した。
That is, it was found that the consumed nitric acid corresponded to only 1.21 g per 1 g of crude hensifhenonetetracarboxylic acid.

実施例2 実施例1で得られた濾液31.5g (硝酸を8.91
g含有)に、濃度61V6の硝酸水溶液14.9gおよ
び蒸留水13.6gを加えて濃度30%の硝酸水溶液を
60g作成した。この水溶液に純度98%のビス(3,
4−ジメチルフェニル)エタン5gを加え、実施例1と
同様に反応させた。反応終了後、放冷しガスを放出して
反応生成液を取り出し、実施例1と同様に後処理を施し
て、5.82gの粗3.3’。
Example 2 31.5 g of filtrate obtained in Example 1 (8.91 g of nitric acid
14.9 g of a nitric acid aqueous solution with a concentration of 61V6 and 13.6 g of distilled water were added to the nitric acid aqueous solution with a concentration of 30%. This aqueous solution has 98% purity bis(3,
5 g of 4-dimethylphenyl)ethane was added, and the reaction was carried out in the same manner as in Example 1. After the reaction was completed, the reaction product was allowed to cool, the gas was discharged, and the reaction product liquid was taken out and post-treated in the same manner as in Example 1 to obtain 5.82 g of crude 3.3'.

4.4′−ヘンシフエノンテトラカルボン酸を得た。ま
た実施例1と同様にして消費された硝酸量を測定したと
ころ、6.45gであり、これは得られた粗ヘンシフエ
ノンテトラカルボン酸1g当たり1.11gにしか相当
しないことが判明した。
4.4'-hensiphenotetracarboxylic acid was obtained. In addition, when the amount of nitric acid consumed was measured in the same manner as in Example 1, it was found to be 6.45 g, which corresponds to only 1.11 g per 1 g of crude hensiphenonetetracarboxylic acid obtained.

この結果、濾液を再原料化し未反応硝酸を再利用するこ
とも可能であることが分かる。
The results show that it is also possible to reuse the filtrate as a raw material and reuse unreacted nitric acid.

比較例1 反応途中で酸素を注入せず、180°Cで3時間反応さ
せた以外は、実施例1と同様に反応を行った。反応終了
後オートクレーブを放冷しガスを放出したところ、黄色
の二酸化窒素ガスが放出され、少なくとも該オートクレ
ーブ内には多量の一酸化窒素、二酸化窒素が含まれてい
たことが判明した。この反応生成液を実施例1と同様に
後処理し、粗3.3’、4.4’ベンゾフェノンテトラ
カルポン酸を得た。得られた粗ヘンシフエノンテトラカ
ルボン酸は、4.92gであり、これは実施例1の85
%にしか相当しなかった。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1, except that oxygen was not injected during the reaction and the reaction was carried out at 180°C for 3 hours. After the reaction was completed, the autoclave was allowed to cool and the gas was released, and yellow nitrogen dioxide gas was released, indicating that at least a large amount of nitrogen monoxide and nitrogen dioxide were contained within the autoclave. This reaction product liquid was post-treated in the same manner as in Example 1 to obtain crude 3.3', 4.4' benzophenone tetracarboxylic acid. The obtained crude hensifenonetetracarboxylic acid was 4.92 g, which was 85 g of Example 1.
It only corresponded to %.

また実施例1と同様にして消費された硝酸量を測定した
ところ、9.01gであり、これは得られた粗ヘンシフ
エノンテトラカルボン酸1g当たり2.33gに相当す
ることが判明した。
Further, the amount of nitric acid consumed was measured in the same manner as in Example 1, and it was found to be 9.01 g, which corresponds to 2.33 g per 1 g of crude hensiphenonetetracarboxylic acid obtained.

比較例2 実施例1で使用されたオートクレーブに、純度98%の
ビス(3,4−ジメチルフェニル)エタン5gと濃度3
0%の硝酸水?8液60gを仕込み、更に酸素を注入し
て内圧を50kg/cn!とした後、攪拌しつつ120
℃まで急速に加熱し、その後1.5℃/分の速度でゆっ
くり180°Cまで内温を上昇させた。この温度で3時
間反応させた後、実施例1と同様に放冷しガスを放出さ
せた。放出されたガスは、全く無色であり、実施例1と
同様に分析したが、−酸化窒素、二酸化窒素は痕跡量確
認されただけであった。この反応生成液を実施例1と同
様に後処! 理し粗3.3’、4.4’ベンゾフェノンテトラカルボ
ン酸を得た。得られた粗ヘンシフエノンテトラカルボン
酸は、僅か3.50gであり、実施例1に比し大幅に少
ない。また実施例1と同様にして消費された硝酸量を測
定したところ、5.21gであった。
Comparative Example 2 5 g of bis(3,4-dimethylphenyl)ethane with a purity of 98% and a concentration of 3 were added to the autoclave used in Example 1.
0% nitric acid water? Prepare 60g of 8 liquid and further inject oxygen to raise the internal pressure to 50kg/cn! After that, while stirring, boil it to 120
It was rapidly heated to 180°C, and then the internal temperature was slowly raised to 180°C at a rate of 1.5°C/min. After reacting at this temperature for 3 hours, the mixture was left to cool as in Example 1 to release gas. The released gas was completely colorless and was analyzed in the same manner as in Example 1, but only trace amounts of -nitrogen oxide and nitrogen dioxide were detected. This reaction product solution was treated in the same manner as in Example 1! Crude 3.3' and 4.4' benzophenone tetracarboxylic acids were obtained. The amount of crude hensifhenonetetracarboxylic acid obtained was only 3.50 g, which was significantly less than that in Example 1. Further, the amount of nitric acid consumed was measured in the same manner as in Example 1, and was found to be 5.21 g.

この結果、硝酸酸化反応のはじめから酸素を供給すると
、反応が阻害されることが分かる。
The results show that supplying oxygen from the beginning of the nitric acid oxidation reaction inhibits the reaction.

実施例3 実施例1で使用されたオートクレーブに、純度97%の
ビス(1,3,4−1−ジメチルフェニル)エタン3.
2gと濃度30%の硝酸水溶?a60gを仕込み、実施
例1と同様に反応させた。反応終了後、放冷し反応系が
室温まで下がった後、バルブを徐々に開けてガス分を放
出し7た。このガスは、無色であり、ガスクロマトグラ
ムによる分析によっても一酸化窒素、二酸化窒素ともそ
れぞれ6ppm、36ppmと痕跡量であった。得られ
た反応生成液を減圧蒸溜器を用い、缶部を湯煎しつつ6
0To r rで減圧蒸溜し水分を留出させ、缶部が殆
ど固体になるまで濃縮した後、減圧濾過ロートの上にこ
の濃縮液を取り出し約10ccの蒸留水で洗浄し、これ
を5日間乾燥し、1.90gの粗1.l’。
Example 3 Into the autoclave used in Example 1, 97% pure bis(1,3,4-1-dimethylphenyl)ethane 3.
2g and 30% nitric acid solution? 60 g of a was charged, and the reaction was carried out in the same manner as in Example 1. After the reaction was completed, the reaction system was allowed to cool down to room temperature, and then the valve was gradually opened to release the gas. This gas was colorless, and analysis by gas chromatography showed trace amounts of nitrogen monoxide and nitrogen dioxide, 6 ppm and 36 ppm, respectively. The resulting reaction product liquid was boiled in a vacuum distiller while boiling the can.
After distilling under reduced pressure at 0 Torr to remove moisture and concentrating until the can becomes almost solid, the concentrated liquid was taken out onto a vacuum filtration funnel, washed with about 10 cc of distilled water, and dried for 5 days. and 1.90g of coarse 1. l'.

3.3’、4.4’−ヘンシフエノンへキサカルボン酸
を得た。
3.3',4.4'-hensiphenone hexacarboxylic acid was obtained.

一方、未反応の硝酸量を実施例1と同様に測定したとこ
ろ、未反応硝酸が合計14.00g回収された。この結
果、本実施例において消費された硝酸は、僅か4.00
gであることが判明した。
On the other hand, when the amount of unreacted nitric acid was measured in the same manner as in Example 1, a total of 14.00 g of unreacted nitric acid was recovered. As a result, only 4.00 nitric acid was consumed in this example.
It turned out to be g.

実施例4 実施例1で使用されたオートクレーブに、純度98%の
ビス(メチルフェニル)エタン8.0gと濃度30%の
硝酸水溶液60gを仕込み、実施例1と同様に反応させ
た。
Example 4 The autoclave used in Example 1 was charged with 8.0 g of bis(methylphenyl)ethane with a purity of 98% and 60 g of a nitric acid aqueous solution with a concentration of 30%, and reacted in the same manner as in Example 1.

反応終了後、放冷し反応系が室温まで下がった後、バル
ブを徐々に開けてガス分を放出した。
After the reaction was completed, the reaction system was allowed to cool down to room temperature, and then the valve was gradually opened to release the gas.

このガスは、無色であり、ガスクロマトグラムによる分
析によっても一酸化窒素、二酸化窒素ともそれぞれ5p
pm、40ppmと痕跡量であった。
This gas is colorless, and gas chromatogram analysis shows that both nitrogen monoxide and nitrogen dioxide each contain 5p.
pm and 40 ppm, which was a trace amount.

ガスを放出した後、反応生成液を取り出し、実施例1と
同様に後処理を施して、8.9gの粗ヘンシフエノンジ
カルボン酸を得た。また実施例1と同様にして消費され
た硝酸量を測定したところ、これは得られた粗ベンゾフ
ェノンジカルボン酸1g当たり1.0Ogにしか相当し
ないことが判明した。
After releasing the gas, the reaction product liquid was taken out and post-treated in the same manner as in Example 1 to obtain 8.9 g of crude hensifenonedicarboxylic acid. Furthermore, when the amount of nitric acid consumed was measured in the same manner as in Example 1, it was found that this amount corresponded to only 1.0 Og per gram of crude benzophenonedicarboxylic acid obtained.

発明の効果 以上のように本発明によれば、 (i)得られる目的生成物であるベンゾフェノンポリカ
ルボン酸の収量が増加し、 (ii )消費される硝酸量が大幅に減少すること、(
iii )反応終了後に生成するガス中には、少量の亜
酸化窒素が含有されるのみで、−酸化窒素、二酸化窒素
などの窒素酸化物は無視できる程度に微量であり、廃ガ
ス処理を大幅に簡略化することができる、 など数多くの利点を有している。
Effects of the Invention As described above, according to the present invention, (i) the yield of benzophenone polycarboxylic acid, which is the desired product obtained, is increased, (ii) the amount of nitric acid consumed is significantly reduced, (
iii) The gas produced after the reaction ends contains only a small amount of nitrous oxide, and the amount of nitrogen oxides such as nitrogen oxide and nitrogen dioxide is negligible, making waste gas treatment much easier. It has many advantages, such as being able to be simplified.

Claims (1)

【特許請求の範囲】 1、下記一般式〔 I 〕で表される芳香族炭化水素を、
硝酸を用い酸化させ、次いで酸素の存在下で引き続き反
応を行うことを特徴とするベンゾフェノンポリカルボン
酸の製造方法。 ▲数式、化学式、表等があります▼・・・・〔 I 〕 (一般式〔 I 〕において、R_1〜R_6は、同一ま
たは異なり水素原子または炭素数1〜3のアルキル基で
あり、かつR_1〜R_6の少なくとも2個はアルキル
基であり、R_7は、炭素数1〜8のアルキレン基であ
る。)
[Claims] 1. An aromatic hydrocarbon represented by the following general formula [I],
1. A method for producing benzophenone polycarboxylic acid, which comprises oxidizing it with nitric acid and then continuing the reaction in the presence of oxygen. ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [I] (In the general formula [I], R_1 to R_6 are the same or different hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, and R_1 to At least two of R_6 are alkyl groups, and R_7 is an alkylene group having 1 to 8 carbon atoms.)
JP22307084A 1984-10-25 1984-10-25 Production of benzophenone polycarboxylic acid Pending JPS61103851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22307084A JPS61103851A (en) 1984-10-25 1984-10-25 Production of benzophenone polycarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22307084A JPS61103851A (en) 1984-10-25 1984-10-25 Production of benzophenone polycarboxylic acid

Publications (1)

Publication Number Publication Date
JPS61103851A true JPS61103851A (en) 1986-05-22

Family

ID=16792356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22307084A Pending JPS61103851A (en) 1984-10-25 1984-10-25 Production of benzophenone polycarboxylic acid

Country Status (1)

Country Link
JP (1) JPS61103851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838883A1 (en) 2019-12-16 2021-06-23 Evonik Fibres GmbH A method for oxidizing a 1,1-bis-(3,4-dimethylphenyl)-alkane to 3,3',4,4'-benzophenone tetracarboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838883A1 (en) 2019-12-16 2021-06-23 Evonik Fibres GmbH A method for oxidizing a 1,1-bis-(3,4-dimethylphenyl)-alkane to 3,3',4,4'-benzophenone tetracarboxylic acid
US11724978B2 (en) 2019-12-16 2023-08-15 Evonik Fibres Gmbh Method for oxidizing a 1,1,-bis-(3,4-dimethylphenyl)-alkane to 3,3′,4,4′-benzophenone tetracarboxylic acid

Similar Documents

Publication Publication Date Title
GB1462294A (en) Process for producing aromatic carboxylic acids
US5629456A (en) Method of preparing a fluorene derivative and the method of purifying thereof
US5900521A (en) Catalysts for converting methane or purified natural gas, preparation thereof, and process for preparation of ethylene using the catalysts
JPS61291543A (en) Manufacture of methyl metacrylate
CA1093587A (en) Process for preparation of peroxides
US2858334A (en) Preparation of phthalic acids
US3076842A (en) Aliphatic acid process
JPS61103851A (en) Production of benzophenone polycarboxylic acid
US4794204A (en) Process for the removal of dimethyl ether in methyl chloride
US3089879A (en) Separating 4, 4&#39;-benzophenone dicarboxylic acid from a mixture of 4, 4&#39;-and 2, 4&#39;-benzophenone dicarboxylic acids and concurrently producing 2 anthraquinone carboxylic acid
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
US6410753B2 (en) Process for producing trimellitic anhydride
KR970065502A (en) How to Optimize Water Content in Oxygen-Based Oxidation of p-Xylene
JPS58188836A (en) Manufacture of isobutyric acid fluoride or isobutyric acid
US3852343A (en) A process for the production of benzene carboxylic acids from ethyl substituted benzens
KR100208120B1 (en) Recovery method of mfb from the process of dmt production
CN116283893B (en) Preparation method of thiohydroxy acetic anhydride
SU757516A1 (en) Method of purifying terephthalic acid
US4162268A (en) Process for preparing diacetylbenzene
SU751321A3 (en) Method of preparing alkaline metal phthalates
JP2002097185A (en) Method for producing aromatic tetracarboxylic dianhydride
JPH04182452A (en) Production of aliphatic dicarboxylic acid monoester
JPH0324021A (en) Production of 5-tert-butyl-m-xylene
JP2003128599A (en) Method for producing terephthalic acid
CA2071108A1 (en) Process for the preparation of a phenol