JPS61101757A - Cryostatic device - Google Patents

Cryostatic device

Info

Publication number
JPS61101757A
JPS61101757A JP22443184A JP22443184A JPS61101757A JP S61101757 A JPS61101757 A JP S61101757A JP 22443184 A JP22443184 A JP 22443184A JP 22443184 A JP22443184 A JP 22443184A JP S61101757 A JPS61101757 A JP S61101757A
Authority
JP
Japan
Prior art keywords
rectifier
refrigerant
low
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22443184A
Other languages
Japanese (ja)
Other versions
JPH0239712B2 (en
Inventor
雄二 吉田
茂夫 鈴木
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22443184A priority Critical patent/JPH0239712B2/en
Publication of JPS61101757A publication Critical patent/JPS61101757A/en
Publication of JPH0239712B2 publication Critical patent/JPH0239712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い1段圧縮により低温を
得る低温装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a low temperature apparatus that uses a non-azeotropic mixed refrigerant to obtain a low temperature through one-stage compression.

従来の技術 従来非共沸混合冷媒を用い1段圧縮により低温を得る低
温装置としては、手塚俊−著「冷凍機」(共立出版、1
965年初版)43ページに示される如く、第3図の様
な低温装置が提案されている。瀉4図において、1は圧
縮機、2は凝縮器、3は凝縮器出口に接続された気液分
離器であり、流入する非共沸混合冷媒は気液分離器3内
で、上部の低沸点成分を多く含むガス成分と下部の高沸
点成分を多く含む液成分に分離される。さらに下部の液
成分は第1絞り装置4で減圧され寒冷を発生すると共に
、熱交換器5を経て圧縮機1に吸入される。一方気液分
離器3上部のガス成分は熱交換器5で凝縮液化し、第2
絞り装置6で減圧され蒸発器7にて低温を発生した後圧
縮機1に吸入される。
Conventional technology Conventionally, a low-temperature device that uses a non-azeotropic mixed refrigerant to obtain a low temperature through one-stage compression is described in "Refrigerating Machine" by Shun Tezuka (Kyoritsu Shuppan, Vol. 1).
As shown on page 43 (first edition in 1965), a low-temperature device as shown in Figure 3 has been proposed. In Figure 4, 1 is a compressor, 2 is a condenser, and 3 is a gas-liquid separator connected to the outlet of the condenser. It is separated into a gas component containing many boiling point components and a lower liquid component containing many high boiling point components. Further, the lower liquid component is depressurized by the first throttle device 4 to generate cold, and is sucked into the compressor 1 via the heat exchanger 5. On the other hand, the gas component in the upper part of the gas-liquid separator 3 is condensed and liquefied in the heat exchanger 5.
The pressure is reduced by the expansion device 6, the temperature is generated by the evaporator 7, and then the fluid is sucked into the compressor 1.

かかる低温装置の作用様態を、非共沸混合冷媒の温度対
濃度線図(以下TX線図と称する)をもって説明する。
The mode of operation of such a low-temperature device will be explained using a temperature versus concentration diagram (hereinafter referred to as a TX diagram) of a non-azeotropic mixed refrigerant.

第5図は二成分からなる非共沸混合冷媒において、第4
図の低温装置における凝縮器2の高圧圧力と、蒸発器7
の低圧圧カ一定の状態におけるTX線図である。各圧力
のレンズ型の上部曲線は飽和ガス線を下部曲線は飽和液
線を表し、飽和ガス線より上部は過熱ガス域、飽和液線
より下部は過冷却液域、レンズ型の内部は気液共有状態
の二相域を示している。かかるTX線図において、第4
図の低温装置の各部状態を表すと、第4図の点a−jは
第4図の点a−jに対応している。すなわち気液分離器
3内ではガス成分と液成分に分離されるが、ガス成分に
は低沸点成分をより多く含むことになり、熱交換器5に
て凝縮液化され減圧された後、蒸発器7(点h−i間)
で低温を発生する。従って圧縮機1を循環する混合冷媒
濃度に比べ蒸発器7ではより低沸点成分が多く流れるた
め同一の低圧圧力においてより低温を得ることが可能と
なるものであり、このことは非共沸混合冷媒のTX線図
が、低沸点成分濃度を横軸にとると右下りとなることに
より示されるものである。
Figure 5 shows that in a non-azeotropic refrigerant mixture consisting of two components, the fourth
High pressure of condenser 2 and evaporator 7 in the low temperature equipment shown in the figure
FIG. 2 is a TX diagram in a state where the low pressure is constant. The upper curve of the lens shape for each pressure represents the saturated gas line, and the lower curve represents the saturated liquid line. Above the saturated gas line is the superheated gas region, below the saturated liquid line is the supercooled liquid region, and the inside of the lens shape is gas and liquid. It shows a two-phase region in a shared state. In such a TX diagram, the fourth
When expressing the state of each part of the low temperature apparatus shown in the figure, points a-j in FIG. 4 correspond to points a-j in FIG. That is, the gas component is separated into a gas component and a liquid component in the gas-liquid separator 3, but the gas component contains more low-boiling point components, and after being condensed and liquefied in the heat exchanger 5 and reduced in pressure, it is transferred to the evaporator. 7 (between points h-i)
generates low temperatures. Therefore, compared to the mixed refrigerant concentration circulating in the compressor 1, more low-boiling point components flow in the evaporator 7, making it possible to obtain a lower temperature at the same low pressure. This is shown by the TX diagram sloping downward to the right when the horizontal axis represents the concentration of low boiling point components.

発明が解決しようとする問題点 以上説明した如〈従来の低副装置は、1段圧縮により低
温を得ることが可能となるものの、その温度レベルは非
共沸混合冷媒のTX線図により制約を受は限界があるの
が欠点であった。すなわち、第3図の低温@置において
は、気液分離器3内で分離されるガス成分と液成分は、
第4図のTX線図に示した高圧での飽和ガス線と飽和液
線の一定冷媒を構成する成分冷媒により一義的に決定さ
れたものとなるためである。
Problems to be Solved by the Invention As explained above, although the conventional low-auxiliary equipment is capable of obtaining low temperatures through one-stage compression, the temperature level is limited by the TX diagram of the non-azeotropic mixed refrigerant. The drawback was that there were limits to receiving. That is, in the low-temperature @ position shown in FIG. 3, the gas component and liquid component separated in the gas-liquid separator 3 are as follows.
This is because it is uniquely determined by the component refrigerant constituting the constant refrigerant of the saturated gas line and the saturated liquid line at high pressure shown in the TX diagram of FIG.

本発明は上記した従来低温装置の欠点を解消することを
目的とするものであシ、具体的には圧縮機を循環する混
合冷媒濃度に比べ蒸発器を流れる冷媒を従来以上に低沸
点成分が多く流れる如く構成することによって、同一の
低圧圧力でも従来より、さらに低い低温を得ることを可
能とするものである。
The purpose of the present invention is to eliminate the drawbacks of the conventional low-temperature equipment described above. Specifically, the refrigerant flowing through the evaporator has a lower boiling point component than the conventional one, compared to the mixed refrigerant concentration circulating through the compressor. By configuring it to allow a large amount of flow, it is possible to obtain a lower temperature than before even at the same low pressure.

問題点を解決するだめの手段 本発明において上記目的を達成するための手段は、高圧
に設けた気液分離器の代りに中間圧において精留器を設
けると共に、精留器下部の加熱源として圧縮機吐出ガス
を用い、精留器上部の冷却源としては精留器下部から抽
出される液冷媒を減圧して冷却し、精留器下部では高沸
点成分の上部では低沸点成分の濃度を高め、高沸点成分
はその1ま圧縮機に吸入させると共に、低沸点成分のみ
を減圧して蒸発器に流入させる如く構成するものである
Means for Solving the Problems The means for achieving the above object in the present invention is to provide a rectifier at intermediate pressure instead of the gas-liquid separator installed at high pressure, and to use a rectifier as a heating source at the bottom of the rectifier. The compressor discharge gas is used as a cooling source for the upper part of the rectifier by reducing the pressure of the liquid refrigerant extracted from the lower part of the rectifier. The high boiling point components are directly sucked into the compressor, while only the low boiling point components are depressurized and flowed into the evaporator.

作  用 本発明になる手段の主たる作用は、精留器を中間圧力の
位置に設けているだめ、高圧状態の吐出ガス及び精留器
下部の液冷媒を低圧まで減圧して得られる寒冷との間で
それぞれ充分な温度差を確保することが可能となり、精
留器内部での気液接触により精留器下部と上部に分離さ
れる高沸点成分と低沸点成分し儂度幅を従来以上に拡大
すると共に、低沸点成分のみを蒸発器に流入させて従来
よシさらに低い低温を得るものである。
Function The main function of the means according to the present invention is that since the rectifier is installed at an intermediate pressure position, the high-pressure discharge gas and the liquid refrigerant at the bottom of the rectifier are reduced to a low pressure and the cold temperature is reduced. It is now possible to secure a sufficient temperature difference between the two, and the high boiling point component and low boiling point component are separated into the bottom and top of the rectifier through gas-liquid contact inside the rectifier, making the temperature range wider than before. At the same time, only low boiling point components are allowed to flow into the evaporator to obtain a lower temperature than before.

実施例 本発明になる低温装置の実施例を第1図をもって説明す
る。第1図において11は圧縮機、12は吐出ガス管、
13は凝縮器、14は第1絞り装置、15は中間圧力の
位置に配置された精留器であり、精留器15内には充填
材16が充填されている。また精留器15下部から抽出
される液冷媒は、一部が第1熱交換器17を介して吐出
ガス管12と熱交換して精留器15の下部に帰還され、
残りは第2絞り装置18にて減圧した後第2熱交換器1
9を経て圧縮機11に吸入される。さらに精留器15の
上部から抽出されるガス冷媒は第2熱交換器19にて凝
縮液化した後、一部が精留器15の上部に帰還され、残
りは第3絞り装置20で減圧され蒸発器21にて低温を
発生した後圧縮機11に吸入される。
Embodiment An embodiment of the low temperature apparatus according to the present invention will be explained with reference to FIG. In FIG. 1, 11 is a compressor, 12 is a discharge gas pipe,
13 is a condenser, 14 is a first throttle device, and 15 is a rectifier disposed at an intermediate pressure position. The rectifier 15 is filled with a filler 16. Further, a part of the liquid refrigerant extracted from the lower part of the rectifier 15 exchanges heat with the discharge gas pipe 12 via the first heat exchanger 17 and is returned to the lower part of the rectifier 15.
The remaining pressure is reduced in the second expansion device 18 and then transferred to the second heat exchanger 1.
9 and is sucked into the compressor 11. Furthermore, after the gas refrigerant extracted from the upper part of the rectifier 15 is condensed and liquefied in the second heat exchanger 19, a part is returned to the upper part of the rectifier 15, and the remaining part is depressurized in the third expansion device 20. After generating a low temperature in the evaporator 21, it is sucked into the compressor 11.

次に本発明になる低温装置の作用様態を、従来例と同じ
く二成分から成る非共沸混合冷媒のTXの低圧圧力が一
定の状態におけるTX線図である。
Next, there is shown a TX diagram showing the working mode of the low temperature apparatus according to the present invention in a state where the low pressure of TX of a non-azeotropic mixed refrigerant consisting of two components is constant, as in the conventional example.

かかるTX線図において、第1図の低温装置の各部状態
を表すと、第1図の点a−Qは第2図の点a−Qに対応
している。すなわち、中間圧力の位置に配置された精留
器15内部では、第1絞り装置14を経て流入する気液
共存状態の冷媒の内、ガス冷媒は上昇し液冷媒は下降す
るばかりでなく、第1熱交換器17に流入する液冷媒は
、吐出ガス管12により加熱され揮発性の低沸点成分が
ガス状態となって精留器15内を上昇し、精留器15の
上部から抽出されるガス冷媒は第2熱交換器19によシ
凝縮頭化され、一部が精留器15に帰還され液冷媒とし
て下降する。このとき精留器15内部では、上昇するガ
ス冷媒と下降する液冷媒が、充填材16により拡大され
た接触面積で気液接触し、精留作用により下降する液冷
媒はより高沸点成分に富み、上昇するガス冷媒はより低
沸点成分に富む様になる。この状態は第2図のTX線図
にA おいては、中間圧での飽和ガス線と飽和液線とで囲まれ
た範囲内で多段に分離された状態に対応し、精留器15
下部では点eで示される液冷媒と、上部では点fで示さ
れるガス冷媒に分離されるものであり、従来以上に濃度
幅を拡大して分離することが可能となるものである。従
って下部の高沸点成分は第2絞シ装置18を経て第2熱
交換器19にて寒冷を発生するのに利用され、そのまま
圧縮機11に吸入されるものの、上部の低沸点成分は第
2熱交換器19で凝縮液化し、第3絞り装動0にて低圧
まで減圧され、蒸発器21にて低温を発生するものであ
り、蒸発器21を流れる冷媒は従来以上に低沸点成分が
多く流れるため、同一の低圧圧力でも、従来より、さら
に低い低温を得ることが可能となるものである。
In this TX diagram, when representing the state of each part of the cryogenic apparatus shown in FIG. 1, points a-Q in FIG. 1 correspond to points a-Q in FIG. 2. That is, inside the rectifier 15 disposed at an intermediate pressure position, among the refrigerant in a gas-liquid coexistence state flowing through the first throttle device 14, the gas refrigerant not only rises and the liquid refrigerant descends, but also 1 The liquid refrigerant flowing into the heat exchanger 17 is heated by the discharge gas pipe 12, and volatile low-boiling components become gaseous, rise in the rectifier 15, and are extracted from the upper part of the rectifier 15. The gas refrigerant is condensed in the second heat exchanger 19, and a portion is returned to the rectifier 15 and descends as a liquid refrigerant. At this time, inside the rectifier 15, the rising gas refrigerant and the descending liquid refrigerant come into gas-liquid contact in the contact area expanded by the filler 16, and the liquid refrigerant descending due to the rectifying action is richer in high-boiling point components. , the rising gas refrigerant becomes richer in low-boiling components. This state corresponds to the state of separation in multiple stages within the range surrounded by the saturated gas line and the saturated liquid line at intermediate pressure in the TX diagram of FIG.
At the bottom, the refrigerant is separated into a liquid refrigerant shown by point e, and at the top, it is separated into a gas refrigerant shown at point f, making it possible to separate the refrigerant with a wider concentration range than before. Therefore, the high boiling point components in the lower part are used to generate refrigeration in the second heat exchanger 19 via the second throttling device 18 and are sucked into the compressor 11 as they are, but the low boiling components in the upper part are The refrigerant is condensed and liquefied in the heat exchanger 19, reduced to a low pressure in the third throttle device 0, and then generated at a low temperature in the evaporator 21. The refrigerant flowing through the evaporator 21 contains more low-boiling point components than before. Because it flows, it is possible to obtain a lower temperature than before even at the same low pressure.

次に本発明になる低温装置の第2の実施例を、第3図の
精留器まわりの要部についてのみ説明する。第3図にお
いて番号12〜19は、第1図の実施例と同一の構成要
素であり、本実施例においては吐出ガス管12を精留器
15の下部に一体的に構成すると共に、熱交換器19を
経て精留器15上部に帰還する配管中に流量制御弁21
を設けたものである。かかる構成を用いることによって
もその作用様態は第1図の実施例と同様であるが、第1
図の実施例における熱交換器17が省略され、流量制御
弁21によシ濃度分離幅の調整が可能となるものである
Next, a second embodiment of the low temperature apparatus according to the present invention will be described only with respect to the main parts around the rectifier shown in FIG. In FIG. 3, numbers 12 to 19 are the same components as in the embodiment shown in FIG. A flow control valve 21 is installed in the pipe that returns to the upper part of the rectifier 15 through the vessel 19.
It has been established. By using such a configuration, the mode of operation is similar to that of the embodiment shown in FIG.
The heat exchanger 17 in the illustrated embodiment is omitted, and the concentration separation width can be adjusted by the flow rate control valve 21.

発明の詳細 な説明した如く本発明になる低温装置は、中間圧となる
位置に精留器を設け、加熱源としては圧縮機吐出ガスを
用い、冷却源としては精留器下部から抽出される液冷媒
を減圧して用いているため、第2図に示される如く精留
作用により高沸点成分と低沸点成分とに分離する際に、
精留器下部では高めの温度、上部では低めの温度になる
にもかかわらず熱源との間に充分な温度差を確保するこ
とが可能となり精留作用を促進して分離幅を拡大するこ
とができるものである。さらに本発明になる低温装置は
、精留器上部で分離された低沸点成分のみを蒸発器に流
入させる如く構成しているので従来よりさらに低い低温
を得ることが可能となるものである。
As described in detail, the low temperature apparatus of the present invention is provided with a rectifier at an intermediate pressure position, uses compressor discharge gas as a heating source, and extracts gas from the bottom of the rectifier as a cooling source. Since the liquid refrigerant is used under reduced pressure, when it is separated into high boiling point components and low boiling point components by rectification as shown in Figure 2,
Even though the temperature is higher at the bottom of the rectifier and lower at the top, it is possible to maintain a sufficient temperature difference between the rectifier and the heat source, promoting the rectification action and expanding the separation width. It is possible. Furthermore, the low-temperature device of the present invention is configured so that only the low-boiling components separated in the upper part of the rectifier flow into the evaporator, making it possible to obtain a lower temperature than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の低温装置の構成図、 E第
2図は同実施例の作用様態を説明する非共沸混合冷媒の
温度対濃度線図、第3図は本発明の異なる実施例の低温
装置の構成図、第4図は従来の一実施例の低温装置の構
成図、第6図は第4図に示す従来例の作用様態を説明す
る非共沸混合冷媒の温度対濃度線図である。 11・・・・・・圧縮機、12・・・・・・吐出ガス管
、13・・・・・・凝縮器、15・・・・・・精留器、
21・・・・・・蒸発器、17.19・・・・・・熱交
換器、14 、18 、20・・・・・・絞り装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名馴 第3図 q 第 4 図 洸 第5図
Fig. 1 is a block diagram of a low-temperature device according to an embodiment of the present invention, Fig. 2 is a temperature vs. concentration diagram of a non-azeotropic mixed refrigerant to explain the working mode of the embodiment, and Fig. 3 is a diagram of a temperature vs. concentration diagram of a non-azeotropic mixed refrigerant. FIG. 4 is a configuration diagram of a low-temperature device of a different embodiment, FIG. 4 is a configuration diagram of a conventional low-temperature device of one embodiment, and FIG. 6 is a diagram showing the temperature of a non-azeotropic mixed refrigerant to explain the mode of operation of the conventional example shown in FIG. It is a versus concentration diagram. 11... Compressor, 12... Discharge gas pipe, 13... Condenser, 15... Rectifier,
21... Evaporator, 17.19... Heat exchanger, 14, 18, 20... Throttle device. Name of agent Patent attorney Toshio Nakao and one other person Figure 3 q Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)非共沸混合冷媒を封入し、圧縮機、吐出ガス管、
凝縮器、第1絞り装置、精留器を連結し、精留器下部の
液冷媒は吐出ガス管と熱交換すると共に抽出後第2絞り
装置を経て前記精留器上部のガス冷媒と熱交換して圧縮
機に吸入し、精留器上部のガス冷媒は凝縮液化後一部を
精留器上部に帰還し、残りを第3絞り装置を経て蒸発器
に流入させる如く構成したことを特徴とする低温装置。
(1) Enclose a non-azeotropic mixed refrigerant, compressor, discharge gas pipe,
A condenser, a first throttle device, and a rectifier are connected, and the liquid refrigerant at the bottom of the rectifier exchanges heat with the discharge gas pipe, and after extraction, passes through the second throttle device and exchanges heat with the gas refrigerant at the top of the rectifier. The gas refrigerant in the upper part of the rectifier is condensed and liquefied, and then a part of the refrigerant is returned to the upper part of the rectifier, and the remaining part flows into the evaporator through a third throttling device. cryogenic equipment.
(2)精留器冷媒と、圧縮−凝縮器間に設けた吐出ガス
管との熱交換をする熱交換器を、前記精留器内下部に設
けたことを特徴とする特許請求の範囲第1項記載の低温
装置。
(2) A heat exchanger for exchanging heat between the rectifier refrigerant and a discharge gas pipe provided between the compressor and the condenser is provided in the lower part of the rectifier. The low temperature device according to item 1.
JP22443184A 1984-10-25 1984-10-25 TEIONSOCHI Expired - Lifetime JPH0239712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22443184A JPH0239712B2 (en) 1984-10-25 1984-10-25 TEIONSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22443184A JPH0239712B2 (en) 1984-10-25 1984-10-25 TEIONSOCHI

Publications (2)

Publication Number Publication Date
JPS61101757A true JPS61101757A (en) 1986-05-20
JPH0239712B2 JPH0239712B2 (en) 1990-09-06

Family

ID=16813664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22443184A Expired - Lifetime JPH0239712B2 (en) 1984-10-25 1984-10-25 TEIONSOCHI

Country Status (1)

Country Link
JP (1) JPH0239712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288451A (en) * 1986-06-05 1987-12-15 松下電器産業株式会社 Heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288451A (en) * 1986-06-05 1987-12-15 松下電器産業株式会社 Heat pump device
JPH0743176B2 (en) * 1986-06-05 1995-05-15 松下電器産業株式会社 Heat pump device

Also Published As

Publication number Publication date
JPH0239712B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
JPS61101757A (en) Cryostatic device
JPS5938564A (en) Refrigerator
JP2924397B2 (en) Absorption type heat pump device
JPS6166054A (en) Heat pump device
JPH0745979B2 (en) Refrigeration cycle controller
JPS61262564A (en) Rectifier for heat pump device
JPS61262565A (en) Rectifier for heat pump device
JPS63197852A (en) Refrigeration cycle circuit
JPH0752038B2 (en) Refrigeration cycle equipment
JPH083887Y2 (en) Heat pump equipment
JPH063336Y2 (en) Refrigeration cycle
JPS5938566A (en) Refrigerator
JPS61262563A (en) Rectifier for heat pump device
JPH05172439A (en) Vapor-liquid separator of non-azeotropic mixed refrigerant for refrigerator
SU1015205A1 (en) Plant for storing and pumping liquefied gas
JPS63163737A (en) Heat pump device
JPS62134463A (en) Heat pump device
JPS5818061A (en) Refrigerator
JPS6334453A (en) Refrigeration cycle
JPH0745980B2 (en) Refrigeration cycle controller
JPS63263358A (en) Refrigeration cycle device
JPS6199062A (en) Heat pump device
JPH0745981B2 (en) Refrigeration cycle controller
JPS594872A (en) Rectifying column for separating gas
JPS63105370A (en) Heat pump type air conditioner