JPS61101420A - Preparation of tin oxide fine particle - Google Patents

Preparation of tin oxide fine particle

Info

Publication number
JPS61101420A
JPS61101420A JP22009084A JP22009084A JPS61101420A JP S61101420 A JPS61101420 A JP S61101420A JP 22009084 A JP22009084 A JP 22009084A JP 22009084 A JP22009084 A JP 22009084A JP S61101420 A JPS61101420 A JP S61101420A
Authority
JP
Japan
Prior art keywords
oxygen
tin
tin oxide
argon
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22009084A
Other languages
Japanese (ja)
Inventor
Kazunari Kubota
窪田 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22009084A priority Critical patent/JPS61101420A/en
Publication of JPS61101420A publication Critical patent/JPS61101420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain tin oxide fine powder having particle diameter of <=0.1mu, by placing an evaporation source of tin, an ionizing electrode and a thermionic emission filament in oxygen gas or gaseous mixture of oxygen and argon, and generating arc discharge at a low voltage. CONSTITUTION:The evaporation source 1 of tin, the ionizing electrode 2, the thermionic emission filament 3 and the collection plate 4 are arranged in the vacuum chamber 6. The vacuum chamber 6 is evacuated with the vacuum pump 7, and oxygen gas or a gaseous mixture of oxygen and argon is introduced into the vacuum chamber through the valve 10 furnished with oxygen flow meter and the valve 11 furnished with argon flow meter to a pressure of 0.001-0.1Torr. Tin is evaporated by electrifying the tin-evaporation source 1, and at the same time, thermions are emitted from the thermionic emission filament 3 to generate an arc discharge between the ionizing electrode 2 and the evaporation source 1. The evaporated in reacts with oxygen in the arc discharge, and the produced fine particles of tin oxide are attached to the collection plate 4.

Description

【発明の詳細な説明】 1=産業上の利用分野〕 本発明は、粒径が0.1μm以下の酸化スズ微孜子を袈
須するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1 = Industrial Application Field The present invention relates to a method for forming tin oxide particles having a particle size of 0.1 μm or less.

〔従来の技術〕[Conventional technology]

酸化スズは、透明電極、触媒、ガスセンサ材料など広A
用途を持った工業材料であるが、特に粒径を小さくした
ものは比表面積が犬きぐなることから高い触媒活性を示
し、高感度ガスセ/すの材料として注目されている。
Tin oxide is widely used in transparent electrodes, catalysts, gas sensor materials, etc.
Although it is an industrial material with many uses, in particular those with small particle sizes exhibit high catalytic activity due to their extremely large specific surface area, and are attracting attention as materials for high-sensitivity gas stations.

酸化スズ微粒子の製造方法としては、スズテトライノプ
ロポキシドを加水分解して酸化スズを沈殿させ、乾燥さ
せる化学的方法〔例えば、諏訪圭子、他、「材料J31
,955(1982))と、イオンブレーティング法で
微粒子状金属スズを基板に付着させた後大気中に放置し
て自然酸化させ、酸化スズ微粒子を得る物理的方法〔例
えば、小用倉−1他、「電子通信学会技術研究報告JE
D78−14.35(1978))が邸られている。
As a method for producing tin oxide fine particles, a chemical method of hydrolyzing tin tetrainopropoxide to precipitate tin oxide and drying it [for example, Keiko Suwa et al., "Material J31
, 955 (1982)), and a physical method to obtain fine tin oxide particles by attaching fine particulate metal tin to a substrate using the ion blating method and leaving it in the atmosphere to naturally oxidize [for example, Koyokura-1 et al., “IEICE Technical Research Report JE
D78-14.35 (1978)) is located here.

前者は粒径が均一で小さな酸化スズを得ることが可能で
あるが、出発原料のスズテトライノプロポキシドの価格
が高く、また加水分解の操作条件が厳しいため、高度の
専門的技術を必要とするなどの欠点を持っている。また
後者は真空蒸着法の一方法であるイオンプレーティング
法を用いてrるため、粒径の小さな酸化スズを簡単な製
造工程で得ることができるが、金属スズの微粒子を基板
上に付着させるために数百1以上の高電圧を用いること
から、操作上の危険性が高く、また基板上て付着させた
金属スズ微粒子を自然酸化させるため一週間も空気中に
放置する必要があり、製造に長期間を要するという欠点
を持っている。
The former method makes it possible to obtain small tin oxide with uniform particle size, but the starting material, tin tetrahinopropoxide, is expensive and the operating conditions for hydrolysis are severe, so highly specialized technology is required. It has disadvantages such as. The latter method uses the ion plating method, which is a method of vacuum evaporation, so tin oxide with small particle size can be obtained through a simple manufacturing process. Because a high voltage of several hundred units or more is used for this purpose, there is a high operational risk, and the metal tin particles attached to the substrate must be left in the air for a week to naturally oxidize. It has the disadvantage of requiring a long period of time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、従来方法の欠点を
解消し、高電圧を使用しない安全な装置を用いて、粒径
0.]μm以下の酸化スズ微粒子を短時間に大量に製造
できる方法を得ることにある。
The problem to be solved by the present invention is to eliminate the drawbacks of the conventional method, use a safe device that does not use high voltage, and reduce the particle size to 0. ] The object of the present invention is to obtain a method capable of producing a large amount of tin oxide fine particles having a size of .mu.m or less in a short period of time.

C問題点を解決するための手段〕 上述の問題点は本発明によれば、酸素、または酸素とア
ルゴンとの混合ガス中くスズの蒸発源とイオン化電極と
熱電子放射フィラメントとを配置し、低電圧でアーク放
電を発生させ、蒸発源より蒸発したスズと酸素とを反応
させることにより解決される。
Means for Solving Problem C] According to the present invention, the above problem can be solved by arranging a tin evaporation source, an ionization electrode, and a thermionic emission filament in oxygen or a mixed gas of oxygen and argon, This problem can be solved by generating an arc discharge at low voltage and causing the tin vaporized from the evaporation source to react with oxygen.

使用する酸素、または酸;スとアルゴンとの混合ガスの
圧力は、下限がα001 Torr 、上限が0、1 
Torrの範囲を使用するのが好ましい。
The pressure of the mixed gas of oxygen or acid and argon used has a lower limit of α001 Torr and an upper limit of 0 to 1 Torr.
Preferably, a range of Torr is used.

〔作用〕[Effect]

本発明方法による酸化スズ微粒子の生成機構の詳細は必
ずしも明らかではないが、はぼ次のように考えることが
できる。すなわち、蒸発源から蒸発したスズ原子は、蒸
発源とイオン化電極との間のアーク放電によりイオン化
するため活性化して反応性が高くなり、同様に雰囲気の
酸素もイオン化して活性化するため、スズと酸素;ハ容
易に反応する。どのスズと酸素の反応は発熱反応であり
Although the details of the production mechanism of tin oxide fine particles by the method of the present invention are not necessarily clear, it can be considered as follows. In other words, the tin atoms evaporated from the evaporation source are ionized by the arc discharge between the evaporation source and the ionization electrode, making them active and highly reactive.Similarly, the oxygen in the atmosphere is also ionized and activated, so the tin atoms Reacts easily with oxygen and oxygen. Which reaction between tin and oxygen is an exothermic reaction.

低圧状態での・熱焼反応であるので、生成した酸化スズ
は微粒子となる。
Since this is a thermal sintering reaction under low pressure, the tin oxide produced becomes fine particles.

また、通常、蒸発源とイオン化!極との間>Cアーク放
電を発生させるためには数百1以上の高電圧を必要とす
るが、蒸発源とイオン化電極の近傍ンこ1鴫電子放射フ
イラメントを萱いであるため、フィラメントを加熱して
0.5 m A程度の熱電子を放出させると、80v以
下の低電圧で安定なアーク放電を発生させることができ
る。このアーク放電が安定であることは、スズと酸素と
を連続的に反応させるのに必要な条件である。なお、酸
素にアルゴンを加えた混合ガス中では、アーク放電はさ
らに安定となり、しかもアルゴンは酸化スズの生成をな
んら妨げない。
Also usually evaporation sources and ionization! A high voltage of several hundred or more is required to generate an arc discharge between the pole and the ionizing electrode. When thermionic electrons of about 0.5 mA are emitted, stable arc discharge can be generated at a low voltage of 80 V or less. Stability of this arc discharge is a necessary condition for continuous reaction of tin and oxygen. Note that arc discharge becomes more stable in a mixed gas of oxygen and argon, and argon does not interfere with the production of tin oxide.

酸素、または酸素とアルゴンとの混合ガスの圧力は、ア
ーク放電が安定に発生し、かつ散票と蒸発したスズとが
酸化反応をおこすのに十分な圧力°があればよい。酸素
、またはtR素とアルゴンとの混合ガスの圧力が高くな
るとアーク放電て必要な電圧が高くなり、またガスの圧
力が低くなると酸化スズ微粒子の生成速度が遅くなる。
The pressure of oxygen or a mixed gas of oxygen and argon may be sufficient to cause arc discharge to occur stably and to cause an oxidation reaction between the powder and evaporated tin. As the pressure of the mixed gas of oxygen or tR element and argon increases, the voltage required for arc discharge increases, and as the gas pressure decreases, the production rate of tin oxide fine particles slows down.

したがって、80V以下の低電圧で安定なアーク放電を
行なう酸素、または酸素とアルゴンとの混合ガスの圧力
の上限と下限を上述の値にするのが好ましい。
Therefore, it is preferable to set the upper and lower limits of the pressure of oxygen or a mixed gas of oxygen and argon to the above-mentioned values so as to perform stable arc discharge at a low voltage of 80 V or less.

酸素とアルゴンとの混合ガスを用いる場合、γ昆合比は
特に限定されるものではないが、酸素の割合が小さくな
ると酸化スズ微粒子の生成速度も減少する。
When using a mixed gas of oxygen and argon, the γ-consolidation ratio is not particularly limited, but as the proportion of oxygen decreases, the production rate of tin oxide fine particles also decreases.

〔実施例〕〔Example〕

次に本発明を図面について説明する。 Next, the present invention will be explained with reference to the drawings.

図は本発明方法を実施するための装置を示し、1はスズ
の蒸発源で抵抗加熱型のタングステン製ボートから構成
され、2はモリブデン製イオン比電極、3は熱電子放射
フィラメントで直径1鵡、長さ10−のタングステンか
ら構成さ几、50Aの交流電流を流して加熱すると熱電
子が発生すす。
The figure shows an apparatus for carrying out the method of the present invention, in which 1 is a tin evaporation source consisting of a resistance-heated tungsten boat, 2 is a molybdenum ion ratio electrode, and 3 is a thermionic emission filament with a diameter of 1 mm. When a tungsten tube with a length of 10 mm is heated by passing an alternating current of 50 A, thermoelectrons are generated.

蒸発源l、イオン化電極2)熱電子放射フィラメント3
への電力供給は、図面には明示しないが、ベースプレー
ト5に設けられた電M4人ポートからそれぞれ行なう。
Evaporation source 1, ionization electrode 2) Thermionic emission filament 3
Although not clearly shown in the drawings, power is supplied to each from the electric M4 port provided on the base plate 5.

44イオン化’aff12)熱電子放射フィラメント3
の上方に置かれた捕集板、6はステンレスl真空槽、7
は真空槽6に接続した真空ポンプ、8は真空計、9は真
空ポンプ7と真空計8との間Vこ挿入した絞りパルプ、
10.11はそれぞれ真空46に接続した酸素用流歌計
付パルプ、アルゴン用流量計付パルプである。
44 Ionization'aff12) Thermionic emission filament 3
6 is a stainless steel vacuum chamber, 7 is a collection plate placed above the
is a vacuum pump connected to the vacuum chamber 6, 8 is a vacuum gauge, 9 is a squeezed pulp inserted between the vacuum pump 7 and the vacuum gauge 8,
10 and 11 are a pulp with an oxygen flow meter and a pulp with an argon flow meter connected to the vacuum 46, respectively.

真空槽6はまず真空ポンプ7でl X 10  Tor
r以下に排気された後、酸素用流量計付パルプ10、ア
ルボ/用N、量計付パルプ11よシ酸素、または酸素と
アルゴンとの混合ガスが導入さ几、所定の圧力値に保持
される。次いでスズの蒸発源1に電流を流すことによシ
加熱してスズを蒸発させながら、熱電子放射フィラメン
ト3から熱電子を放射させ、イオン化電極2と蒸発源1
との間にアーク放電を発生させると、アーク放電中で蒸
発スズと酸素とが反応し、生成した酸化スズ微粒子は捕
集板4の下側に付着する。
The vacuum chamber 6 is first pumped with a vacuum pump 7 to l x 10 Torr.
After being evacuated to below r, oxygen or a mixed gas of oxygen and argon is introduced through the pulp 10 with a flow meter for oxygen, the pulp 11 with an albo/nitrogen meter, and the pulp 11 with a quantity meter, and the pressure is maintained at a predetermined pressure value. Ru. Next, a current is passed through the tin evaporation source 1 to heat it and evaporate the tin, while emitting thermoelectrons from the thermionic emission filament 3.
When an arc discharge is generated between them, the evaporated tin and oxygen react with each other in the arc discharge, and the generated tin oxide fine particles adhere to the lower side of the collection plate 4.

実施列1 酸素圧力α02 Torr 、アーク放電電圧75v。Implementation row 1 Oxygen pressure α02 Torr, arc discharge voltage 75V.

スズの蒸発速度0.08ji/分で酸化スズを生成させ
た。走査型電子顕微鏡で観察した結果、酸化スズ微蚊子
の粒径はα1μm以下でめった。
Tin oxide was produced at a tin evaporation rate of 0.08 ji/min. As a result of observation with a scanning electron microscope, the particle size of the tin oxide microspores was found to be less than α1 μm.

実施例2 酸素とアルゴンとの混合ガスの圧力f102Torr、
アーク故1電8E73V、スズの蒸発速度0.055’
/分でスズを生成した。走査型電子顕微鏡で観察した結
果、酸化スズ微蚊子の粒径;ま0.1μm以下であった
Example 2 Pressure of mixed gas of oxygen and argon f102Torr,
Arc failure 1 electric current 8E73V, tin evaporation rate 0.055'
/min produced tin. As a result of observation with a scanning electron microscope, the particle size of the tin oxide particles was 0.1 μm or less.

〔発明の効果〕〔Effect of the invention〕

本発明l:よれば、極めて簡単な装置で、80V以下つ
低電圧のアーク放電により粒径01μm以下の酸化スズ
微粒子を得ることができ、従来の方法のように、危険な
高電圧を使用する必要もなく、また短時間で、I4a的
に酸化スズ#粒子を製造することができるという利点を
有するものである。
According to the present invention, tin oxide fine particles with a particle size of 01 μm or less can be obtained by arc discharge at a low voltage of 80 V or less with an extremely simple device, and unlike conventional methods, dangerous high voltages are used. This method has the advantage that tin oxide # particles can be produced in a I4a manner without the need for this process and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法を実施するための装置の構成図である。 l・・・スズの蒸発源、2・・・イオン化電極、3・・
熱電子放射フィラメント、4・・捕集板、6・・・真空
槽、7・・真空ポンプ、10・・・酸素用流°瀘計付・
(ルプ、11・・・アルゴン用流量計付パルプ。
The figure is a block diagram of an apparatus for carrying out the method of the present invention. l...Tin evaporation source, 2...Ionization electrode, 3...
Thermionic emission filament, 4. Collection plate, 6. Vacuum chamber, 7. Vacuum pump, 10. Oxygen flow meter included.
(Pulp, 11...Pulp with flow meter for argon.

Claims (1)

【特許請求の範囲】 1)酸素、または酸素とアルゴンとの混合ガス中にスズ
の蒸発源とイオン化電極と熱電子放射フィラメントとを
配置し、低電圧でアーク放電を発生させ、蒸発源より蒸
発したスズと酸素とを反応させることを特徴とする酸化
スズ微粒子の製造方法。 2)特許請求の範囲第1項記載の酸化スズ微粒子の製造
方法において、酸素、または酸素とアルゴンとの混合ガ
スの圧力が0.001Torrから0.1Torrまで
の範囲であることを特徴とする酸化スズ微粒子の製造方
法。
[Claims] 1) A tin evaporation source, an ionization electrode, and a thermionic emission filament are placed in oxygen or a mixed gas of oxygen and argon, and an arc discharge is generated at a low voltage to cause evaporation from the evaporation source. A method for producing tin oxide fine particles, the method comprising reacting tin and oxygen. 2) The method for producing tin oxide fine particles according to claim 1, characterized in that the pressure of oxygen or a mixed gas of oxygen and argon is in the range of 0.001 Torr to 0.1 Torr. Method for producing tin fine particles.
JP22009084A 1984-10-19 1984-10-19 Preparation of tin oxide fine particle Pending JPS61101420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22009084A JPS61101420A (en) 1984-10-19 1984-10-19 Preparation of tin oxide fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22009084A JPS61101420A (en) 1984-10-19 1984-10-19 Preparation of tin oxide fine particle

Publications (1)

Publication Number Publication Date
JPS61101420A true JPS61101420A (en) 1986-05-20

Family

ID=16745767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22009084A Pending JPS61101420A (en) 1984-10-19 1984-10-19 Preparation of tin oxide fine particle

Country Status (1)

Country Link
JP (1) JPS61101420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279580A (en) * 2017-07-21 2019-01-29 金泰石 Oxide powder manufacturing device and its manufacturing method
CN116177593A (en) * 2022-09-08 2023-05-30 昆明理工大学 Preparation system and preparation method of micron-sized tin dioxide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279580A (en) * 2017-07-21 2019-01-29 金泰石 Oxide powder manufacturing device and its manufacturing method
CN116177593A (en) * 2022-09-08 2023-05-30 昆明理工大学 Preparation system and preparation method of micron-sized tin dioxide powder
CN116177593B (en) * 2022-09-08 2024-03-29 昆明理工大学 Preparation system and preparation method of micron-sized tin dioxide powder

Similar Documents

Publication Publication Date Title
Li et al. Absolute emission current density of O− from 12 CaO⋅ 7 Al 2 O 3 crystal
US3960605A (en) Method of implantation of boron ions utilizing a boron oxide ion source
US11583925B2 (en) Method for continuously preparing nanoparticles comprising a noble metal or an alloy thereof
JPS60243268A (en) Thin membrane formation and device by plasma
US2041802A (en) Electron emitter
US7462334B2 (en) Negatively-charged oxygen atom producing method and producing apparatus
JPS61101420A (en) Preparation of tin oxide fine particle
US20120289397A1 (en) Method of fabrication of nano particle complex catalyst by plasma ion implantation and device for the same
JPH0357191B2 (en)
US395963A (en) Incandescent-lamp filament
JP2000123712A (en) Field emission cold cathode and its manufacture
US2023707A (en) Method of obtaining emissive coatings
US6593683B1 (en) Cold cathode and methods for producing the same
JPS63103959A (en) Gas sensor
Center Source for Negative Ions of Refractory Metal Oxides
US3396098A (en) Electrical discharge apparatus for obtaining hydrazine from ammonia
JPS63307254A (en) Apparatus for forming thin oxide film
JPH01290758A (en) Production of oxide thin film
JP2544405B2 (en) Method for forming transparent sapphire thin film
JPS6191918A (en) Manufacturing device of compound thin film
JPS5847465B2 (en) Multi-anode hot cathode discharge type ion plating equipment
Yamamoto et al. Dependence of Gas Discharge Breakdown Voltage on Gas Composition Using Carbon Nanotube Electrode
JPS6116731B2 (en)
JP4608692B2 (en) Electron emitting device having electron emission characteristics in the atmosphere, manufacturing method thereof, and electron emitting method using this device
JPS6034013A (en) Manufacture of solid thin film