JPS6212317Y2 - - Google Patents
Info
- Publication number
- JPS6212317Y2 JPS6212317Y2 JP1980159971U JP15997180U JPS6212317Y2 JP S6212317 Y2 JPS6212317 Y2 JP S6212317Y2 JP 1980159971 U JP1980159971 U JP 1980159971U JP 15997180 U JP15997180 U JP 15997180U JP S6212317 Y2 JPS6212317 Y2 JP S6212317Y2
- Authority
- JP
- Japan
- Prior art keywords
- column
- ferromagnetic
- ferromagnetic column
- heating coil
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 23
- 230000005291 magnetic effect Effects 0.000 description 21
- 230000005284 excitation Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Plasma Technology (AREA)
Description
【考案の詳細な説明】
本考案は、環状放電型核融合装置の支持装置及
びオーム加熱コイル用鉄心の配置形成の改善及び
この改善に伴うコイル及びトロイダルコイルの改
善に関するものである。[Detailed Description of the Invention] The present invention relates to an improvement in the arrangement and formation of a supporting device and an iron core for an ohmic heating coil for an annular discharge type nuclear fusion device, and improvements in the coil and toroidal coil associated with this improvement.
従来、環状放電型該融合実験装置においては、
第1図に示すごとくオーム加熱コイル1の磁路に
鉄心2を挿入することが行なわれて来たが、プラ
ズマ3を太く即ち断面半径を大きく、かつ、プラ
ズマの曲率半径も大きくする必要性や、トロイダ
ルコイル5およびその支持装置を強いトロイダル
磁場発生に耐えるよう大きくする必要性などのた
めに装置の中心部の空間的余裕が著しく制限され
る場合、鉄心の挿入を断念した所謂空心構造が採
用されて来た。この種の空心構造の場合、変圧器
の作用と同様な電磁誘導作用によつてプラズマ電
流を誘起するオーム加熱コイル1は、空心のコイ
ルとなるため、その励磁インダクタンスは著しく
小となり、従つてその電源から大きな励磁電流を
注入しない限りプラズマの誘起及びオーム加熱が
不可能とならざるを得ない。この場合、オーム加
熱コイル電源の電流のうち、プラズマ電流に対応
する成分、すなわち変圧器でいえば所謂負荷電流
成分よりも、オーム加熱コイル1の磁束の維持に
必要な励磁電流成分の方が著しく大きくなるため
この電源の容量が徒らに大きくなる等の欠点が生
じる。 Conventionally, in the annular discharge type fusion experimental device,
As shown in Fig. 1, an iron core 2 has been inserted into the magnetic path of an ohmic heating coil 1, but there is a need to make the plasma 3 thicker, that is, have a larger cross-sectional radius, and also increase the radius of curvature of the plasma. If the space in the center of the device is severely limited due to the need to make the toroidal coil 5 and its supporting device large enough to withstand the generation of a strong toroidal magnetic field, a so-called air-core structure is adopted in which the insertion of an iron core is abandoned. I've been In the case of this type of air-core structure, the ohmic heating coil 1, which induces a plasma current by an electromagnetic induction effect similar to the action of a transformer, is an air-core coil, so its excitation inductance is extremely small; Plasma induction and ohmic heating are impossible unless a large excitation current is injected from the power source. In this case, the excitation current component required to maintain the magnetic flux of the ohmic heating coil 1 is significantly larger than the component corresponding to the plasma current, that is, the so-called load current component in a transformer, of the current of the ohmic heating coil power supply. This increases the size of the power supply, resulting in drawbacks such as an unnecessarily large capacity of the power supply.
本考案は、この欠点を解消するため、オーム加
熱コイルの励磁インダクタンスを増大させる目的
に対し最も肝要な対策として装置中心部に強磁性
体柱を設けてオーム加熱コイルの磁束の磁路の磁
気抵抗を減少させることを特徴とするものであつ
て以下本考案の実施例についてこれを説明する。 In order to eliminate this drawback, the present invention provides a ferromagnetic column in the center of the device as the most important countermeasure for increasing the excitation inductance of the ohmic heating coil. The present invention is characterized in that it reduces the amount of water, and will be described below with reference to embodiments of the present invention.
第2図は、オーム加熱コイルの磁路について説
明するための図であつて、この種の直円状乃至
これに近い軸対称状コイルのインダクタンスを空
心状態における値より大きくするためには、空心
状態におけるコイル磁束磁路9の磁気抵抗のうち
大きな比率を占めるオーム加熱コイル1の内側領
域、即ち図の6の領域の磁気抵抗を減少させるこ
とが最も肝要である。オーム加熱コイル1の外側
領域ではコイル磁束は広い空間に広がりうるので
その磁気抵抗は比較的小さい。従つて、内側領域
に円柱状乃至軸対称状の強磁性体柱11を挿入す
ることにより、コイルのインダクタンス値を空心
状態の例えば数倍〜10倍とし、同一磁束を得るに
必要な励磁電流を空心状態の10分の1乃至数分の
1程度とすることができる。また、この種の軸対
称性強磁性体柱11を挿入した場合のコイルの磁
場は本質的に軸対称性のものであつて、プラズマ
3にとつて有害な非軸対称性の磁気乱れを含まな
い。 FIG. 2 is a diagram for explaining the magnetic path of an ohmic heating coil. It is most important to reduce the magnetic resistance in the inner region of the ohmic heating coil 1, that is, the region 6 in the figure, which accounts for a large proportion of the magnetic resistance of the coil magnetic flux path 9 in this state. In the outer region of the ohmic heating coil 1, the coil magnetic flux can spread over a large space, so that its reluctance is relatively small. Therefore, by inserting a cylindrical or axially symmetrical ferromagnetic column 11 in the inner region, the inductance value of the coil can be made several times to ten times that of the air-core state, and the excitation current required to obtain the same magnetic flux can be increased. It can be set to about one-tenth to one-several fraction of the empty core state. Furthermore, when this type of axisymmetric ferromagnetic column 11 is inserted, the magnetic field of the coil is essentially axisymmetric and contains non-axisymmetric magnetic disturbances that are harmful to the plasma 3. do not have.
猶、従来の鉄心入り該融合装置の如くコイル外
側領域にも強磁性体柱11をおくことにより、イ
ンダクタンスをさらに増大させうるが、反面これ
は装置の現象観測および分解、組立の自由度の制
限などをもたらすので好ましくない。 Although the inductance can be further increased by placing the ferromagnetic material column 11 in the outer region of the coil as in the conventional fusion device with an iron core, on the other hand, this limits the degree of freedom in observing phenomena and disassembling and assembling the device. This is not desirable because it causes problems such as
第3図は、オーム加熱コイル及び挿入された強
磁性体柱の形状の1例を示すものであつて、強磁
性体柱11及び必要あらばオーム加熱1を図の如
く上下両端に広がつた構造とすることとにより、
コイル内側領域を出た磁束の大部分がプラズマ3
を横切らず専らプラズマ3の外側領域を還流し、
従つてプラズマの不必要な擾乱を与えないように
したものである。 FIG. 3 shows an example of the shape of the ohmic heating coil and the inserted ferromagnetic column. By making it a structure,
Most of the magnetic flux leaving the inner region of the coil becomes plasma 3.
The outer region of the plasma 3 is exclusively refluxed without crossing the
Therefore, unnecessary disturbance of the plasma is avoided.
第4図は、強磁性体柱11の断面図の一例を示
すものであつて、オーム加熱コイルの磁束の時間
的変化により強磁性体柱11に周方向の渦電流が
流れることを防止するため、図のごとく放射状に
これを分解し、分割部に絶縁物10を挿入してい
る。 FIG. 4 shows an example of a cross-sectional view of the ferromagnetic column 11, and is used to prevent circumferential eddy currents from flowing in the ferromagnetic column 11 due to temporal changes in the magnetic flux of the ohmic heating coil. As shown in the figure, this is disassembled radially, and an insulator 10 is inserted into the divided portion.
第5図は、本考案を適用した装置全体の構成例
を示すものである。図において、トロイダルコイ
ル5は、その発生する磁場により、電磁的な膨張
力をうけるため、強磁性体柱11及び枠組部品7
及び8から成るトロイダルコイル支持装置により
トロイダルコイル5を囲繞してこの電磁力に対抗
するごとくなつている。この構造に於て、強磁性
体柱11は、トロイダルコイル支持装置7,8の
上部及び下部を機械的に連結してこの支持装置全
体の構造力学的強度を効果的に高める機能を持つ
が、本発明に於ては、強磁性体によつて構成され
ているから前述のごときオーム加熱コイル1の励
磁インダクタンスの増大を図ることができる。強
磁性体柱11の比透磁率が例えば数十程度であれ
ば、励磁インダクタンス増加の効果は充分にあ
り、またこの種の該融合装置は間歇的に運転され
た関係上商用周波数運転の場合のように渦流損、
ヒステリシス損が大きな問題となることはないの
で、強磁性体柱11の電気的抵抗、磁気的ヒステ
リシス特性に対して特に厳しい要求はない。ま
た、構造力学上、強磁性体柱11と他の支持装置
部分7,8との力の分担を適当な割合いにおさえ
ることにより、強磁性体柱11の応力が許容応力
以内に納まるよう設計することができる。従つ
て、強磁性体柱11に上記の如く、構造材及び鉄
心としての両機能をもたせることができる。さら
に、第5図から明白なように、強磁性体柱11は
上下に直線状に延在しており、一方、トロイダル
コイル5の上記加熱コイル1と上記強磁性体柱1
1との間に位置する部分、即ち同図において強磁
性体柱11と接触している部分は強磁性体柱11
の外面に沿つて該強磁性体柱11の軸線(上下方
向の中心線)方向に直線状に延在しており、加熱
コイル1もまた同様に強磁性体柱11の外面に沿
つて該強性体柱11の軸線方向に直線状に延在し
ている。従つて、強磁性体柱11の断面積を十分
確保でき強磁性体であることと相まつてインダク
タンスを更に増大でき、更には、トロイダルコイ
ル5に作用する膨張力に起因する強磁性体柱11
の応力がその上下全域に亘つて均一に生じると共
に単位面積当りの応力が小さくなり強磁性体柱1
1自体の変形、歪等も制御できる。 FIG. 5 shows an example of the overall configuration of an apparatus to which the present invention is applied. In the figure, the toroidal coil 5 receives an electromagnetic expansion force due to the generated magnetic field, so the ferromagnetic column 11 and the frame part 7
and 8 surround the toroidal coil 5 to counteract this electromagnetic force. In this structure, the ferromagnetic pillar 11 has the function of mechanically connecting the upper and lower parts of the toroidal coil support devices 7 and 8 to effectively increase the structural mechanical strength of the entire support device. In the present invention, since the ohmic heating coil 1 is made of a ferromagnetic material, the excitation inductance of the ohmic heating coil 1 can be increased as described above. If the relative magnetic permeability of the ferromagnetic column 11 is, for example, about several tens of tens, the effect of increasing the excitation inductance is sufficient, and since this type of fusion device is operated intermittently, Eddy current loss,
Since hysteresis loss does not pose a major problem, there are no particularly strict requirements for the electrical resistance and magnetic hysteresis characteristics of the ferromagnetic column 11. In addition, from the viewpoint of structural mechanics, the stress of the ferromagnetic column 11 is designed to be within the allowable stress by suppressing the force sharing between the ferromagnetic column 11 and the other supporting device parts 7 and 8 to an appropriate ratio. can do. Therefore, the ferromagnetic column 11 can have both functions as a structural member and an iron core, as described above. Further, as is clear from FIG. 5, the ferromagnetic column 11 extends vertically in a straight line, while the heating coil 1 of the toroidal coil 5 and the ferromagnetic column 1
1, that is, the part that is in contact with the ferromagnetic column 11 in the figure is the ferromagnetic column 11.
The heating coil 1 extends linearly along the outer surface of the ferromagnetic column 11 in the axis (vertical center line) direction, and the heating coil 1 similarly extends along the outer surface of the ferromagnetic column 11 in the direction of the axis (vertical center line) of the ferromagnetic column 11. It extends linearly in the axial direction of the body column 11. Therefore, a sufficient cross-sectional area of the ferromagnetic column 11 can be ensured, and in conjunction with the fact that it is a ferromagnetic material, the inductance can be further increased.
The stress of ferromagnetic material column 1 is generated uniformly over the entire upper and lower regions, and the stress per unit area is reduced.
Deformation, distortion, etc. of 1 itself can also be controlled.
なお、第5図に於て、支持装置部分7及び8の
うち、プラズマ現象観測の障害には比較的なりに
くい支持装置7は、軸対称構造に近い形をとりう
る場合があるので、その際にこれも同様に磁性体
とすれば、非軸対称性の磁場乱れを発生すること
なく、且第3図で説明した如くプラズマ3を横切
る有害な磁力線の少ない磁場分布を実現しうる。 In addition, in FIG. 5, among the support device parts 7 and 8, the support device 7, which is relatively less likely to interfere with plasma phenomenon observation, may have a shape close to an axially symmetrical structure. Similarly, if this is made of a magnetic material, a magnetic field distribution with fewer harmful lines of magnetic force crossing the plasma 3 can be realized without generating non-axisymmetric magnetic field disturbances as explained in FIG.
第1図は従来の鉄心入り環状放電型該融合装置
の一例を示す構成図、第2図はオーム加熱コイル
の励磁インダクタンスを増大させる原理的説明
図、第3図は本考案における磁性体柱およびオー
ム加熱コイルの形状の一例を示す断面図、第4図
は磁性体柱の断面説明図、第5図は本考案による
該融合装置の実施例の全体構成を示す構成図であ
る。
図において、1はオーム加熱コイル、3は環状
プラズマ、4はプラズマ容器、5はトロイダルコ
イル、7,8は支持装置、11は強磁性体柱であ
る。なお、各図中の同一符号は同一または相当部
分を示す。
Fig. 1 is a configuration diagram showing an example of the conventional iron-core annular discharge type fusion device, Fig. 2 is an explanatory diagram of the principle of increasing the excitation inductance of an ohmic heating coil, and Fig. 3 is a diagram showing the magnetic column and FIG. 4 is a sectional view showing an example of the shape of an ohmic heating coil, FIG. 4 is an explanatory cross-sectional view of a magnetic column, and FIG. 5 is a configuration diagram showing the overall configuration of an embodiment of the fusion device according to the present invention. In the figure, 1 is an ohmic heating coil, 3 is an annular plasma, 4 is a plasma vessel, 5 is a toroidal coil, 7 and 8 are support devices, and 11 is a ferromagnetic column. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
軸部分に設けられた強磁性体柱、この強磁性体柱
を中心に巻回されると共に上記強磁性体柱の外面
に沿つて強磁性体柱の軸線方向に延在し上記プラ
ズマ容器内にプラズマ電流を発生させる加熱コイ
ル、上記プラズマ容器および上記加熱コイルに巻
回され上記強磁性体柱と上記加熱コイルの間に位
置する部分が該強磁性体柱の外面に沿つて該強磁
性体柱の軸線方向に延在するトロイダルコイル、
ならびに上記強磁性体柱に連結されて上記トロイ
ダルコイルおよび上記プラズマ容器を支持する支
持装置を備えた環状核融合装置。 An annular plasma vessel, a ferromagnetic column provided at the axis of symmetry of the plasma vessel, and a ferromagnetic column wound around the ferromagnetic column and along the outer surface of the ferromagnetic column. a heating coil that extends in a direction and generates a plasma current in the plasma vessel; a portion that is wound around the plasma vessel and the heating coil and located between the ferromagnetic column and the heating coil is the ferromagnetic column; a toroidal coil extending in the axial direction of the ferromagnetic column along the outer surface of the ferromagnetic column;
and a support device connected to the ferromagnetic column to support the toroidal coil and the plasma vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980159971U JPS6212317Y2 (en) | 1980-11-08 | 1980-11-08 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980159971U JPS6212317Y2 (en) | 1980-11-08 | 1980-11-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5670596U JPS5670596U (en) | 1981-06-10 |
JPS6212317Y2 true JPS6212317Y2 (en) | 1987-03-28 |
Family
ID=29386427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980159971U Expired JPS6212317Y2 (en) | 1980-11-08 | 1980-11-08 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6212317Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778343A (en) * | 1971-03-11 | 1973-12-11 | Atomic Energy Commission | Device for plasma confinement and heating by high currents and non-classical plasma transport properties |
-
1980
- 1980-11-08 JP JP1980159971U patent/JPS6212317Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778343A (en) * | 1971-03-11 | 1973-12-11 | Atomic Energy Commission | Device for plasma confinement and heating by high currents and non-classical plasma transport properties |
Also Published As
Publication number | Publication date |
---|---|
JPS5670596U (en) | 1981-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0450949B1 (en) | Actively shielded magnetic resonance magnet without cryogens | |
JPS6212317Y2 (en) | ||
JP3861058B2 (en) | Open magnet with embedded magnetic field forming coil | |
JPS625161A (en) | Magnet for mri | |
JPS6122919B2 (en) | ||
JP3249506B2 (en) | Transformer for flyback | |
JPS59159514A (en) | Foil-wound transformer | |
JPH0236153Y2 (en) | ||
JPH0437008A (en) | Reactor | |
US6724288B1 (en) | Transformers tube type | |
JPH0236254Y2 (en) | ||
JPS5913718B2 (en) | Fusion device upper mount | |
JPS6153589A (en) | Torus type nuclear fusion device | |
JPS5828354Y2 (en) | Air core reactor device | |
JP2500305Y2 (en) | Gradient magnetic field generating coil | |
JPS6210846A (en) | Deflection yoke | |
JPH0245905A (en) | Converter transformer | |
JPS6311687Y2 (en) | ||
JPH0233198Y2 (en) | ||
JPS5810157Y2 (en) | Coil for nuclear fusion device | |
JP2601317Y2 (en) | Coil device | |
JPS6256472B2 (en) | ||
JPS624847B2 (en) | ||
JPH09205024A (en) | Electromagnetic induction machine | |
JPS642230B2 (en) |