JPS61103674A - Production of aluminum brazing article having excellent corrosion resistance - Google Patents

Production of aluminum brazing article having excellent corrosion resistance

Info

Publication number
JPS61103674A
JPS61103674A JP22349284A JP22349284A JPS61103674A JP S61103674 A JPS61103674 A JP S61103674A JP 22349284 A JP22349284 A JP 22349284A JP 22349284 A JP22349284 A JP 22349284A JP S61103674 A JPS61103674 A JP S61103674A
Authority
JP
Japan
Prior art keywords
brazing
flux
zinc
aluminum
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22349284A
Other languages
Japanese (ja)
Other versions
JPH0232073B2 (en
Inventor
Shoichi Furuta
古田 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP22349284A priority Critical patent/JPS61103674A/en
Publication of JPS61103674A publication Critical patent/JPS61103674A/en
Publication of JPH0232073B2 publication Critical patent/JPH0232073B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good brazing joining with improving the corrosion resis tance of Al brazing article by performing a brazing after precipitating the specific quantity of zinc on the surface of Al material. CONSTITUTION:A zinc is precipitated in 0.6-10g/m<2> on one part or all part of the surface of the joining member made of Al. The flux used for brazing is the mixture of 80-99.8wt% KalF and 20-0.2wt% KF. In case of performing a bracing the flux component is used with suspending in the form of a slurry in the liquid of water, etc. and this suspension is uniformly coated on at least either one part of the joining member made of Al. A brazing joining is achieved with drying after the coating and with heating to the temp. lower than the melting point of the joining member and higher than the melting point of the flux in the nonoxidizing atmosphere of inert gas atmosphere etc. with using the Al alloy brazing filler metal having lower melting point than the joining member.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は耐食性に優れたアルミニウムろう付品の製造
方法、特にろう付性様によるアルミニウム製熱交換器の
製造に好適に用いられるアルミニウムろう付品の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing aluminum brazed products with excellent corrosion resistance, and in particular to a method for producing aluminum brazed products that are suitable for producing aluminum heat exchangers due to their brazability. Regarding the manufacturing method.

なお、この明細書においてアルミニウムの用語は、その
合金を含む意味において用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術及び問題点 従来、自動車用ラジェーター、カークーラー用エバポレ
ーターあるいはコンデンサー等のアルミニウム製熱交換
器を、フラックスろう付性様によって製造する場合、塩
化亜鉛等を添加した塩化物系のフラックスを用いて熱交
換器用構成部材をろう付接合する方法が知られている。
Conventional technology and problems Conventionally, when manufacturing aluminum heat exchangers such as automobile radiators, car cooler evaporators, or condensers using flux brazing properties, chloride-based fluxes containing zinc chloride, etc. were used. A method of brazing and joining heat exchanger components is known.

これはろう付により各部材の接合と同時に、亜鉛をろう
付加熱により前記構成部材の表面に析出させ、かつ該部
材中に拡散せしめて、その亜鉛拡散層の犠牲r9J極効
果により熱交換器の耐食性の向上を併せて期待するため
である。
At the same time as each member is joined by brazing, zinc is precipitated on the surface of the component member by brazing heat and diffused into the member, and due to the sacrificial r9J polar effect of the zinc diffusion layer, the heat exchanger This is because it is also expected to improve corrosion resistance.

しかしながら、このような方法では、使用するフラック
スが本質的に水溶性であり、強い吸湿性を有しているた
めに、ろう付模速やかにフラックスの残漬を洗浄除去す
る必要があり、このために設備費が高くなると共に、工
程が複雑化して多大の作業負荷がかかる欠点があった。
However, in this method, since the flux used is essentially water-soluble and has strong hygroscopic properties, it is necessary to immediately wash away any remaining flux during brazing. However, this method has the drawbacks of high equipment costs, complicated processes, and a heavy workload.

かつもちろんフラックス残漬の除去が不完全であると腐
食のおそれがあった。しかも、フラックス中に含まれる
少量の亜鉛成分を利用して拡散層を形成するものである
ため、充分な拡散層を形成することができないのみなら
ず、熱交換器のような複雑な組立物ではフラックスの均
一塗布が困難であるため亜鉛拡散層も場所によって不均
一なものとなり、従って、充分な防食効果を発揮し得る
ものではなかった。
Moreover, if the residual flux was not completely removed, there was a risk of corrosion. Moreover, since the diffusion layer is formed by using a small amount of zinc contained in the flux, it is not only impossible to form a sufficient diffusion layer, but also in complex assemblies such as heat exchangers. Since it is difficult to uniformly apply the flux, the zinc diffusion layer also becomes non-uniform depending on the location, and therefore, it is not possible to exhibit a sufficient anticorrosion effect.

一方、上記のようなフラックス洗浄を不要とするろう付
方法として、亜鉛−やフッ化亜鉛等を添加したフルオロ
アルミニウム錯塩(K3 AgF2及びKAρFa )
を組成物とする非腐食性のフッ化物系の7ラツクスを用
いてろう付けする方法も提案されている(例えば特開昭
56−160869号)が、フラックス中の亜鉛成分を
利用して亜鉛拡散層を形成するものであることにかわり
ないlcめ、防食効果の点で依然問題を残すものであっ
た。しがも、このろう付は方法において(ま、使用され
るべきフラックスの製造簡易性の点でも問題を有するも
のであった。
On the other hand, as a brazing method that does not require flux cleaning as described above, fluoroaluminium complex salts (K3AgF2 and KAρFa) added with zinc or zinc fluoride, etc.
A method of brazing using a non-corrosive fluoride-based 7-lux with a composition of Although LC forms a layer, there still remains a problem in terms of anti-corrosion effect. However, this brazing method has problems (and also in terms of the ease of manufacturing the flux to be used).

即ち、このろう付は方法は、実際に工業的に生産して使
用に供されるようなフラックスでは、その組成比率が一
般に、なるべく融点の低いKAQF4とに3AΩF6の
共晶点に近い範囲内で設定されるのが実情である。これ
は、フラックスの融点は使用ろう材との関係でろう材の
融点よりも10℃〜20℃程度低い方が好ましく、更に
この範囲においてはより低い方が実用上好ましいという
一般的要請に基づくものであるが、このような組成比率
を実現するフラックスの製造方法としては、多くの場合
、AQF3とKFとを出発物質とし、該出発物質をその
共晶混合物であるKAQF4とに3 AgF2とが上記
の所期する比率となるような適正な比率で乾燥状態にて
混合し、この混合物を一旦溶融し、ざらにその溶融混合
物を冷却凝固せしめて製造する方法が採用されているた
め、工数が多く調製が面倒であるというような問題があ
った。
In other words, this brazing method generally requires that the composition ratio of fluxes that are actually produced and used industrially be as close as possible to the eutectic point of KAQF4 and 3AΩF6, which have a low melting point. The reality is that it is set. This is based on the general requirement that the melting point of the flux should preferably be about 10 to 20 degrees Celsius lower than the melting point of the brazing filler metal, and within this range, it is practically preferable to have a lower melting point. However, in many cases, the method for producing flux that achieves such a composition ratio uses AQF3 and KF as starting materials, and mixes the starting materials with KAQF4, which is a eutectic mixture thereof, and 3 AgF2 as described above. The method used is to mix in a dry state in an appropriate ratio to achieve the desired ratio, melt this mixture, and roughly cool and solidify the molten mixture, which requires a large number of man-hours. There was a problem that preparation was troublesome.

この発明は、上記のような諸事項に鑑み、調製簡易な非
腐食性フラックスの開発により、脱フラツクス処理を不
要にするとともに、アルミニウム材の犠牲防食効果に優
れたものとなし、可及的簡単かつ低コストの操作で耐食
性に優れたアルミニウムろう付品の製造方法を提供しよ
うとするものである。
In view of the above-mentioned matters, this invention has developed a non-corrosive flux that is easy to prepare, thereby eliminating the need for de-fluxing treatment, providing excellent sacrificial corrosion protection effects for aluminum materials, and making it as simple as possible. The present invention also aims to provide a method for manufacturing aluminum brazed products that is low-cost and has excellent corrosion resistance.

問題点を解決するための手段 即ち、この発明に係る耐食性に優れたアルミニウムろう
付品の製造方法は、アルミニウムよりなる接合部材の表
面の一部あるいは全部に亜鉛を0.6〜10g/m析出
させたのち、KANF+ :80〜99.8wt%、K
F : 20−0゜2wt%の混合物よりなるフラック
スを水等の液体中に懸濁させた懸濁液を前記接合部材に
塗布しかつ乾燥し、その後非酸化性雰囲気中で所定湿度
に加熱し、接合用ろう材を溶融してろう付することを特
徴とするものである。
A means for solving the problem, that is, a method for manufacturing an aluminum brazed product with excellent corrosion resistance according to the present invention, is to precipitate zinc at 0.6 to 10 g/m on a part or all of the surface of a joining member made of aluminum. After that, KANF+: 80-99.8wt%, K
F: A suspension of a flux consisting of a mixture of 20-0.2 wt% in a liquid such as water is applied to the bonding member and dried, and then heated to a predetermined humidity in a non-oxidizing atmosphere. , which is characterized by melting and brazing a joining brazing material.

この発明においては、まず、アルミニウムよりなる接合
部材の表面の一部あるいは全部に亜鉛を0.6〜10y
/Td析出させるものとする。
In this invention, first, 0.6 to 10 y of zinc is applied to part or all of the surface of a bonding member made of aluminum.
/Td shall be precipitated.

亜鉛析出量を前記範囲に限定したのは、析出量が109
/mを超えると、ろう付後表面亜鉛濃度が高くなる結果
、初期腐食が早くなり儀牲防食期間が却って短縮される
ためであり、また0゜6 ej/m未満では逆に表面亜
鉛濃度が低下して充分な犠牲防食効果が得られないため
である。
The reason why the amount of zinc precipitation is limited to the above range is that the amount of zinc precipitation is 109
This is because if it exceeds 0.6 ej/m, the surface zinc concentration after brazing will increase, resulting in faster initial corrosion and shorten the sacrificial corrosion protection period. This is because the corrosion resistance decreases and a sufficient sacrificial corrosion protection effect cannot be obtained.

亜鉛析出法としては、化学置換メッキ、電気メッキ、溶
融メッキ等、公知の方法のうちのいずれを採用しても良
い。
As the zinc deposition method, any known method such as chemical displacement plating, electroplating, hot-dip plating, etc. may be employed.

ろう付はこの亜鉛析出後に行うものとする。Brazing shall be performed after this zinc precipitation.

このろう付に用いるフラックスはKAQF4 :80〜
99,8wt%とKF:20〜0.2wt%との混合物
である。KAQF4にKFを添加するのは、フラックス
の融点を低いものとしてろう付加熱時にフラックスを有
効に作用せしめ19るためであり、KFが許容下限値未
満ではその効果に乏しく、逆に許容上限値を超えて過多
に混合された場合にも融点の上昇を招いて良好なろう付
を行うことができなくなるとともに、甚しくはフラック
スの反応1flllffiが接合部材とじてのアルミニ
ウムの融点以上になってろう付自体が不可能になるおそ
れがある。このフラックスの調製はKAlF4とKFと
を上記比率で混合することにより行われるが、KAlF
3 、KFとも市販品として取引され入手が容易である
ことから、調製の簡易性の点で、一般的にAQF3及び
KFを出発物として製造されるフルオロアルミニウム錫
塩(Kl A塁F6及びKAQF4)を組成物とするフ
ッ化物系フラックス等に較べて極めて有利である。しか
もこの発明に用いられるフラックスは、ろう付後の残漬
が非腐食性であるため、脱フラツクス処理を施さなくと
も製品の耐食性に何ら影響を与えるものではない。
The flux used for this brazing is KAQF4: 80~
It is a mixture of 99.8 wt% and KF: 20 to 0.2 wt%. The purpose of adding KF to KAQF4 is to lower the melting point of the flux and make it work more effectively during brazing heat19.If KF is less than the allowable lower limit, the effect will be poor; If too much of the flux is mixed, the melting point will rise, making it impossible to perform good brazing, and even worse, the flux reaction 1flllffi will exceed the melting point of aluminum as a joining member, resulting in poor brazing. itself may become impossible. This flux is prepared by mixing KAlF4 and KF in the above ratio.
3. Since KF is also traded as a commercial product and is easily available, fluoroaluminum tin salts (Kl A base F6 and KAQF4) are generally produced using AQF3 and KF as starting materials from the viewpoint of ease of preparation. This is extremely advantageous compared to fluoride-based fluxes that have a composition of Furthermore, since the flux used in this invention is non-corrosive after brazing, it does not affect the corrosion resistance of the product in any way even without de-flux treatment.

ろう付を行うに際し、上記フラックス成分は、これを水
等の液体中にスラリーの形で懸濁して使用し、この懸濁
液をアルミニウムからなる接合部材の少なくともいずれ
か一方に均一に塗布する。この液中への懸濁および塗布
を行い易くし、ひいてはろう付性を良好にするために、
フラックス成分の粉末粒径は、概ね200uTrL以下
のものとするのが良い。また上記の塗布の手段は、噴霧
あるいははけ塗り等を適用することも可能であるが、量
産性に適した均一な塗布手段として浸漬法を用いること
が准促される。
When performing brazing, the flux component is used by suspending it in the form of a slurry in a liquid such as water, and this suspension is uniformly applied to at least one of the joining members made of aluminum. In order to facilitate suspension and application in this liquid and improve brazing properties,
The powder particle size of the flux component is preferably approximately 200 uTrL or less. Although spraying or brushing can be used as the above-mentioned application method, it is recommended to use a dipping method as a uniform application method suitable for mass production.

アルミニウムからなる接合部材は、上記フラックスの塗
布後これを乾燥させ、次いで接合部材より融点の低いア
ルミニウム合金ろう材を用いて、不活性ガス雰囲気等の
非酸化性雰囲気中で、上記接合部材の融点より低く、か
つフラックスの融点よりも高い約580〜620℃に加
熱することにより、ろう材を溶融してろう付接合が達成
される。上記ろう材にはSi含含有的約45〜13,5
wt%程度のAρ−3i系合金が用いられるのが普通で
あり、該ろう材は作業性の点から、通常接合されるべき
部材の少なくとも一方のアルミニウム製構成部材にクラ
ッドして使用されるものである。このろう何工程にあけ
る加熱とともに、アルミニウム材の表面に析出した亜鉛
は、アルミニウム材の中心部に向つて拡散し、アルミニ
ウム材表面に均一かつ充分な亜鉛拡散層が形成される。
The joining member made of aluminum is dried after applying the above-mentioned flux, and then the melting point of the joining member is adjusted in a non-oxidizing atmosphere such as an inert gas atmosphere using an aluminum alloy brazing filler metal whose melting point is lower than that of the joining member. By heating to about 580-620° C., which is lower and above the melting point of the flux, the braze metal is melted and a brazed joint is achieved. The brazing filler metal has a Si content of about 45 to 13,5
Usually, about wt% of Aρ-3i alloy is used, and from the viewpoint of workability, the brazing filler metal is usually used as a cladding material for at least one aluminum component of the members to be joined. It is. Along with the heating during this brazing step, the zinc deposited on the surface of the aluminum material is diffused toward the center of the aluminum material, and a uniform and sufficient zinc diffusion layer is formed on the surface of the aluminum material.

この拡散層の層厚は、防食効果の点から50LtTrL
以上とするのが望ましい。
The layer thickness of this diffusion layer is 50LtTrL from the viewpoint of corrosion prevention effect.
It is desirable that it be above.

発明の効果 上述のようなこの発明の実施によれば、アルミニウム材
の表面に亜鉛を析出させた後、ろう付を行うものである
から、ろう何工程における加熱によりアルミニウム材の
表面に均一かつ充分な亜鉛拡散層を形成でき、この亜鉛
拡散層の犠牲陽極効果により熱交換器等のアルミニウム
ろう骨品の耐食性を著しく向上し得る。
Effects of the Invention According to the implementation of the present invention as described above, since zinc is precipitated on the surface of the aluminum material and then brazed, the heating in the brazing process coats the surface of the aluminum material uniformly and sufficiently. A zinc diffusion layer can be formed, and the sacrificial anode effect of this zinc diffusion layer can significantly improve the corrosion resistance of aluminum solder parts such as heat exchangers.

加えてこの発明では、フラックスとしてKAlF4とK
Fとの混合物を用いることにより、アルミニウム材の極
めて良好なろう付接合を達成しうる。即ち該フラックス
が接合部表面の酸化物破壊作用、ろう材の濡れ拡がり促
進作用等において優れたフラックス作用を示し、強固な
ろう封接合部の形成を可能とし、特に真空ろう付に較べ
て優れたろう付性を発揮しうる。しかもこの発明に用い
るフラックスは、ろう付後の残漬が非腐食性のものであ
るため、従来の塩化物系フラックスを用いる場合のよう
に、ろう付後フラックス残渣を洗浄除去する必要性がな
くなるので、一連のろう付作業工程の簡素化、ひいては
製造コストの低減化をはかりつつ一層耐食性に優れた完
全な接合状態のアルミニウムろう付は製品の製造を可能
とする。
In addition, in this invention, KAlF4 and K are used as fluxes.
By using a mixture with F, extremely good brazing joints of aluminum materials can be achieved. In other words, the flux exhibits excellent flux effects such as destroying oxides on the surface of the joint and promoting wetting and spreading of the brazing material, making it possible to form a strong soldered joint, and especially superior to vacuum brazing. It can demonstrate its adhesion. Moreover, since the flux used in this invention is non-corrosive after brazing, there is no need to wash and remove the flux residue after brazing, unlike when using conventional chloride-based flux. Therefore, it is possible to manufacture products using aluminum brazing in a completely bonded state with excellent corrosion resistance while simplifying a series of brazing work processes and reducing manufacturing costs.

さらにこの発明に用いるフラックスは、KAlF4 、
KFとも市販品として単体で入手容易であることから、
これらを出発物として混合することにより容易に調製可
能であるから、AQF3、KFを出発物とする従来のに
3AQFs−KAρF4系フラックスのような複雑な調
製工程を必要とせず、その調製を簡易に行いつる効果を
も秦するものである。
Furthermore, the flux used in this invention includes KAlF4,
Since both KF and KF are easily available separately as commercial products,
Since it can be easily prepared by mixing these as starting materials, it does not require a complicated preparation process like the conventional 3AQFs-KAρF4 flux that uses AQF3 and KF as starting materials, and can be easily prepared. It also has a lasting effect.

実施例 次に、この発明の利点を明らかにするために、そのいく
つかの実施例を種々の比較例との対比において示す。
EXAMPLESNext, in order to clarify the advantages of the present invention, several examples thereof will be shown in comparison with various comparative examples.

Al100合金からなる肉W0.8mmの中空扁平状押
出しチューブ材を、直管部を有する蛇行状に曲成すると
共に、該チューブ材を挾んで両側にA1100合金から
なる厚さ1.O1/lInの側板を配置し、次いでBA
12で表わされる厚さ0.145mの両面プレージング
シート(A3003合金芯材の両面に、A4343合金
皮材を片面クラツド率10%でクラッドしたもの)から
なるコルゲートフィン材を前記側板と押出しチューブ材
との間及びチューブ材の直管部どうしの間に介在せしめ
てIJ−−ベンタイン型熱交換器に組立てた。
A hollow, flat extruded tube material made of Al100 alloy with a wall width of 0.8 mm is bent into a serpentine shape with a straight pipe section, and a 1.5 mm thick extruded tube material made of A1100 alloy is sandwiched between the tube material on both sides. Place O1/lIn side plate, then BA
A corrugated fin material made of a double-sided plating sheet with a thickness of 0.145 m (A3003 alloy core material clad with A4343 alloy skin material on one side at a cladding rate of 10%) represented by 12 was attached to the side plate and extruded tube material. and between the straight pipe portions of the tube material, and assembled into an IJ--Bentine type heat exchanger.

そして、上記熱交換器組立物をNaOH:300g/Q
、Zn O: 60g/Qを含有する27℃の水溶液中
に浸漬して、下表の試料N011〜7に示す量の亜鉛を
それぞれ析出せしめ、水洗した。
Then, the heat exchanger assembly was heated with NaOH: 300 g/Q.
, Zn O: 60 g/Q were immersed in an aqueous solution at 27° C. to precipitate zinc in amounts shown in samples Nos. 011 to 7 in the table below, and washed with water.

次いで、同じく下表の試料N0.1〜7に示す各種組成
のフラックスに水を加えて濃度10%の懸濁液とし、こ
の懸濁液中に、亜鉛を析出させた上記各熱交換器組立物
を浸漬し、乾燥した。
Next, water was added to the fluxes of various compositions shown in Samples No. 1 to 7 in the table below to form a suspension with a concentration of 10%, and zinc was precipitated in this suspension. Objects were soaked and dried.

然る後、上記各組立物をN2ガスにて、露点−40℃に
調整した炉中で、605℃×5分間加熱し、ろう付けを
行い、その後トーチによりA7N○1ユニオンを所定ケ
所にろう付けしてカークーラー用熱交換器を1qた。
After that, each of the above assemblies was heated to 605°C for 5 minutes using N2 gas in a furnace adjusted to a dew point of -40°C to perform brazing, and then the A7N○1 union was soldered in place using a torch. I installed a 1q car cooler heat exchanger.

そして、上記により得られた各熱交換器のろう付は状態
を調べ°ると共に、その耐食性を調べるためJ l5−
H−8681に基づくキャス試験を実施した。その結果
を同表に示す。
Then, the condition of the brazed heat exchangers obtained above was examined, and in order to examine their corrosion resistance, J15-
A CASS test based on H-8681 was conducted. The results are shown in the same table.

[以下余白] ろう付は状態:O・・・良好 ×・・・不良 この結果から明らかなように、本発明実施品である試料
N011〜4の場合においては、ろう付は状態も良好で
、チューブ材に貫通孔が発生するまでの時間が2000
時間以上にも及び耐食性に優れたものであった。これに
対し、Zn析出邑が本発明範囲に達しない試料N0.5
の場合においては、ろう付は状態は良好であったものの
680時間でチューブ材に貫通孔が発生するものであっ
た。また7n析出量が本発明範囲を超えた試料N016
の場合においては、初期腐食が激しく、100時間でフ
ィン材に甚しい侵食状態が呈されるものであった。また
、フラックス組成が本発明範囲を逸脱する試料N097
の場合においては、ろう付は自体が不可能なものであっ
た。
[Left below] Brazing condition: O...Good ×...Poor As is clear from these results, in the case of samples Nos. The time it takes for a through hole to occur in the tube material is 2000
It lasted for more than 30 hours and had excellent corrosion resistance. On the other hand, sample No. 5 in which the Zn precipitation does not reach the range of the present invention
In this case, although the brazing was in good condition, through holes were formed in the tube material after 680 hours. In addition, sample No. 016 in which the amount of 7n precipitation exceeded the range of the present invention
In this case, the initial corrosion was severe and the fin material was severely eroded after 100 hours. In addition, sample No. 097 whose flux composition deviates from the range of the present invention
In these cases, brazing itself was impossible.

一方、ZnF含有フッ化物系フラックスを用いた従来法
との比較では次のとうりであった。
On the other hand, a comparison with a conventional method using a ZnF-containing fluoride flux showed the following results.

表中の試料N008に示す組成のZnF含有含有フッ化
物系ブランクス濃度10%の水性懸濁液とし、該液に7
−n析出処理を行っていない前記チューブ材とフィン材
との組立物を浸漬、乾燥した後、前記と同一の条注でろ
う付けを行ない熱交換器を得た。この熱交換器のろう付
は状態は良好なものであったが、キャス試験においては
約590時間でチューブ材に貝通孔が発生するものであ
った。
A ZnF-containing fluoride blank having the composition shown in sample N008 in the table is made into an aqueous suspension with a concentration of 10%.
-n After the assembly of the tube material and fin material which had not been subjected to the precipitation treatment was immersed and dried, brazing was performed using the same thread gauging as described above to obtain a heat exchanger. Although the brazing of this heat exchanger was in good condition, shell holes were formed in the tube material after about 590 hours in the CAST test.

以上の結果より、本発明によればろう付は状態も良好で
耐食性にも極めて優れた熱交換器を製作しうろことを確
認し得た。
From the above results, it was confirmed that according to the present invention, a heat exchanger with good brazing condition and extremely excellent corrosion resistance could be manufactured.

以上 387一that's all 3871

Claims (1)

【特許請求の範囲】[Claims] アルミニウムよりなる接合部材の表面の一部あるいは全
部に亜鉛を0.6〜10g/m^2析出させたのち、K
AlF_4:80〜99.8wt%、KF:20〜0.
2wt%の混合物よりなるフラックスを水等の液体中に
懸濁させた懸濁液を前記接合部材に塗布しかつ乾燥し、
その後非酸化性雰囲気中で所定温度に加熱し、接合用ろ
う材を溶融してろう付することを特徴とする耐食性に優
れたアルミニウムろう付品の製造方法。
After depositing 0.6 to 10 g/m^2 of zinc on part or all of the surface of the joint member made of aluminum, K
AlF_4: 80-99.8wt%, KF: 20-0.
Applying a suspension of a 2 wt% mixture of flux in a liquid such as water to the joining member and drying it;
A method for manufacturing aluminum brazed products with excellent corrosion resistance, which comprises heating to a predetermined temperature in a non-oxidizing atmosphere to melt a joining brazing material and brazing.
JP22349284A 1984-10-23 1984-10-23 Production of aluminum brazing article having excellent corrosion resistance Granted JPS61103674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22349284A JPS61103674A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22349284A JPS61103674A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article having excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61103674A true JPS61103674A (en) 1986-05-22
JPH0232073B2 JPH0232073B2 (en) 1990-07-18

Family

ID=16798983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22349284A Granted JPS61103674A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61103674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039660A (en) * 1972-08-02 1975-04-11 Alcan Res & Dev Brazing aluminium
JPS5526949A (en) * 1978-08-15 1980-02-26 Matsushita Electric Works Ltd Charge system electric razor
JPS583987A (en) * 1981-06-30 1983-01-10 Nippon Radiator Co Ltd Heat exchanger core made of aluminum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039660A (en) * 1972-08-02 1975-04-11 Alcan Res & Dev Brazing aluminium
JPS5526949A (en) * 1978-08-15 1980-02-26 Matsushita Electric Works Ltd Charge system electric razor
JPS583987A (en) * 1981-06-30 1983-01-10 Nippon Radiator Co Ltd Heat exchanger core made of aluminum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
US8708034B2 (en) 2008-11-10 2014-04-29 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JPH0232073B2 (en) 1990-07-18

Similar Documents

Publication Publication Date Title
RU2094189C1 (en) Method of connection of zinc-coated aluminium members and heat exchanger manufactured using this method
US4831701A (en) Method of making a corrosion resistant aluminum heat exchanger using a particulate flux
US6113667A (en) Brazing aluminum alloy powder composition and brazing method using such powder composition
JPH0148120B2 (en)
JPH0232072B2 (en)
JPS6365423B2 (en)
JPS61103674A (en) Production of aluminum brazing article having excellent corrosion resistance
JPS61103673A (en) Production of aluminum brazing article excellent in corrosion resistance
JPS62101396A (en) Manufacture of heat exchanger
JPS6199568A (en) Brazing method of aluminum and its alloy
JPS6037293A (en) Brazing method of aluminum and alloy thereof
JPS6364265B2 (en)
JPS63140766A (en) Production of al heat exchange with excellent corrosion resistance
JPS6037294A (en) Brazing method of aluminum and alloy thereof
JPS61103675A (en) Brazing method of aluminum and its alloy
JPH0230792B2 (en)
JPS626774A (en) Brazing method for aluminum material
JPS6174770A (en) Production of aluminum heat exchanger
JPS6174771A (en) Production of aluminum heat exchanger
JPS59232694A (en) Brazing method of heat exchanger formed of aluminum
Baldantoni et al. NOCOLOK™ sil Flux-A novel approach for brazing aluminum
JPS6362319B2 (en)
JPH01258866A (en) Manufacture of aluminum brazing part excellent in corrosion resistance
JPS62176672A (en) Brazing method for aluminum made heat exchanger having excellent corrosion resistance
JPH0218189B2 (en)