JPS60262089A - Toroidal coil for nuclear fusion device - Google Patents
Toroidal coil for nuclear fusion deviceInfo
- Publication number
- JPS60262089A JPS60262089A JP59118260A JP11826084A JPS60262089A JP S60262089 A JPS60262089 A JP S60262089A JP 59118260 A JP59118260 A JP 59118260A JP 11826084 A JP11826084 A JP 11826084A JP S60262089 A JPS60262089 A JP S60262089A
- Authority
- JP
- Japan
- Prior art keywords
- toroidal coil
- fusion device
- nuclear fusion
- coil
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Discharge Heating (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、核融合装置のトロイダルコイルに関し、特
にそのキャンの改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a toroidal coil for a nuclear fusion device, and particularly to an improvement of its can.
第1図は従来の核融合装置の要部断面図であつロイダル
コイル単体コ、ボロイダルコイル3.ダ等により構成さ
れてX、Jる。真空容器lは、その断面が精i形をした
ドーナツ状をしており、プラズマ3がこの中で、三方向
゛の□磁場で閉じ込められるこの核融合装置は、ボロイ
ダルコイル3.真空容器lおよびボロイダルコイルダが
それぞれトロイダルコイルの中心軸線上の2軸を中心に
配設され、かつこれ等機器に直交するように゛複数のト
ロイダルコイル単体−がそ糺ぞれ半径方向に放射□状忙
配設されて組み立てられている。FIG. 1 is a cross-sectional view of the main parts of a conventional nuclear fusion device, including a single loidal coil, a voloidal coil, and three voloidal coils. It is composed of X, J, etc. The vacuum vessel l has a doughnut-like cross section with a precise i-shape, and this nuclear fusion device, in which the plasma 3 is confined by □ magnetic fields in three directions, uses a voloidal coil 3. A vacuum vessel l and a voloidal coiler are respectively arranged around two axes on the central axis of the toroidal coil, and a plurality of toroidal coils are arranged to radiate in the radial direction so as to be orthogonal to these devices. □It has been carefully arranged and assembled.
トロイダルコイル単一コは、第2図に示すよう和電流が
流れる導体6と、この導体基に電流を流したときにトロ
イダルコイル単体−に作用する巨大な電磁力(向心力と
フープ力)を支持するキャン7とにより構成されている
。このキャン7は巨大な電磁力を支えるため、種々の環
境下でも十分のでできている。また、導体6が超電導導
体より構成されているときには、キャンクは液体ヘリウ
ムを収納する容器としても作用している。As shown in Figure 2, a single toroidal coil supports the conductor 6 through which the sum current flows, and the huge electromagnetic force (centripetal force and hoop force) that acts on the toroidal coil when current is passed through this conductor base. It is composed of a can 7. This can 7 is made of a material that is durable enough to withstand a variety of environments in order to support a huge electromagnetic force. Further, when the conductor 6 is made of a superconducting conductor, the can also functions as a container for storing liquid helium.
次に、上記構成の核融合装置のトロイダルコイルl′の
動作について説明する。今、トカマク型の。Next, the operation of the toroidal coil l' of the nuclear fusion device having the above configuration will be explained. Now, a tokamak type.
放電として導体6に電流を流して、ψ方向に磁場を発生
させる。次に、ボロイダルコイル3.弘に流す電流を時
間的に変化させ、9方向に電場を作り、プラズマ電流を
発生させて、プラズマjを閉込め、加熱を行なう。A current is passed through the conductor 6 as a discharge to generate a magnetic field in the ψ direction. Next, voloidal coil 3. The electric current flowing through the tube is changed over time to create an electric field in nine directions, generate a plasma current, confine the plasma J, and heat it.
ところで、キャンクには、ボロイダルコイ、ル31V、
プラズマ市、流による磁場が発生し、その磁場は時間的
に変化するので、渦電流が発生し、特にキャンクのうち
、トロイダルコイル単体コの2軸側の部分は、ボロイダ
ルコイル3,41によって2軸方向の磁場の変化率が大
きくなり、第2図に示すように他の部分と比べて大きな
渦電流が発生することになる。こうして、この核融合装
置のトロイダルコイルは、キャン7が肉厚の非磁性鋼で
できていることと相俟って、大きな渦電流がキャン′
7に発生するこ之になり、その結果この渦電流と外部磁
場との相互作用によるキャンクに対する電磁力およびキ
ャンク自身の発熱が大きくなるという欠点を有し℃いた
。特に、導体6が超電導導体で構成され、キャン7がヘ
リウム液体用容器としても作用しているときには、この
渦電流により生じる発熱は、冷却上大きな問題になって
いた。By the way, for the cank, Boroidarcoi, Le 31V,
In plasma, a magnetic field is generated by the flow, and as the magnetic field changes over time, eddy currents are generated.Especially in the can, the part on the two-axis side of the single toroidal coil is caused by the voloidal coils 3 and 41. The rate of change of the magnetic field in the two axial directions increases, and as shown in FIG. 2, larger eddy currents are generated compared to other parts. In this way, the toroidal coil of this fusion device, combined with the fact that the can 7 is made of thick non-magnetic steel, causes a large eddy current to flow through the can.
As a result, the interaction between this eddy current and an external magnetic field increases the electromagnetic force exerted on the can and the heat generated by the can itself. Particularly, when the conductor 6 is made of a superconducting conductor and the can 7 also functions as a helium liquid container, the heat generated by this eddy current has become a big problem in terms of cooling.
この発明は、上記の欠点を除去する目的でなされたもの
で、トロイダルコイル単体の内側面に。This invention was made for the purpose of eliminating the above-mentioned drawbacks, and was made on the inner surface of a single toroidal coil.
スリットを形成するという簡単な構成により、渦電流に
対する実効的な抵抗を大きくして、渦゛亀流を小さくシ
、渦電流損、電磁力が低減される核融合装置のトロイダ
ルコイルを提供するものである。To provide a toroidal coil for a nuclear fusion device, which increases effective resistance to eddy currents, reduces eddy currents, and reduces eddy current loss and electromagnetic force through a simple configuration of forming slits. It is.
以下、この発明の核融合装置のトロイダルコイルの一実
施例を第3図ないし第弘図を用いて説明する。第3図は
第1図の座標系で2−θの面で切ったトロイダルコイル
単体/Jの断面図、第9図は第3図のトロイダルコイル
単体12の全体斜視図であって、第1図ないし第2図と
同一または相当部分は同一符号を付し、そ、の説明は省
略する。Hereinafter, one embodiment of the toroidal coil of the nuclear fusion device of the present invention will be described with reference to FIGS. 3 to 3. 3 is a cross-sectional view of the toroidal coil unit /J taken along the 2-θ plane in the coordinate system of FIG. 1, and FIG. 9 is an overall perspective view of the toroidal coil unit 12 of FIG. Components that are the same or corresponding to those in the figures or FIG.
トロイダルコイル単体、/コの内側面で、トロイダルコ
イル中心軸側には、、その中心軸方向に延びるスリット
gが形成され電気的、絶縁部になつ℃いる。On the inner surface of the toroidal coil alone, on the side of the center axis of the toroidal coil, a slit g extending in the direction of the center axis is formed to serve as an electrically insulating part.
スリン)Jをトロイダルコイルの中心軸側に設けたのは
、ポロイダルコ、イル3.ダによってその中心軸方向の
磁場の変化率が大きく、他の部分と比べて大きな渦電流
が誘起されるからである。また、スリン)ffをトロイ
ダルコイル単体12の内側面に−けたのは、トロイダル
コイル単体lコには向心力、フープ力が、作用し、トロ
イダルコイル単体lλの外側面にスリットを設けると、
キャン7が電磁力に対し℃弱くなるからで、ある。また
、スリット8をトロイダルコイル単体lλの側面に形成
すると、転fMj力に対して構造的に弱くなるからであ
る。Surin) J was provided on the central axis side of the toroidal coil by Poloidarco, Il 3. This is because the rate of change of the magnetic field in the central axis direction is large due to the magnetic field, and a large eddy current is induced compared to other parts. Also, the reason why Slin) ff is placed on the inner surface of the toroidal coil unit 12 is because centripetal force and hoop force act on the toroidal coil unit l, and when a slit is provided on the outer side of the toroidal coil unit lλ,
This is because Can 7 becomes weaker by degrees Celsius against electromagnetic force. Furthermore, if the slit 8 is formed on the side surface of the single toroidal coil lλ, the structure becomes weak against the rolling force fMj.
上記のように構成された核融合装置のトロ、イダルコイ
ルにおいて、ボロイダルコイル3.Q、プラズマ電流腎
よる磁場がキャ77′に発生し、その磁場の時間的変化
に伴ない渦電流がキャン7に発生した場合、渦電流は電
気的絶縁部を形成するスリットtにより第9図の矢印A
に示すように迂回されて、電流路は実効的に長くなり、
渦電流損は減ると同時に、渦1.流による電磁力は小さ
くなる。In the voloidal coil of the nuclear fusion device configured as described above, the voloidal coil 3. Q. When a magnetic field due to the plasma current is generated in the can 77' and an eddy current is generated in the can 7 as the magnetic field changes over time, the eddy current is generated by the slit t forming an electrically insulating part as shown in Fig. 9. arrow A
The current path is effectively lengthened by being detoured as shown in
At the same time, the eddy current loss is reduced and the eddy 1. The electromagnetic force due to the flow becomes smaller.
なお、上記実施例ではスリットざは、、直線状になつ℃
いるが、44造上そのように取れない時は5.。In addition, in the above example, the slit is linear.
However, if you can't remove it like that because of the 44 construction, 5. .
第S図に示すよう1に曲@になつ℃いてもよいし、また
第6図に示すように破腺状になっていてもよい。これら
はいずむにし工も渦電流に対して実効的な抵抗を増すか
らである。It may have a curved shape as shown in FIG. 1, or it may have a broken gland shape as shown in FIG. This is because they also increase the effective resistance to eddy currents.
、また、同様の理由によりスリン)ffを完全な電気的
絶縁圧する必要は、なく、キャン7の厚さかうすくなっ
てつながっていてもよい。例えば、第7図のようにキャ
ン7に、断面コ字状のスリン)ffを形成することによ
り、矢印Bの渦電流の流路断面積は小さくなり、実効的
な抵抗は増大することになる。なお、tは断熱材で、超
電導導体よりなる導体6に対するスリン)f近傍での渦
電流による発熱から守るためのものである。このスリッ
トtの形状はベローズ状であってもよい。Further, for the same reason, it is not necessary to completely electrically insulate the sulin) ff, and the can 7 may be connected with a thinner thickness. For example, by forming a sulin) ff with a U-shaped cross section in the can 7 as shown in Fig. 7, the cross-sectional area of the eddy current flow shown by arrow B becomes smaller, and the effective resistance increases. . Note that t is a heat insulating material that is used to protect the conductor 6 made of a superconducting conductor from heat generation due to eddy currents in the vicinity of f. This slit t may have a bellows shape.
さらに、トロイダルコイル単体/コの内側面は外側面に
対して電磁力が弱いので、上記した第1〜ダ実施例のス
リットtt、をトロイダルコイル単体12の内側全面に
設けてもよい。Furthermore, since the electromagnetic force on the inner surface of the toroidal coil unit 12 is weaker than that of the outer surface, the slits tt of the first to third embodiments described above may be provided on the entire inner surface of the toroidal coil unit 12.
以上説明したようにこの発明のトロイダルコイルの内側
面に渦電、流に対して笑効的な抵抗を増すスリットを設
けるという簡単な構成により、渦電流損、1!を磁力が
低減されるという効果がある。As explained above, the simple structure of providing a slit on the inner surface of the toroidal coil of the present invention to effectively increase resistance to eddy current and current can reduce eddy current loss by 1! This has the effect of reducing magnetic force.
第1図は従来の核融合装置の要部断面図、第2図は記/
図のz=Oの面で切断したトロイダルコイル単体の断面
図、第3図はこの発明のトロイダルコイル単体の第1の
実施例を示す断面図、第ダ図は第3図のトロイダルコイ
ル単体の斜視図、第3図はこの発明の第コの実施例を示
すトロイダルコイル単体の斜視図、第6図はこの発明め
第3の実施例を示すトロイダルコイル単体の斜視図、第
一 り図はこの発明の第一の実施例を示すトロイダルコ
イル単体の断面図である。
コ、lコe・トロイダルコイル単体1.7,4I・・ボ
ロイダルコイル、j*・プラズマ、6・・導体、り伊・
キャン、f−・スリット。
なお、各図中、同一符号は同−又は相当部分を示す。
幣1図
り
革2図
第3図
第4図
幣5図。
焔6図Figure 1 is a sectional view of the main parts of a conventional nuclear fusion device, and Figure 2 is a cross-sectional view of the main parts of a conventional nuclear fusion device.
3 is a sectional view showing the first embodiment of the toroidal coil of the present invention, and FIG. 3 is a sectional view of the toroidal coil of FIG. FIG. 3 is a perspective view of a single toroidal coil showing a third embodiment of this invention; FIG. 6 is a perspective view of a toroidal coil showing a third embodiment of this invention; FIG. 1 is a sectional view of a single toroidal coil showing a first embodiment of the invention. Ko, lkoe, toroidal coil alone 1.7, 4 I... voloidal coil, j*, plasma, 6... conductor, Rii...
Can, f-slit. In each figure, the same reference numerals indicate the same or corresponding parts. Coin 1 figure, 2 figures, 3 figures, 4 figures, 5 figures. Flame 6
Claims (1)
構成され℃いるトロイダルコイル単体が、放射状に配設
されてなる核融合装置量のトロイダルコイルにおいて、
前記トロイダルコイル単体の内側面に渦電流に対する実
効的な抵抗を大きくするスリットを設けたことを特徴と
する核融合装置の(コ) スリットは、トロイダルコイ
ルの中心軸線側に設けられている特許請求の範囲第1項
記載の核融合装置のトロイダルコイルリ(1) In a toroidal coil for a nuclear fusion device in which a single toroidal coil consisting of a conductor through which current flows and a can supporting the conductor is arranged radially,
(c) A nuclear fusion device characterized in that a slit is provided on the inner surface of the single toroidal coil to increase effective resistance to eddy current. The toroidal coil reel of the fusion device described in item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59118260A JPS60262089A (en) | 1984-06-11 | 1984-06-11 | Toroidal coil for nuclear fusion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59118260A JPS60262089A (en) | 1984-06-11 | 1984-06-11 | Toroidal coil for nuclear fusion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60262089A true JPS60262089A (en) | 1985-12-25 |
Family
ID=14732219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59118260A Pending JPS60262089A (en) | 1984-06-11 | 1984-06-11 | Toroidal coil for nuclear fusion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60262089A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04178593A (en) * | 1990-11-14 | 1992-06-25 | Kawasaki Heavy Ind Ltd | Vessel installed in nuclear fusion reactor |
-
1984
- 1984-06-11 JP JP59118260A patent/JPS60262089A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04178593A (en) * | 1990-11-14 | 1992-06-25 | Kawasaki Heavy Ind Ltd | Vessel installed in nuclear fusion reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4707676A (en) | Superconducting magnet | |
US4833434A (en) | Superconducting electromagnet for NMR imaging | |
JPH0371518A (en) | Superconductor | |
JPS60123756A (en) | Magnet device | |
JPS60262089A (en) | Toroidal coil for nuclear fusion device | |
US5387889A (en) | Superconducting magnet apparatus | |
JP3442923B2 (en) | Superconducting device | |
JPH0570921B2 (en) | ||
JP2533119B2 (en) | Superconducting device for short circuit suppression | |
JPH08162316A (en) | Superconducting magnet apparatus | |
JP2919036B2 (en) | Superconducting conductor and magnet using the conductor | |
JPS60217611A (en) | Superconductive device | |
JPS6122919B2 (en) | ||
JP3262176B2 (en) | Superconducting magnet device | |
JP2609346B2 (en) | Gradient magnetic field coil device | |
JPS6384541A (en) | Magnetic resonance imaging apparatus | |
JPS6155071B2 (en) | ||
JPH103825A (en) | Super conducting bus line | |
JP2569061B2 (en) | RFP plasma experiment equipment | |
JPH0555999B2 (en) | ||
JPS60187885A (en) | Superconductiong device | |
JPS63239875A (en) | Superconducting shield | |
Gupta et al. | RHIC Insertion Magnets | |
JPS5913718B2 (en) | Fusion device upper mount | |
JP2001119078A (en) | Superconducting current lead |