JPS61103673A - Production of aluminum brazing article excellent in corrosion resistance - Google Patents

Production of aluminum brazing article excellent in corrosion resistance

Info

Publication number
JPS61103673A
JPS61103673A JP22349184A JP22349184A JPS61103673A JP S61103673 A JPS61103673 A JP S61103673A JP 22349184 A JP22349184 A JP 22349184A JP 22349184 A JP22349184 A JP 22349184A JP S61103673 A JPS61103673 A JP S61103673A
Authority
JP
Japan
Prior art keywords
flux
brazing
suspension
corrosion resistance
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22349184A
Other languages
Japanese (ja)
Inventor
Tomiyoshi Kanai
金井 富義
Shoichi Furuta
古田 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP22349184A priority Critical patent/JPS61103673A/en
Publication of JPS61103673A publication Critical patent/JPS61103673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a productivity with reducing a production man-hour by using the solution containing ZnO, NaOH as the suspension for a flux. CONSTITUTION:A fluoride flux is suspended in the form of a slurry into the solution containing ZnO, NaOH. The flux consisting of the mixture mixing 80-99.8wt% KalF4, 20-0.2wt% KF is used for the fluoride flux. This suspension is then coated uniformly on at least either one part of the joining member made of Al. After coating the zinc containing in the suspension is uniformly precipitated on the surface of the joining member by a plating action. The precipitation amount is in the range of 0.1-4g/m<2>. The brazing is thereafter performed with melting the brazing filler metal with heating to the temp. lower than the melting point of the joining member and higher than the melting point of the flux with using the Al alloy brazing filler metal having lower melting point than the joining member in the nonoxidizing atmosphere of an inert gas atmosphere, etc.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は耐食性に浸れたアルミニウムろう付品の製造
方法、特にろう付性様によるアルミニウム製熱交換器の
製造に好適に用いられるアルミニウムろう付品の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing aluminum brazed products with corrosion resistance, and particularly to a method for producing aluminum brazed products that are suitable for producing aluminum heat exchangers due to their brazability properties. Regarding the manufacturing method.

尚、この明細書においてアルミニウムの用語は、その合
金を含む意味において用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術及び問題点 従来、自動車用ラジェーター、カークーラー用エバポレ
ーターあるいはコンデンサー等のアルミニウム製熱交換
器を、フラックスろう付性様によって製造する場合、塩
化亜鉛等を添加した塩化物系の7ラツクスを用いて熱交
換器用構成部材をろう付接合する方法が知られている。
Conventional Technology and Problems Conventionally, when manufacturing aluminum heat exchangers such as automobile radiators, car cooler evaporators, or condensers by flux brazing, chloride-based 7lux containing zinc chloride, etc. is used. A method of brazing and joining components for a heat exchanger using a method is known.

これはろう付により各部材の接合と同時に、亜鉛をろう
付加熱により前記構成部材の表面に析出させ、かつ該部
材中に拡散せしめて、その亜鉛拡散層の犠牲陽極効果に
より熱交換器の耐食性の向上を併せて期待するためであ
る。
At the same time as each member is joined by brazing, zinc is precipitated on the surface of the component member by heat added to the brazing and diffused into the member, and the sacrificial anode effect of the zinc diffusion layer improves the corrosion resistance of the heat exchanger. This is because we hope that this will also improve the results.

しかしながら、このような方法では、使用するフラック
スが本質的に水溶性であり、強い吸湿性を有しているた
めに、ろう付後速やかにフラックスの残漬を洗浄除去す
る必要があり、このために設@費が高くなると共に、工
程が複雑化して多大の作業負荷がかかる欠点があった。
However, in this method, the flux used is essentially water-soluble and has strong hygroscopic properties, so it is necessary to wash away any remaining flux immediately after brazing. The drawbacks were that the installation costs were high, the process was complicated, and a heavy workload was required.

しかも、フラックス中に含まれる少量の亜鉛成分を利用
して拡散層を形成するものであるため、充分な拡散層を
形成することができず、従って、充分な防食効果を発揮
し得るものではなかった。
Moreover, since the diffusion layer is formed using a small amount of zinc contained in the flux, it is not possible to form a sufficient diffusion layer, and therefore, it is not able to exhibit sufficient corrosion prevention effects. Ta.

そこで、ろう付後のフラックス洗浄を不要とすると共に
ろう付品の耐食性を向上させるため、フラックスとして
非腐食性のフッ化物系フラックスを使用する一方、ろう
付性に化学メッキ法、電気メツキ法等の亜鉛析出法によ
り接合部材の表面に所定量の亜鉛を予め析出せしめ、し
かるのち前記フラックスを懸濁した懸濁液を塗布してろ
う付することにより、ろう付品の表面に均一かつ充分な
亜鉛拡散層を形成する方法が提唱されている(たとえば
特開昭57−160595号)。
Therefore, in order to eliminate the need for flux cleaning after brazing and improve the corrosion resistance of brazed products, non-corrosive fluoride flux is used as the flux, while chemical plating, electroplating, etc. are used to improve brazing properties. A predetermined amount of zinc is precipitated on the surface of the parts to be joined using the zinc precipitation method described above, and then a suspension of the above flux is applied and brazed, thereby depositing a uniform and sufficient amount of zinc on the surface of the parts to be brazed. A method of forming a zinc diffusion layer has been proposed (for example, JP-A-57-160595).

しかしながら上記の方法では、ろう何工程と別工程で接
合部材表面へ亜鉛を析出させなければならないため、製
造工数が増加し、ろう付品の生産性の向上、製造コスト
の低減化等の点で問題を有するものであった。
However, in the above method, zinc must be deposited on the surface of the joining parts in a separate process from the brazing process, which increases the number of manufacturing steps, making it difficult to improve the productivity of brazed products and reduce manufacturing costs. This was problematic.

この発明は、このような事項に鑑みてなされたものであ
って、前記従来方法による場合と同等の耐食性を保有し
ながらも、ろう付品の生産性の向上、製造コストの低減
をはかりうるアルミニウムろう付品の製造方法の提供を
目的とするものである。
This invention has been made in view of the above-mentioned problems, and it is possible to improve the productivity of brazed products and reduce manufacturing costs while maintaining corrosion resistance equivalent to that achieved by the conventional method. The purpose is to provide a method for manufacturing brazed products.

問題点を解決するための手段 この目的を達成するために、この発明は、フラックスを
懸濁させるべき液体としてZnO1Na OHを含有し
た水溶液を用いることにより、フラックス懸濁液の塗布
工程と亜鉛析出処理工程とを同時的に行うようにしたこ
とを特徴とするものである。
Means for Solving the Problems To achieve this object, the present invention improves the process of applying the flux suspension and the zinc precipitation treatment by using an aqueous solution containing ZnO1NaOH as the liquid in which the flux is to be suspended. It is characterized in that the steps are performed simultaneously.

即ち、この発明は、Zn 01Na OHを含有する水
溶液中にフッ化物系フラックスを懸濁させ、該懸濁液を
アルミニウムからなる接合部材に塗布し、その後非酸化
性雰囲気中で所定温度に加熱し、接合用ろう材を溶融し
てろう付することを特徴とする耐食性に優れたアルミニ
ウムろう付品の製造方法を提供するものである。
That is, this invention suspends a fluoride flux in an aqueous solution containing Zn 01 Na OH, applies the suspension to a bonding member made of aluminum, and then heats it to a predetermined temperature in a non-oxidizing atmosphere. The present invention provides a method for manufacturing aluminum brazed products with excellent corrosion resistance, which is characterized in that brazing is performed by melting a joining brazing filler metal.

上記zn O,Na OHを含有する水溶液は、一般的
には、アルミニウムへメッキを施す場合の前処理として
のいわゆるジンケート処理における処理液として使用さ
れるものであるが、本発明ではこの水溶液中にフッ化物
系フラックスをスラリーの形で懸濁させるものとする。
The above-mentioned aqueous solution containing znO, NaOH is generally used as a treatment solution in so-called zincate treatment as a pretreatment when plating aluminum. The fluoride flux shall be suspended in the form of a slurry.

フッ化物系フラックスとしてはフルオロアルミニウム錯
塩(K3 AQ Fs及びKAj2F+)を組成物とす
るものが良く知られるところであり、かつこの7ラツク
スを適用可能であることはいうまでもないが、望ましく
はKAlF4:80〜99.8wt%とKF : 20
−0.2wt%を混合した混合物からなるフラックスを
用いるのが良い。その理由は、該フラックスが残漬の非
腐食性、溶融温度範囲等において、前記フルオロアルミ
ニウム錯塩を組成物とするフラックスと同等の特性を保
有する一方、KAλF4、KFとも市販品として入手容
易であるため、これらを単に混合することによってその
調製を簡易に行いうるからである。即ち、フルオロアル
ミニウム錯塩を組成物とするフラックスの製造方法は、
実際に工業的に生産して使用に供されるような場合には
、一般的にAgF2とKFとを出発物質とし、該出発物
質を、その共晶混合物であるKAlF4とに3 AgF
2とが共晶点に近い比率となるような適正な比率で乾燥
状態にて混合し、この混合物を一旦溶融し、さらにその
溶融混合物を冷却凝固せしめて製造する方法が採用され
ているため、工数が多く調製が面倒であるというような
問題がある。従って、かかる問題のない調製簡易なKA
lF4−KF系フラックスを用いるのが有利である。こ
のKAλF4−KF系フラックスの混合割合を上記のよ
うに選定したのは、その融点を低いものとしてろう付加
熱時に7ラツクスを有効に作用せしめ得るためであり、
KFが許容下限値未満ではその効果に乏しく、逆に許容
上限値を超えて過多に混合された場合にも、特に完全融
解温度(液相線温度)の上昇を招いて良好なろう付を行
う−ことができなくなるとともに、甚しくはフラックス
の反応温度が接合部材としてのアルミニウムの融点以上
になってろう付自体が不可能になるおそれがある。また
懸濁に際しては、フラックス成分の粉末粒径は、懸濁お
よび塗布を行い易くし、ひいてはろう付性を良好にする
ため、概ね2゜0μm以下のものとするのが良い。
As a fluoride-based flux, one having a composition of fluoroaluminum complex salts (K3 AQ Fs and KAj2F+) is well known, and it goes without saying that these 7 fluxes can be applied, but preferably KAlF4: 80-99.8wt% and KF: 20
It is preferable to use a flux consisting of a mixture of -0.2 wt%. The reason for this is that while the flux has properties equivalent to those of the flux containing the fluoroaluminum complex salt in terms of non-corrosion when left in the water and melting temperature range, both KAλF4 and KF are easily available as commercial products. Therefore, it can be easily prepared by simply mixing them. That is, the method for producing a flux whose composition is a fluoroaluminum complex salt is as follows:
In the case of actual industrial production and use, AgF2 and KF are generally used as starting materials, and the starting materials are mixed with KAlF4, which is a eutectic mixture thereof, to form 3 AgF
2 is mixed in a dry state at an appropriate ratio close to the eutectic point, this mixture is once melted, and the molten mixture is further cooled and solidified. There are problems such as a large number of man-hours and troublesome preparation. Therefore, KA is easy to prepare without such problems.
It is advantageous to use fluxes based on 1F4-KF. The mixing ratio of this KAλF4-KF flux was selected as above because its melting point was low so that 7 lux could be effectively applied during brazing heating.
If KF is less than the allowable lower limit, the effect will be poor, and conversely, if too much KF is mixed beyond the allowable upper limit, the complete melting temperature (liquidus temperature) will rise, resulting in good brazing. - There is a risk that the reaction temperature of the flux will become higher than the melting point of aluminum as a joining member, making brazing itself impossible. Further, during suspension, the powder particle size of the flux component is preferably approximately 2.0 .mu.m or less in order to facilitate suspension and application and to improve brazing properties.

次に上記懸濁液をアルミニウムからなる接合部材の少な
くともいずれか一方に均一に塗布する。塗布の手段は、
噴霧あるいははけ塗り等を適用することも可能であるが
、量産性に適した均一な塗布手段として浸漬法を用いる
ことが推奨される。
Next, the above suspension is uniformly applied to at least one of the joining members made of aluminum. The means of application is
Although it is possible to apply spraying or brushing, it is recommended to use a dipping method as a uniform application method suitable for mass production.

懸濁液塗布後においては、懸濁液中に含まれる亜鉛がメ
ッキ作用により接合部材表面に均一に析出する。この亜
鉛の析出量は0.1〜4g/ゴの範囲とするのが望まし
い。析出量が0゜1g/m2未満では、ろう付後必要な
犠牲陽極効果が充分得られない恐れがあり、逆に49/
ゴを超えると、ろう付品の表面亜鉛′a度が高くなるた
め初期腐食が早くかつ激しくなり却って所望の犠牲防食
効果が1qられない恐れがある。
After the suspension is applied, the zinc contained in the suspension is uniformly deposited on the surface of the joining member due to the plating action. The amount of zinc deposited is preferably in the range of 0.1 to 4 g/g. If the precipitation amount is less than 0.1 g/m2, there is a risk that the sacrificial anode effect required after brazing may not be sufficiently obtained, and conversely,
If the corrosion resistance exceeds 50%, the surface zinc a content of the brazed product will increase, and initial corrosion will be rapid and severe, and there is a risk that the desired sacrificial corrosion protection effect will not be achieved.

その後上記接合部材にろう付けが施される。Thereafter, the joining member is brazed.

ろう付けは接合部材より融点の低いアルミニウム合金ろ
う材を用いて、不活性ガス雰囲気等の非酸化性雰囲気中
で、上記接合部材の融点より低く、かつフラックスの融
点よりも高い約580〜620℃に加熱することにより
、ろう材を溶融して行われる。上記ろう材には3を含有
量的4.5〜13.5it%程度のAρ−3i系合金が
用いられるのが普通であり、該ろう材は作業性の点から
、通常接合されるべき部材の少なくとも一方のアルミニ
ウム製構成部材にクラッドして使用されるのが望ましい
。このろう付工程における加熱とともに、アルミニウム
材の表面に析出した亜鉛は、アルミニウム材の中心部に
向って拡散し、アルミニウム材表面に均一かつ充分な亜
鉛拡散層が形成される。この拡散層の層厚は、防食効果
の点から50μm以上とするのが望ましい。
Brazing is performed using an aluminum alloy brazing filler metal whose melting point is lower than that of the joining member, in a non-oxidizing atmosphere such as an inert gas atmosphere, at approximately 580 to 620°C, which is lower than the melting point of the joining member and higher than the melting point of the flux. This is done by melting the brazing filler metal by heating it to . The above-mentioned brazing filler metal is usually an Aρ-3i alloy with a content of about 4.5 to 13.5 it% of 3. It is preferable to clad at least one of the aluminum structural members. Along with the heating in this brazing step, the zinc deposited on the surface of the aluminum material is diffused toward the center of the aluminum material, and a uniform and sufficient zinc diffusion layer is formed on the surface of the aluminum material. The thickness of this diffusion layer is desirably 50 μm or more from the viewpoint of anticorrosion effect.

ろう付後においては、好ましくはろう付品を水洗又は湯
洗するのが良い。これは、耐食性を劣化させるフラック
ス懸濁液中のNa OHを除去して耐食性のより一層の
向上をはかり得るためである。
After brazing, it is preferable to wash the brazed product with water or hot water. This is because NaOH in the flux suspension, which deteriorates corrosion resistance, can be removed to further improve corrosion resistance.

発明の効果 上述のようなこの発明の実施によれば、フラックスの懸
濁液としてZn 01Na OHを含有する水溶液を用
いることにより、フラックス懸濁液の塗布処理と亜鉛析
出処理とを同時的に行うことができ、従来のように、懸
濁液の塗布前に別工程により亜鉛を析出させる必要がな
いから、製造工数の削減によりアルミニウムろう付は品
の生産性の向上、製造コストの低減化に有効に寄与しう
るちのとなる。もとよりアルミニウム材表面に亜鉛を析
出させてろう付を行うものであるから、ろう何時におけ
る加熱によりアルミニウム材表面に均一かつ充分な亜鉛
拡散層が形成され、該拡散層の犠牲陽極効果によりろう
付品の耐食性を著しく向上しうる。勿論、フラックスと
して腐食性残漬を残さないフッ化物系フラックスを用い
るものであるから\ろう付後における脱フラツクス処理
が不要であることはいうまでもない。
Effects of the Invention According to the implementation of the present invention as described above, by using an aqueous solution containing Zn 01 Na OH as the flux suspension, the flux suspension application process and the zinc precipitation process are performed simultaneously. Since there is no need to precipitate zinc in a separate process before applying the suspension as in the past, aluminum brazing improves product productivity and reduces manufacturing costs by reducing manufacturing man-hours. It will be useful to contribute effectively. Since brazing is performed by precipitating zinc on the surface of the aluminum material, a uniform and sufficient zinc diffusion layer is formed on the surface of the aluminum material by heating during brazing, and the sacrificial anode effect of this diffusion layer causes the solder to be soldered. can significantly improve the corrosion resistance of Of course, since a fluoride-based flux that does not leave any corrosive residue is used as the flux, it goes without saying that defluxing treatment after brazing is not necessary.

実施例 次に、この発明の実施例を比較例との対比において示す
EXAMPLES Next, examples of the present invention will be shown in comparison with comparative examples.

A1050合金からなる肉厚0.7mmの中空扁平状押
出しチューブ材を、直管部を有する蛇行状に曲成すると
共に、該チューブ材を挾/νで両側にA1100合金か
らなる厚さ1.0mmの側板を配置し、次いでB△12
で表わされる厚さ0.145mmの両面プレージングシ
ート(Δ3003合金芯材の両面に、A4343合金皮
材を片面クラツド率12%でクラッドしたもの)からな
るコルゲートフィン材を前記側板と押出しチューブ材と
の間及びチューブ材の直管部どうしの間に介在せしめて
コルゲートフィン型熱交換器に組立てた。
A hollow flat extruded tube material made of A1050 alloy with a wall thickness of 0.7 mm is bent into a serpentine shape having a straight pipe part, and the tube material is held with scissors/v with a thickness of 1.0 mm made of A1100 alloy on both sides. Place the side plate of B△12
A corrugated fin material made of a double-sided plating sheet (A4343 alloy skin material is clad on both sides of a Δ3003 alloy core material at a cladding ratio of 12% on one side) with a thickness of 0.145 mm is attached to the side plate and the extruded tube material. It was assembled into a corrugated fin type heat exchanger by interposing it between the straight pipe parts of the tube material and between the straight pipe parts of the tube material.

そして、KAlF4とKFの混合物からなるフラックス
及びKAΩF4とに3 AgF2の混合物からなるフラ
ックスをZnO1Na OHを含む水溶液中に懸濁して
、下表の試料N011〜6に示す組成比率の懸濁液を調
製した。尚、懸濁に際しフラックス成分の粉末粒径は5
0μm以下とした。そして、この懸濁液に、上記熱交換
器組立物を浸漬してアルミニウム材表面に同表に示す号
の亜鉛を析出させた。
Then, a flux consisting of a mixture of KAlF4 and KF and a flux consisting of a mixture of KAΩF4 and 3AgF2 were suspended in an aqueous solution containing ZnO1NaOH to prepare a suspension having the composition ratio shown in samples Nos. 011 to 6 in the table below. did. In addition, the powder particle size of the flux component during suspension is 5
It was set to 0 μm or less. The heat exchanger assembly was immersed in this suspension to deposit zinc of the numbers shown in the table on the surface of the aluminum material.

然る後、上記各組立物をN2ガスにて、露点−35℃に
調整した炉中で、610℃×5分間加熱し、ろう付けを
行ったのち、湯洗、乾燥し、その後トーチによりA7N
O1ユニオンを所定ケ所にろう付けして熱交換器を得た
After that, each of the above assemblies was heated at 610°C for 5 minutes using N2 gas in a furnace adjusted to a dew point of -35°C, brazed, washed with hot water, dried, and then heated with A7N gas using a torch.
A heat exchanger was obtained by brazing the O1 union in place.

そして、上記により得られた各熱交換器のろう付は状態
を調べると共に、その耐食性を調べるためJ l5−H
−8681に基づくキャス試験を実施した。その結果を
同表に示す。
Then, the brazing condition of each heat exchanger obtained above was examined, and in order to examine its corrosion resistance, J15-H
A Cath test based on -8681 was conducted. The results are shown in the same table.

上記結果により、本発明によって製造された熱交換器(
試料Nα1〜6)は、良好なろう付は状態、耐食性を示
すものであることを確認できた。従って、製造工数の少
ない本発明が生産性の向上、製造コストの低減化等の点
で有利であることがわかる。
According to the above results, the heat exchanger manufactured by the present invention (
It was confirmed that samples Nα1 to Nα6) indicate good brazing condition and corrosion resistance. Therefore, it can be seen that the present invention, which requires fewer manufacturing steps, is advantageous in terms of improving productivity, reducing manufacturing costs, etc.

[以下余白][Margin below]

Claims (3)

【特許請求の範囲】[Claims] (1)ZnO、NaOHを含有する水溶液中にフッ化物
系フラックスを懸濁させ、該懸濁液をアルミニウムから
なる接合部材に塗布し、その後非酸化性雰囲気中で所定
温度に加熱し、接合用ろう材を溶融してろう付すること
を特徴とする耐食性に優れたアルミニウムろう付品の製
造方法。
(1) Fluoride flux is suspended in an aqueous solution containing ZnO and NaOH, the suspension is applied to a bonding member made of aluminum, and then heated to a predetermined temperature in a non-oxidizing atmosphere. A method for manufacturing aluminum brazed products with excellent corrosion resistance, which involves melting and brazing brazing filler metal.
(2)フツ化物系フラックスが、KAlF_4:80〜
99.8wt%、KF:20〜0.2wt%の混合物か
らなる特許請求の範囲第1項記載の耐食性に優れたアル
ミニウムろう付品の製造方法。
(2) Fluoride flux is KAlF_4:80~
99.8 wt%, KF: 20 to 0.2 wt% mixture according to claim 1.
(3)懸濁液塗布後における接合部材の表面の亜鉛析出
量が0.1〜4g/m^2である特許請求の範囲第1項
または第2項に記載の耐食性に優れたアルミニウムろう
付品の製造方法。
(3) Aluminum brazing with excellent corrosion resistance according to claim 1 or 2, wherein the amount of zinc precipitation on the surface of the joining member after applying the suspension is 0.1 to 4 g/m^2 method of manufacturing the product.
JP22349184A 1984-10-23 1984-10-23 Production of aluminum brazing article excellent in corrosion resistance Pending JPS61103673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22349184A JPS61103673A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22349184A JPS61103673A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPS61103673A true JPS61103673A (en) 1986-05-22

Family

ID=16798967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22349184A Pending JPS61103673A (en) 1984-10-23 1984-10-23 Production of aluminum brazing article excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61103673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
US8708034B2 (en) 2008-11-10 2014-04-29 Mitsubishi Electric Corporation Air conditioner

Similar Documents

Publication Publication Date Title
CA2111331C (en) Method of joining zinc coated aluminium members
US4571352A (en) Method for coating aluminum metal body with aluminum alloy brazing filler metal
JPH0232072B2 (en)
US3728783A (en) Process for brazing stainless steel parts to parts of aluminum and aluminum alloys
JPS61103673A (en) Production of aluminum brazing article excellent in corrosion resistance
JPH07106445B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JPS61103674A (en) Production of aluminum brazing article having excellent corrosion resistance
JPS6021176A (en) Production of aluminum heat exchanger
JPS62101396A (en) Manufacture of heat exchanger
JPS6037292A (en) Brazing method of aluminum and alloy thereof
JPS63140766A (en) Production of al heat exchange with excellent corrosion resistance
JPS6364265B2 (en)
JP2515561B2 (en) Aluminum heat exchanger manufacturing method
JPS6199568A (en) Brazing method of aluminum and its alloy
JPS61202772A (en) Aluminum alloy made fin material having both sacrifical anode effect and zn coating effect
JPS61103675A (en) Brazing method of aluminum and its alloy
JPS6037293A (en) Brazing method of aluminum and alloy thereof
US2952906A (en) Method of soldering aluminum to copper or brass
JPH0230792B2 (en)
JPS6174770A (en) Production of aluminum heat exchanger
JPS6082676A (en) Manufacture of heat-exchanger pipe
JPS626774A (en) Brazing method for aluminum material
JPS6174771A (en) Production of aluminum heat exchanger
JPS6037294A (en) Brazing method of aluminum and alloy thereof
JPH03114663A (en) Heat exchanger made of al alloy