JPH01258866A - Manufacture of aluminum brazing part excellent in corrosion resistance - Google Patents

Manufacture of aluminum brazing part excellent in corrosion resistance

Info

Publication number
JPH01258866A
JPH01258866A JP8696388A JP8696388A JPH01258866A JP H01258866 A JPH01258866 A JP H01258866A JP 8696388 A JP8696388 A JP 8696388A JP 8696388 A JP8696388 A JP 8696388A JP H01258866 A JPH01258866 A JP H01258866A
Authority
JP
Japan
Prior art keywords
aluminum
corrosion resistance
brazing
flux
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8696388A
Other languages
Japanese (ja)
Inventor
Tadashi Usui
正 碓井
Michio Shiroyama
白山 三智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP8696388A priority Critical patent/JPH01258866A/en
Publication of JPH01258866A publication Critical patent/JPH01258866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film on the member surface and to obtain a brazing part excellent in corrosion resistance by sticking the flux contg. 0.05-15W% tin fluoride to one part of the surface at least of a aluminum member and brazing by melting an Al-Si brazing filler metal. CONSTITUTION:The fluoride flux contg. 0.05-15W% tin fluoride is heated at the specified temp. under nonoxidizing atmosphere after sticking it to one part of the surface at least of the joining member composed of an aluminum and brazed by melting the brazing filler metal consisting of an Al-Si alloy. At this time, the tin fluoride forms a tin coating layer as a sacrificing corrosion preventing layer on the surface of the aluminum joining member and an excellent corrosion resistance is given to the aluminum joining member without spoiling the brazing property.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は耐食性に優れたアルミニウムろう付品の製造
方法、特にろう付仕様によるアルミニウム製熱交換器の
製造に好適に用いられるアルミニウムろう付品の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing aluminum brazed products with excellent corrosion resistance, and in particular to manufacturing aluminum brazed products suitable for manufacturing aluminum heat exchangers according to brazing specifications. Regarding the method.

なお、この明細書において、アルミニウムの語はその合
金を含む意味で用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術 従来、自動車用ラジェーター、カークーラー用エバポレ
ーターあるいはコンデンサー等のアルミニウム製熱交換
器を、フラックスろう付仕様によって製造する場合、フ
ッ化物系フラックスを用いて熱交換器用構成部材をろう
付接合することが行われている。このように、フッ化物
系フラックスを用いるのは、フッ化物系フラックスが非
腐食性であることから、ろう付後のフラックス残渣除去
のための洗浄を不要となしうる等の理由によるものであ
る。
Conventional technology Conventionally, when aluminum heat exchangers such as automobile radiators, car cooler evaporators, or condensers are manufactured using flux brazing specifications, the heat exchanger components are brazed using fluoride flux. things are being done. The reason why fluoride-based flux is used in this way is that fluoride-based flux is non-corrosive, so cleaning to remove flux residue after brazing is not necessary.

しかしながら、フッ化物系フラックス自体には熱交換器
等製品の耐食性を積極的に向上させる効果はない。この
ため、従来は、耐食性に優れたアルミニウム製品となす
ために、アルミニウム接合部材に予めメツキ等により防
食層としての亜鉛皮膜を被覆形成したのち、ろう付加熱
工程においてアルミニウム部材の接合と同時に亜鉛を拡
散させることが行なわれていた。
However, fluoride flux itself does not have the effect of actively improving the corrosion resistance of products such as heat exchangers. For this reason, in the past, in order to make aluminum products with excellent corrosion resistance, a zinc film was coated as a corrosion-preventing layer on the aluminum joining parts by plating, etc., and then zinc was added at the same time as joining the aluminum parts in the brazing heat process. It was being disseminated.

発明が解決しようとする課題 しかし、この方法による場合、ろう付着にアルミニウム
接合部材にメツキ処理により亜鉛皮膜を形成しなければ
ならないことから、工数が多く生産性が良くなかった。
Problems to be Solved by the Invention However, with this method, since a zinc film must be formed on the aluminum bonding member by plating for soldering, the number of man-hours is large and productivity is poor.

しかも、優れた耐食性を得るためには均一な亜鉛皮膜を
形成しなければならないが、このためには繁雑な前処理
や厳格な液管理等を行わなければならず、実に面倒であ
った。
Moreover, in order to obtain excellent corrosion resistance, it is necessary to form a uniform zinc film, which requires complicated pretreatment and strict liquid control, which is extremely troublesome.

この発明はかかる欠点を解消するためになされたもので
あって、簡易な工程で従来の亜鉛皮膜を形成したものと
同程度の耐食性を有するろう包晶を提供することを目的
とする。
The present invention was made in order to eliminate such drawbacks, and an object of the present invention is to provide a wax peritectic having the same corrosion resistance as that of a conventional zinc film formed by a simple process.

問題点を解決するための手段 上記目的を達成するために、この発明に係る耐食性に優
れたアルミニウムろう包晶の製造方法は、フッ化スズを
0,05〜15vt%含有するフッ化物系フラックスを
、アルミニウムからなる接合部材の少なくとも一方の表
面に付着せしめたのち、非酸化性雰囲気中で所定温度に
加熱し、Al−5i系合金からなるろう材を溶融してろ
う付することを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the method for producing aluminum brazing peritectics with excellent corrosion resistance according to the present invention uses a fluoride flux containing 0.05 to 15 vt% of tin fluoride. , after being attached to at least one surface of a joining member made of aluminum, it is heated to a predetermined temperature in a non-oxidizing atmosphere to melt and braze a brazing material made of an Al-5i alloy. It is something.

本発明に用いるフッ化物系フラックスにおいて、フッ化
スズはフラックスの付着工程及びその後の加熱工程を通
じてアルミニウム接合部材の表面に犠牲防食層としての
スズ被覆層を形成し、もってろう付性を損うことなくア
ルミニウム接合部材に優れた耐食性を付与するものであ
る。しかしその添加含有量が0.05vt%未満では上
記効果に乏しく優れた耐食性を付与することができず、
逆に15wt%を超える場合にはフラックスのろう付性
を阻害し、均一な接合状態を得られない。特に好ましい
フッ化スズの含有範囲は0.3〜10νt%程度である
In the fluoride-based flux used in the present invention, tin fluoride forms a tin coating layer as a sacrificial corrosion protection layer on the surface of the aluminum bonding member through the flux attachment process and the subsequent heating process, thereby impairing brazing properties. This provides excellent corrosion resistance to aluminum bonded members. However, if the added content is less than 0.05vt%, the above effects are poor and excellent corrosion resistance cannot be imparted.
On the other hand, if it exceeds 15 wt%, the solderability of the flux is inhibited and a uniform bonding state cannot be obtained. A particularly preferable content range of tin fluoride is about 0.3 to 10 νt%.

本発明に用いるフッ化物系フラックスは、フッ化スズを
上記範囲に含有するものであれば良(、他の組成は限定
されるものではないが、−例として、フッ化カリウム(
KF)とフッ化アルミニウム(AQF3)とを共晶組成
ないしはそれに近い組成範囲に含んで実質的に錯体化さ
れた錯体混合物や、KAlF3とKFを重量比で80〜
99.8720〜0. 2の割合で混合した混合物や、
あるいは製造簡易性等の点で特に好適なものとしてKF
水溶液にγ−AρF3粉末及び/またはβ−AQF3粉
末を溶解せしめて発熱反応を生じさせて水分を蒸発除去
したのちの残留物からなるもの等にフッ化スズを添加混
合したものを挙げうる。
The fluoride flux used in the present invention may be one containing tin fluoride within the above range (although other compositions are not limited), for example, potassium fluoride (
A complex mixture containing KF) and aluminum fluoride (AQF3) in a eutectic composition or a composition range close to it, or a complex mixture containing KAlF3 and KF in a weight ratio of 80 to
99.8720~0. A mixture of 2 parts,
Alternatively, KF is particularly preferable in terms of manufacturing simplicity, etc.
Examples include those in which tin fluoride is added to and mixed with a residue obtained by dissolving γ-AρF3 powder and/or β-AQF3 powder in an aqueous solution to cause an exothermic reaction to evaporate water.

ろう付を行うに際し、上記フラックスは接合すべきアル
ミニウム部材の少なくとも一方の表面、望ましくは両方
の表面に均一に付着せしめる。フラックスの接合部材へ
の付着方法は特に限定されるものではないが、−膜内に
はフラックスを水や溶剤中に懸濁させた懸濁液を、接合
部分に浸漬法、スプレー法、シャワー法、ハケ塗り法等
により塗布することで行うが、フラックスを水等に懸濁
させることなくこれを静電粉体塗装等により直接的に接
合部分に付着せしめるものとしても良い。
When performing brazing, the above-mentioned flux is uniformly applied to at least one surface, preferably both surfaces, of the aluminum members to be joined. There are no particular limitations on the method of attaching flux to the joining parts, but - within the membrane, a suspension of flux in water or a solvent may be applied to the joining part by dipping, spraying, or showering. The flux is applied by a brush coating method or the like, but it is also possible to apply the flux directly to the joint part by electrostatic powder coating or the like without suspending the flux in water or the like.

また、フッ化スズとベースとなるフラックスとの混合方
法も、特に限定されることはなく、それぞれ微粉末どう
しを混合しても良いし、あるいは懸濁液を作成する場合
には両者を別々に懸濁液に投入し、懸濁液中で混合する
ものとしても良い。
Furthermore, the method of mixing tin fluoride and the base flux is not particularly limited, and fine powders of each may be mixed together, or when creating a suspension, both may be mixed separately. It may also be added to a suspension and mixed in the suspension.

アルミニウム接合部材は、上記フラックスの付着後要す
ればこれを乾燥させ、次いで接合部材より融点の低いア
ルミニウム合金ろう材を用いて不活性ガス雰囲気等の非
酸化性雰囲気中で、上記接合部材の融点より低くかつフ
ラックスの融点よりも高い約600〜610℃程度に加
熱することにより、ろう材を溶融してろう付接合が達成
される。上記ろう材にはSi含有量約6゜8〜13ν【
%程度のAll!−Si系合金を用いるが、該ろう材は
アルミニウム材にクラッドされたプレージングシートと
して構成されたものでも良い。
After the above-mentioned flux is attached, the aluminum bonding member is dried if necessary, and then the melting point of the bonding member is reduced in a non-oxidizing atmosphere such as an inert gas atmosphere using an aluminum alloy brazing filler metal whose melting point is lower than that of the bonding member. By heating to about 600 to 610° C., which is lower and higher than the melting point of the flux, the brazing material is melted and a brazed joint is achieved. The above brazing filler metal has a Si content of approximately 6°8~13ν[
About % All! Although a -Si alloy is used, the brazing material may be constructed as a plating sheet clad with an aluminum material.

かかるフラックスの接合部材への付着工程及びその後の
加熱工程において、アルミニウム接合部材の表面にスズ
被覆層が形成され、その犠牲防食効果によりアルミニウ
ム接合部材に優れた耐食性が付与される。
In the step of attaching the flux to the bonding member and the subsequent heating step, a tin coating layer is formed on the surface of the aluminum bonding member, and its sacrificial anticorrosion effect imparts excellent corrosion resistance to the aluminum bonding member.

なお、本発明の実施により接合部材表面に亜鉛皮膜を形
成しなくても充分な耐食性を付与しうるが、従来と同じ
くアルミニウム接合部材に亜鉛皮膜を形成しておき、こ
れに本発明によるろう付を実施することで、両者の相乗
効果により一層優れた耐食性付与が可能となる。
By implementing the present invention, sufficient corrosion resistance can be imparted without forming a zinc film on the surface of the joining member; however, it is possible to provide sufficient corrosion resistance without forming a zinc film on the surface of the joining member. By carrying out the above, it becomes possible to impart even more excellent corrosion resistance due to the synergistic effect of both.

発明の効果 上述のようなこの発明の実施によれば、フッ化物系フラ
ックスの持つ優れたろう付性を何ら損うことなく耐食性
に優れたろう包晶の提供が可能となる。即ち、フラック
スの付着工程及び加熱工程を通じて、アルミニウム接合
部材の表面にスズ被覆層を形成でき、その犠牲防食効果
により従来の亜鉛皮膜を形成したものと同じく耐食性に
優れたアルミニウムろう包晶となしつる。しかもかかる
耐食性の付与は、フラックスとしてフッ化スズを所定範
囲に含有するフッ化物系フラックスを用いるのみで、そ
の他耐食性付与のための特別な工程を要することなく簡
易に行いうるから、従来耐食性付与のためにろう付工程
前に予め行っていた亜鉛皮膜の被覆工程等を不要にでき
、工数削減により生産性を向上しうる。また、亜鉛皮膜
を形成したうえで本発明を実施する場合にも、亜鉛皮膜
の均一性を考慮しなくても充分な耐食性が得られるから
、そのための前処理、液管理等を容易化しうる。
Effects of the Invention According to the present invention as described above, it is possible to provide a brazing peritectic with excellent corrosion resistance without impairing the excellent brazing properties of fluoride flux. In other words, through the flux adhesion process and heating process, a tin coating layer can be formed on the surface of the aluminum bonding member, and its sacrificial anti-corrosion effect creates an aluminum solder peritectic layer with excellent corrosion resistance similar to that of a conventional zinc coating. . Furthermore, such corrosion resistance can be easily imparted by simply using a fluoride flux containing tin fluoride within a predetermined range, and without any other special process for imparting corrosion resistance. Therefore, it is possible to eliminate the need for a zinc film coating process that was previously performed before the brazing process, and productivity can be improved by reducing the number of man-hours. Further, even when carrying out the present invention after forming a zinc film, sufficient corrosion resistance can be obtained without considering the uniformity of the zinc film, so pretreatment, liquid management, etc. can be facilitated.

実施例 [試料No1〜7] 第1図に示すように、肉厚0.8調のAl100アルミ
ニウム合金押出材よりなるチューブ(1)を蛇行状に曲
成するとともに、その平行部間に、プレージングシート
(JISBA12PC)からなるフルゲートフィン(2
)を配置し、またチューブ(1)の両端出入口に出入口
ジヨイント(4)(5)を仮組固定してサーペンタイン
型熱交換器を仮組した。
Examples [Samples Nos. 1 to 7] As shown in Fig. 1, a tube (1) made of extruded Al100 aluminum alloy with a wall thickness of 0.8 was bent into a meandering shape, and a plate was placed between the parallel parts. Full gate fins (2
), and the inlet and outlet joints (4) and (5) were temporarily assembled and fixed to the inlet and outlet ports at both ends of the tube (1) to temporarily assemble a serpentine heat exchanger.

一方、ベースとなるフラックスとして、純度99.9%
ののKF5.5Kgを6Qの水に溶解させた水溶液に、
純度90%以上の工業用γ−A42F3 (平均粒径約
10μm)6.58gを徐々に投入撹拌して発熱反応を
生じさせ、水分を除去したのち、残留物を大気中で20
0’CX 90分間乾燥し、さらに平均粒径15μmに
粉砕したものを用意した。
On the other hand, as the base flux, the purity is 99.9%.
In an aqueous solution of Nono KF5.5Kg dissolved in 6Q water,
6.58 g of industrial γ-A42F3 (average particle size approximately 10 μm) with a purity of 90% or higher was gradually added and stirred to generate an exothermic reaction, and after removing moisture, the residue was heated in the air for 20 minutes.
0'CX dried for 90 minutes and further ground to an average particle size of 15 μm.

そして上記フラックスペースとフッ化スズ(SnF2)
とを、該フッ化スズが第1表に示す組成比率となるよう
に混合し、あるいは混合することなく、各種フラックス
を作成した。
And the above flux space and tin fluoride (SnF2)
Various fluxes were prepared by mixing the tin fluoride with the composition ratio shown in Table 1 or without mixing.

次に各フラックスを水に懸濁させて濃度的5%の懸濁液
を作成したのち、この懸濁液に前記熱交換器組立物を浸
漬し、フラックスを組立物の表面に均一に塗布した。な
お、出入口ジヨイント(4)(5)とチューブ(1)と
の接合部分にはさらに同一フラックスを用いた濃度30
%の懸濁液をハケ塗りした。
Next, each flux was suspended in water to create a suspension with a concentration of 5%, and the heat exchanger assembly was immersed in this suspension to uniformly apply the flux to the surface of the assembly. . In addition, the same flux was applied at a concentration of 30 at the joint between the inlet and outlet joints (4) and (5) and the tube (1).
% suspension was brushed on.

次いで、上記の熱交換器組立物を乾燥炉にて乾燥したの
ち、温度600℃のN2ガス雰囲気で5分間加熱して各
種熱交換器を得た。
Next, the above heat exchanger assembly was dried in a drying oven, and then heated in a N2 gas atmosphere at a temperature of 600° C. for 5 minutes to obtain various heat exchangers.

[試料No8〜11] チューブ(1)としてAl100合金押出材表面に、常
法により厚さ1〜3μmの亜鉛メツキ皮膜を形成したも
のを用いるとともに、コルゲートフィン(2)としてB
A12PCにlvt%亜鉛を添加したプレージングシー
トを用いた以外は上記と同様にして熱交換器組立物を作
製した。
[Sample Nos. 8 to 11] As the tube (1), a galvanized film with a thickness of 1 to 3 μm was formed on the surface of the extruded Al100 alloy material by a conventional method, and as the corrugated fin (2), B
A heat exchanger assembly was produced in the same manner as above except that a plating sheet containing lvt% zinc added to A12PC was used.

次に、試料No3.4.5及び1で用いたフラックスと
同じ4種類のフラックスを用いた以外は上記と同じ条件
でろう付を実施し、4種類の熱交換器を得た。
Next, brazing was performed under the same conditions as above except that the same four types of fluxes as those used in Sample Nos. 3.4.5 and 1 were used to obtain four types of heat exchangers.

以上により得た試料No1〜11の各熱交換器につき、
そのろう付状態を目視観察するとともに、J l5−H
−8681に基くキャス試験を実施して各熱交換器の耐
食性を調べた。それらの結果を第1表に示す。
For each heat exchanger of samples No. 1 to 11 obtained above,
While visually observing the brazed state,
-8681 was conducted to examine the corrosion resistance of each heat exchanger. The results are shown in Table 1.

[以下余白] 上記結果かられかるように、本発明によれば、ろう付性
を損うことな〈従来の亜鉛皮膜を形成した場合と同程度
の耐食性を、簡易な工程で付与しうろことを確認しえた
[Blank below] As can be seen from the above results, according to the present invention, it is possible to impart corrosion resistance equivalent to that obtained by forming a conventional zinc film through a simple process without impairing brazability. I was able to confirm that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で製作した熱交換器の斜視図である。 (1)・・・チューブ、(2)・・・コルゲートフィン
、(3)・・・熱交換器。 以上
FIG. 1 is a perspective view of a heat exchanger manufactured in an example. (1)...tube, (2)...corrugate fin, (3)...heat exchanger. that's all

Claims (1)

【特許請求の範囲】[Claims] フッ化スズを0.05〜15wt%含有するフッ化物系
フラックスを、アルミニウムからなる接合部材の少なく
とも一方の表面に付着せしめたのち、非酸化性雰囲気中
で所定温度に加熱し、Al−Si系合金からなるろう材
を溶融してろう付することを特徴とする耐食性に優れた
アルミニウムろう付品の製造方法。
A fluoride flux containing 0.05 to 15 wt% of tin fluoride is attached to at least one surface of a bonding member made of aluminum, and then heated to a predetermined temperature in a non-oxidizing atmosphere to form an Al-Si based flux. A method for manufacturing aluminum brazed products with excellent corrosion resistance, which is characterized by melting and brazing a brazing filler metal made of an alloy.
JP8696388A 1988-04-07 1988-04-07 Manufacture of aluminum brazing part excellent in corrosion resistance Pending JPH01258866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8696388A JPH01258866A (en) 1988-04-07 1988-04-07 Manufacture of aluminum brazing part excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8696388A JPH01258866A (en) 1988-04-07 1988-04-07 Manufacture of aluminum brazing part excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH01258866A true JPH01258866A (en) 1989-10-16

Family

ID=13901527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8696388A Pending JPH01258866A (en) 1988-04-07 1988-04-07 Manufacture of aluminum brazing part excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH01258866A (en)

Similar Documents

Publication Publication Date Title
RU2094189C1 (en) Method of connection of zinc-coated aluminium members and heat exchanger manufactured using this method
US4831701A (en) Method of making a corrosion resistant aluminum heat exchanger using a particulate flux
JP2004532131A (en) Heat transfer tube manufacturing method
JP3351249B2 (en) Aluminum alloy brazing method
JP3534450B2 (en) Heat exchanger manufacturing method
JPS6199569A (en) Brazing method of aluminum and its alloy
JPH01258866A (en) Manufacture of aluminum brazing part excellent in corrosion resistance
JPS58171580A (en) Method for preventing corrosion of heat exchanger made of aluminum
JPH03114654A (en) Heat exchanger
JPS62110866A (en) Production of heat exchanger
JPS61103674A (en) Production of aluminum brazing article having excellent corrosion resistance
JPH01157767A (en) Method for brazing aluminum
JP3434997B2 (en) Aluminum alloy powder brazing material with excellent brazing properties
JPS61103673A (en) Production of aluminum brazing article excellent in corrosion resistance
JPS6037293A (en) Brazing method of aluminum and alloy thereof
JPS59232694A (en) Brazing method of heat exchanger formed of aluminum
JPH03114660A (en) Heat exchanger
Baldantoni et al. NOCOLOK™ sil Flux-A novel approach for brazing aluminum
JP2509963B2 (en) Brazing method for aluminum materials
JP3434998B2 (en) Heat exchanger excellent in brazing property and method for manufacturing the heat exchanger
JPS6037294A (en) Brazing method of aluminum and alloy thereof
JPH03114663A (en) Heat exchanger made of al alloy
JPS6199568A (en) Brazing method of aluminum and its alloy
JPS6174770A (en) Production of aluminum heat exchanger
JPH0335896A (en) Composition for brazing aluminum or aluminum alloy