JPS61102582A - Cooling device for vacuum vessel for nuclear fusion device - Google Patents

Cooling device for vacuum vessel for nuclear fusion device

Info

Publication number
JPS61102582A
JPS61102582A JP59224007A JP22400784A JPS61102582A JP S61102582 A JPS61102582 A JP S61102582A JP 59224007 A JP59224007 A JP 59224007A JP 22400784 A JP22400784 A JP 22400784A JP S61102582 A JPS61102582 A JP S61102582A
Authority
JP
Japan
Prior art keywords
vacuum vessel
cooling
nuclear fusion
cooling pipe
poloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59224007A
Other languages
Japanese (ja)
Other versions
JPH0319516B2 (en
Inventor
啓之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59224007A priority Critical patent/JPS61102582A/en
Publication of JPS61102582A publication Critical patent/JPS61102582A/en
Publication of JPH0319516B2 publication Critical patent/JPH0319516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核融合装置におけるプラズマ閉じこめ用の真空
容器全冷却する核融合装置用真空容器冷却装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vacuum vessel cooling device for a nuclear fusion device that completely cools a vacuum vessel for plasma confinement in a nuclear fusion device.

〔従来技術〕[Prior art]

トーラス型核融合装五は、第1図および第2図に示すよ
うに、その内部にプラズマlft閉じこめるための真空
容器2全有し、このX空容器2は厚肉リング部3とベロ
ーズ部4からなる。このX空容器2のまわシには、真空
容器中にプラズマ1を保持するだめのトロイダルコイル
5およびポロイダルコイル6、プラズマ1に成流を匠し
て加熱するための変流器7を有する。排気装置8は共生
容器21/’iを高X窒状態に排気するためのものであ
ろうそしてこれらは支持部材であるベース9に支持され
ている。
As shown in FIGS. 1 and 2, the torus-type nuclear fusion device 5 has a vacuum vessel 2 for confining plasma lft inside, and this empty vessel 2 has a thick ring part 3 and a bellows part 4. Consisting of The X-empty container 2 has a toroidal coil 5 and a poloidal coil 6 for holding the plasma 1 in the vacuum container, and a current transformer 7 for creating a current in the plasma 1 and heating it. The exhaust device 8 will be for evacuating the symbiotic container 21/'i to a high-X nitrogen state, and these are supported by a base 9 which is a support member.

このような核融合装置のX窒容器2は運転中にプラズマ
1からの入熱やベーキングによシ面温になる。このため
に真空容器2fc冷却することが必要となり、第3図に
示すように、共生容器2の外壁にサポート11を介して
冷却管10が取り付けられる。この冷却管10は、具体
的には第4図に示すように、往路部10aと仮路部10
bとがらなシ、真空容器2の壁面にサポート11 a、
11bとボルト12a、12bによって重ねるように」
メり付けられている。この冷却管10a、10bとサポ
ートlla、llbは爺属袈で導電性をおびているので
、平行な冷却管10 a、  10 bは取p付は個所
においてサボー)11aで煙硝されて社気的な閉ループ
を構成する。このような閉ループ5r溝成すめ冷却管1
0が第3図のように取シ付けられた場合、矢印13で示
すポロイダル方向に発生するポロイダルコイル6による
磁場Bpとこの閉ループが交差することになる。そして
プラズマ1の消滅時にこの磁場Upの強さが変化するの
で、電磁誘導作用によってこの閉ループに誘導電流が流
れる。しかもこの閉ループを構成する冷却管1゜はトロ
イダルコイル5によって作られる矢印14で示すトロイ
ダル方向の磁場Bτ中にこの磁場を横切るように配置さ
れているので、冷却管10には過大な電磁力が生じこれ
らを破壊する危険がある。
The surface temperature of the X-nitrogen container 2 of such a nuclear fusion device increases due to heat input from the plasma 1 and baking during operation. For this purpose, it is necessary to cool the vacuum container 2fc, and as shown in FIG. 3, a cooling pipe 10 is attached to the outer wall of the symbiotic container 2 via a support 11. Specifically, as shown in FIG.
b, a support 11 on the wall of the vacuum container 2, a,
11b and bolts 12a and 12b.''
It is attached. Since the cooling pipes 10a, 10b and the supports 11a, 11b are electrically conductive, the parallel cooling pipes 10a, 10b are not installed in the same place. Configure a closed loop. Such a closed loop 5r groove cooling pipe 1
0 is attached as shown in FIG. 3, this closed loop intersects the magnetic field Bp generated by the poloidal coil 6 in the poloidal direction shown by the arrow 13. Since the strength of this magnetic field Up changes when the plasma 1 disappears, an induced current flows in this closed loop due to electromagnetic induction. Moreover, since the cooling pipe 1° constituting this closed loop is placed in the magnetic field Bτ in the toroidal direction shown by the arrow 14 created by the toroidal coil 5, so as to cross this magnetic field, an excessive electromagnetic force is applied to the cooling pipe 10. There is a danger that this may occur and destroy them.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は、前記冷却管に過大な電磁力が発
生するの?防止し、冷却装置が破壊しないようKするこ
とにある。
Therefore, an object of the present invention is to solve the problem of generating excessive electromagnetic force in the cooling pipe. The objective is to prevent this and prevent the cooling device from being destroyed.

〔発明の概要〕[Summary of the invention]

本発明は、この目的全達成するために、トロイダルコイ
ルとポロイダルコイルの磁界によってその内部にプラズ
マが閉じこめらnる真空容器に取p付けられる冷却管ヲ
トロイダル方向とポロイダル方向に一致させて配置する
ことにより、ポロイダル方向の磁場の強さの変化による
X4電匠の発生全防止し、またm 24電流が発生して
もトロイダル方向の磁場全横切らないようにして冷却管
に電磁力が発生するのを防止したことヲ脣徴とする。
In order to achieve all of the above objects, the present invention arranges a cooling tube attached to a vacuum vessel, in which plasma is confined by the magnetic fields of a toroidal coil and a poloidal coil, so as to match the toroidal direction and the poloidal direction. , completely prevents the generation of X4 electric current due to changes in the strength of the magnetic field in the poloidal direction, and also prevents the generation of electromagnetic force in the cooling pipe by preventing the m24 current from completely crossing the magnetic field in the toroidal direction. Take what you did as a sign.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例を示したもので、真空容器2
に対する冷却管15の取υ付は配置状態を示し、その他
は第1図、第2図、第4図の従来装置と同一であるので
省略しである。この実施例において冷却管15は、ポロ
イダル方向に一致した配置の冷却管部分15aと、トロ
イダル方向に一致した配置の冷却管部分15bで構成さ
れ、サポート11を介して真空容器2に取υ付けられて
いる。従って冷却管部分15aで構成される閉ループは
ポロイダル方向H1mBpと交差しないので、この磁場
Bpの強さが変化してもこの閉ループに誘導電流が発生
することはなく電磁力の発生が防止される。また、冷却
管部分15bで構成される131ルーグはポロイダル方
向磁場Bpと交差しているから、この磁場B pの強さ
が変化するとこの閉ループに誘々jib流が流れる。し
かしこの訪導−流はトロイダル方向に流れるからトロイ
ダル方向磁% B rを→)j切らず、従ってi場By
との相互作用による電磁力の発生が防止される。
FIG. 5 shows an embodiment of the present invention, in which the vacuum container 2
The arrangement of the cooling pipe 15 is shown, and the other parts are the same as the conventional devices shown in FIGS. 1, 2, and 4, and are therefore omitted. In this embodiment, the cooling pipe 15 is composed of a cooling pipe section 15a arranged in the poloidal direction and a cooling pipe section 15b arranged in the toroidal direction, and is attached to the vacuum vessel 2 via the support 11. ing. Therefore, since the closed loop formed by the cooling pipe portion 15a does not intersect with the poloidal direction H1mBp, even if the strength of the magnetic field Bp changes, no induced current is generated in this closed loop, and the generation of electromagnetic force is prevented. Further, since the 131 loop formed by the cooling pipe portion 15b intersects with the poloidal direction magnetic field Bp, when the strength of the magnetic field Bp changes, a jib flow is induced to flow in this closed loop. However, since this visiting current flows in the toroidal direction, it does not cut the toroidal direction magnetic % B r →)j, and therefore the i field By
The generation of electromagnetic force due to interaction with is prevented.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、真空容器に取り付けられ
る冷却管をポロイダル方向とトロイダル方向に一致させ
て配置したことにより、冷却管に流れるLlj4電流に
よる過大な2出力の発生を防止して冷却装置の破壊を防
止できる効果が得られる。
As described above, according to the present invention, by arranging the cooling pipes attached to the vacuum vessel so as to match the poloidal direction and the toroidal direction, generation of excessive two outputs due to the Llj4 current flowing through the cooling pipes is prevented and cooling is achieved. This has the effect of preventing destruction of the device.

図面の1’#j *な説明 第1図〜第4図は従来のトー2ス型核装合装置であって
第1図は一部を横断した平面図、第2図はその一部分の
縦断側面図、第3図はその冷却管配置図、d↓4図は第
3図の■−■断面図であシ、第5図は本発明の一実施例
を示す冷却装置の冷却管配置図である。
1'#j *Explanation of the drawings Figures 1 to 4 show a conventional torso-type nuclear attachment device. A side view, FIG. 3 is a cooling pipe layout diagram, d↓4 is a sectional view taken along ■-■ of FIG. 3, and FIG. 5 is a cooling pipe layout diagram of a cooling device showing an embodiment of the present invention. It is.

2・・・X全容器、5・・・トロイダルコイ乞 6.、
、ポロイダルコイル、15・・・冷却管、15a・・・
ポロイダル方向の冷却管部分、15b・・・トロイダル
方向の冷却管部分
2...X all containers, 5...Toroidal carp beggar 6. ,
, poloidal coil, 15... cooling pipe, 15a...
Cooling pipe part in poloidal direction, 15b... Cooling pipe part in toroidal direction

Claims (1)

【特許請求の範囲】[Claims] 1、トロイダルコイルとポロイダルコイルの磁界によつ
てその内部にプラズマが閉じこめられる真空容器に取り
付けられた冷却管を備えた核融合装置用真空容器冷却装
置において、前記冷却管をトロイダル方向とポロイダル
方向に一致させて配置したことを特徴とする核融合装置
用真空容器冷却装置。
1. In a vacuum vessel cooling device for a nuclear fusion device, which is equipped with a cooling tube attached to a vacuum vessel in which plasma is confined by the magnetic fields of a toroidal coil and a poloidal coil, the cooling tube is aligned in the toroidal direction and the poloidal direction. 1. A vacuum vessel cooling device for a nuclear fusion device, characterized in that the cooling device is arranged so as to
JP59224007A 1984-10-26 1984-10-26 Cooling device for vacuum vessel for nuclear fusion device Granted JPS61102582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224007A JPS61102582A (en) 1984-10-26 1984-10-26 Cooling device for vacuum vessel for nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224007A JPS61102582A (en) 1984-10-26 1984-10-26 Cooling device for vacuum vessel for nuclear fusion device

Publications (2)

Publication Number Publication Date
JPS61102582A true JPS61102582A (en) 1986-05-21
JPH0319516B2 JPH0319516B2 (en) 1991-03-15

Family

ID=16807125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224007A Granted JPS61102582A (en) 1984-10-26 1984-10-26 Cooling device for vacuum vessel for nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS61102582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529338B2 (en) 2006-05-22 2016-12-27 Nike, Inc. Watch display using light sources with a translucent cover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518101U (en) * 1978-07-21 1980-02-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518101B2 (en) * 1975-02-19 1980-05-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518101U (en) * 1978-07-21 1980-02-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529338B2 (en) 2006-05-22 2016-12-27 Nike, Inc. Watch display using light sources with a translucent cover

Also Published As

Publication number Publication date
JPH0319516B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
JP3317045B2 (en) Common mode choke coil
EP0189970A1 (en) Superconductor magnet
JPS63257203A (en) Quenching propagator for superconducting magnet
JPS61102582A (en) Cooling device for vacuum vessel for nuclear fusion device
JPS6197806A (en) Cooling device of magnetic part used in nmr picture device
EP0250675B1 (en) Superconducting magnet
JPS59214194A (en) Induction heating cooking device
JP2739159B2 (en) Toroidal magnet
JP2517997B2 (en) Superconducting magnet
JPH07111212A (en) Superconducting magnet device
JPS6337909B2 (en)
JPS6142307Y2 (en)
JPH07274562A (en) Power generation method utilizing meissner effect of superconductor
JPS6122919B2 (en)
KR200302681Y1 (en) Magnetic shileding device utilizing magnetodielectric material for use in electromagnetic casting coil
JPS60262089A (en) Toroidal coil for nuclear fusion device
JPS5957188A (en) Toroidal coil
JPH0622168B2 (en) Radiant shield
JPS5963587A (en) Fusion device
JPH0570921B2 (en)
JPH04277606A (en) Superconductive magnet
JPS6024491A (en) Toroidal coil for nuclear fusion device
JPH03201580A (en) Cryostat
JP2001119078A (en) Superconducting current lead
JPS60233585A (en) Nuclear fusion device