JPS61101206A - Preparation of membrane - Google Patents

Preparation of membrane

Info

Publication number
JPS61101206A
JPS61101206A JP22127084A JP22127084A JPS61101206A JP S61101206 A JPS61101206 A JP S61101206A JP 22127084 A JP22127084 A JP 22127084A JP 22127084 A JP22127084 A JP 22127084A JP S61101206 A JPS61101206 A JP S61101206A
Authority
JP
Japan
Prior art keywords
membrane
separation
film
stretching
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22127084A
Other languages
Japanese (ja)
Other versions
JPH0415014B2 (en
Inventor
Takanori Anazawa
穴沢 孝典
Yoshiyuki Ono
善之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP22127084A priority Critical patent/JPS61101206A/en
Publication of JPS61101206A publication Critical patent/JPS61101206A/en
Publication of JPH0415014B2 publication Critical patent/JPH0415014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/32Melting point or glass-transition temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To prepare a membrane having gas permeable characteristics such that oxygen transmission coefficient is high and the separation factor of oxygen and nitrogen is also high, by forming a thermoplastic crystalline polymer into a film by melt extrusion and, after stretching and heating treatments, further applying stretching to the treated film before thermal fixation. CONSTITUTION:A membrane material comprises a thermoplastic crystalline polymer of which the ultimate crystallinity is 20% or more and polyolefin, a vinyl polymer, a fluorocarbon polymer or polyamide are used. Melt spinning temp. is higher than the m.p. Tm of the polymer but does not exceed Tm+200 deg.C and the draft ratio at the time of spinning is 5-10,000. A film thickness is pref. set to 0.5-1,000mum and an emitted yarn is quenched. Thereafter, the film is stretched by 10-250% at Tg-20-Tg+50 deg.C and heat-treated at Tg+20-Tm-50 deg.C without releasing stretching force while the treated film is further stretched by 1.1-4 times at Tg-50-Tm-10 deg.C and thermally fixed at temp. of Tg-Tm.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 近年、膜による混合気体の分別、即ち気体隔膜分離技術
は、省エネルギー化、分離装置、操作の簡略化等多くの
点で注目され、空気からの酸素富化空気の製造、燃焼ガ
スからのCO2H2の回収、廃ガスからのNO2、SO
2の除去、C1化学における合成ガスH2/Coの精製
、調整、天然ガスからのHe等の不活性ガスの分離、回
収、等多くの分野での利用が検討されている。これらの
分野では気体分離能が高いこと、透過速度の大きいこと
が経済性等の面で実用化、普及のポイントとなっており
、これらの点で優れた膜の開発が切望されている。
[Detailed Description of the Invention] <Industrial Application Field> In recent years, separation of mixed gases using membranes, that is, gas diaphragm separation technology, has attracted attention for many reasons such as energy saving, separation equipment, and simplification of operation. production of oxygen-enriched air, recovery of CO2H2 from combustion gas, NO2 and SO from waste gas
Applications are being considered in many fields, such as removal of 2, purification and adjustment of synthesis gas H2/Co in C1 chemistry, and separation and recovery of inert gases such as He from natural gas. In these fields, high gas separation ability and high permeation rate are key points for commercialization and widespread use in terms of economic efficiency, and there is a strong desire to develop membranes that are excellent in these respects.

本発明は、この様な要求に対応するもので、気体分子4
能が高く、透過速度の高い、又力学的特性にも優れた膜
及びこれを能率よく製造する方法を提供するものであり
、熔融成形法により成形した新規な膜およびその製造方
法に関するものである。
The present invention responds to such demands, and the present invention
The present invention provides a membrane with high performance, high permeation rate, and excellent mechanical properties, and a method for efficiently manufacturing the same, and relates to a novel membrane formed by melt molding and a method for manufacturing the same. .

〈従来の技術〉 気体隔膜分離の技術分野においては、前述の様に気体分
離能が高いことと同時に、経済性等の面から透過速度の
大きいことが要求されている。この目標を達成するため
には、特開昭50−41958号公報記載のごとく、ポ
リオルガノシロキサンの様な気体の透過係数の大きいポ
リマー素材を用いる方法、シーワン化学成果発表会予稿
集(昭和59年)第167頁に記載のごとく、ポリイミ
ドのごとき分離係数の大きいポリマー素材を薄膜で用い
る方法等が検討されていた。しかし、前者の方法ではポ
リオルガノシロキサンの様な気体透過係数の大きい高分
子素材は分離係数が小さいため分離能に限界があった。
<Prior Art> In the technical field of gas diaphragm separation, it is required not only to have a high gas separation capacity as described above, but also to have a high permeation rate from the viewpoint of economical efficiency. In order to achieve this goal, as described in JP-A No. 50-41958, a method using a polymer material with a high gas permeability coefficient such as polyorganosiloxane, and a method of using a polymer material with a high gas permeability coefficient such as polyorganosiloxane, a method of using a polymer material with a high gas permeability coefficient, and a method of using polymer materials with a high gas permeability coefficient, as described in JP-A-50-41958, ) As described on page 167, a method of using a polymer material with a large separation coefficient such as polyimide in a thin film has been studied. However, in the former method, there is a limit to the separation ability of polymeric materials such as polyorganosiloxane, which have a large gas permeability coefficient, because the separation coefficient is small.

一方、後者の方法では分離係数の大きい素材は一般に透
過係数が小さく、その結果、酸素富化膜として実用とな
る水準の透過速度を得るためには極めて薄い膜で用いる
必要が生じ、製造上高度の技術を必要とする上、膜強度
の低下、ピンホール発生による分離能の低下の問題が生
じた。又、特開昭5s−tessoj号公叩に記載のご
とく、結晶性で比較的分離能の大きいポリマーの超a!
膜を多孔質支持体の上に形成される方法も検討されたが
、この場合ポリマー溶液から水上延屓法で薄膜を形成さ
せるため、生成する薄膜は非晶質であり、高配向、高結
晶化度のものと比べ、気体の分離係数は低く  (S、
W。
On the other hand, in the latter method, materials with large separation coefficients generally have small permeation coefficients, and as a result, in order to obtain a permeation rate at a level that is practical for oxygen enrichment membranes, it is necessary to use extremely thin membranes, making it difficult to manufacture In addition to requiring additional techniques, problems arose in that the membrane strength decreased and the separation ability decreased due to the formation of pinholes. In addition, as described in Japanese Patent Application Laid-Open No. 5S-TESSOJ, ultra-a!
A method of forming the film on a porous support was also considered, but in this case, the thin film is formed from a polymer solution by the water spreading method, so the thin film produced is amorphous, with high orientation and high crystallinity. The gas separation coefficient is lower than that of
W.

La5oski et al、、 J、Polym S
ci、+ 36.21 (1959) ) 、結局、透
過係数と分離係数の双方を同時に満足させる様な製造法
は見出されていないのが現状である。
La5oski et al, J, Polym S
ci, + 36.21 (1959)), and at present no manufacturing method has been found that satisfies both the transmission coefficient and the separation coefficient at the same time.

〈発明が解決しようとする問題点〉 以上のべてきた様に、気体分離膜の分野では高い分離能
と大きい透過速度の両方を満足させることが必要である
が、現実にはこの両者を充分満足することは難しく、特
に素材の透過係数と分離係数の両者を高める様な成形加
工法は見出されていない。
<Problems to be solved by the invention> As mentioned above, in the field of gas separation membranes, it is necessary to satisfy both high separation performance and high permeation rate. It is difficult to satisfy this requirement, and no molding method has been found that particularly increases both the permeability coefficient and separation coefficient of the material.

〈問題を解決する為の手段〉 本発明者等は透過速度と分離係数を共に向上した膜を得
る為に、多孔質構造、もしくは微多孔層(支持体)の表
面に分離活性層となる非多孔層が形成されたいわゆる不
均質膜構造を形成し、かつ非多孔層を高い分離能を発現
する高次構造にすることを目的に、高分子高次構造と気
体透過特性の関係、それを実現する加工条件について鋭
意研究の結果、従来の技術では相反する関係とされてい
た透過係数と分離係数の双方を同時に向上できることを
見出し、本発明を完成させるに至った。
<Means for solving the problem> In order to obtain a membrane with improved permeation rate and separation coefficient, the present inventors added a non-containing material to the surface of a porous structure or a microporous layer (support) to serve as a separation active layer. With the aim of forming a so-called heterogeneous membrane structure with a porous layer and making the non-porous layer a higher-order structure that exhibits high separation performance, we investigated the relationship between the higher-order polymer structure and gas permeation properties. As a result of intensive research on the processing conditions to be realized, it was discovered that both the transmission coefficient and the separation coefficient, which were considered to be in a contradictory relationship with conventional techniques, could be improved at the same time, and the present invention was completed.

本発明は、熱可塑性の結晶性重合体を熔融押出し製膜し
た後、延伸することにより製造した独立気泡又は単連通
孔の膜であって、ttJIllの25℃における見掛け
の酸素透過係数が熔融押出し製膜により製造した、同じ
素材の非晶均質膜の酸素透過係数の2倍以上であり、か
つ25℃に於ける酸素と窒素の分離係数α(O2/N2
)が、熔融押出し製膜により製造した、同じ素材の非晶
均質膜の分離係数より大であることを特徴とする膜の製
造方法に関するものである。
The present invention is a closed-cell or single-pore membrane manufactured by melt-extruding a thermoplastic crystalline polymer and then stretching the membrane, and the apparent oxygen permeability coefficient of ttJIll at 25°C is higher than that of melt-extrusion. It is more than twice the oxygen permeability coefficient of an amorphous homogeneous membrane of the same material manufactured by film forming, and the oxygen and nitrogen separation coefficient α (O2/N2
) is larger than the separation coefficient of an amorphous homogeneous membrane made of the same material produced by melt extrusion film forming.

溶解拡散機構による気体分離膜の気体透過係数POや分
離係数αは基本的に素材固有の値であるが、配向度や結
晶化度等の高次構造の違いによって変化することが知ら
れている。即ち、低配向非晶状態のポリマーに比べて延
伸による配向度の上昇、熱処理による結晶化度の上昇、
結晶化した試料の延伸による結晶の細分化と再配列等に
よって、気体透過係数は低下する。また、酸素/窒素の
気体分離係数は、一般に透過係数の低い構造であるほど
高い値を示す様である。即ち、透過係数と分離係数は逆
関係にあり、双方を同時に向上させる構造や加工方法に
ついては知られていなかった。
The gas permeability coefficient PO and separation coefficient α of gas separation membranes due to the dissolution-diffusion mechanism are basically values specific to the material, but it is known that they change depending on differences in higher-order structure such as degree of orientation and crystallinity. . That is, compared to a polymer in a low-oriented amorphous state, the degree of orientation increases due to stretching, the degree of crystallinity increases due to heat treatment,
The gas permeability coefficient decreases due to fragmentation and rearrangement of crystals caused by stretching the crystallized sample. Further, it seems that the oxygen/nitrogen gas separation coefficient generally exhibits a higher value as the structure has a lower permeability coefficient. That is, the transmission coefficient and the separation coefficient have an inverse relationship, and no structure or processing method has been known that improves both simultaneously.

本発明者らは、ポリマーの高次構造と気体透過特性との
関係についての研究中に、特殊な条件で加工した高分子
膜が、低配向、非晶質の膜に比べて酸素透過速度が高く
、かつ分離係数もより大きな値を示すという驚くべき事
実を見出し、さらに研究を進めて本発明に到達したもの
である。
During research on the relationship between the higher-order structure of polymers and gas permeation properties, the present inventors found that polymer membranes processed under special conditions had a higher oxygen permeation rate than low-orientation, amorphous membranes. We discovered the surprising fact that the separation coefficient is high and also exhibits a larger value, and conducted further research to arrive at the present invention.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明は、熱可塑性の結晶性重合体を(1)溶融温度が
Tm〜(Tm+200) ℃(但しTmは結晶融点)、
ドラフト比Dfが20≦l)f≦10000の条件にて
熔融押出し製膜して得た中空糸又はフィルムを、(2+
 (Tg−20)〜(7g+50)℃(但し?、はガラ
ス転移温度)にて、元の長さの5〜200%延伸した後
、+31 Tg−Tmの塩度で熱処理を行い、その後、
+41 (Tg −50)〜(Tm−10)℃の温度で
延伸倍率1.1〜5.0に延伸し、次いで、(51tg
” Ta+の温度で熱固定することを特徴とする、25
℃における見掛けの酸素透過係数が、熔融押出し製膜に
より製造した、同じ素材の非晶均質膜の酸素透過係数の
2倍以上であり、かつ25℃に於ける酸素と窒素の分離
係数α(O2/N2)が、熔融押出し製膜により製造し
た、同じ素材の非晶均質膜の分離係数より大である様な
気体透過特性を持つ、独立気泡又は単連通孔の膜を製造
する方法を提供するものである。
In the present invention, a thermoplastic crystalline polymer (1) has a melting temperature of Tm to (Tm+200)°C (where Tm is the crystal melting point);
A hollow fiber or film obtained by melt extrusion film forming under the condition that the draft ratio Df is 20≦l)f≦10000 is (2+
After stretching 5 to 200% of the original length at (Tg-20) to (7g+50)°C (where ? is the glass transition temperature), heat treatment is performed at a salinity of +31 Tg-Tm, and then,
Stretched at a temperature of +41 (Tg -50) to (Tm-10) °C to a stretching ratio of 1.1 to 5.0, then (51tg
” 25, characterized by heat-setting at a temperature of Ta+.
The apparent oxygen permeability coefficient at ℃ is more than twice the oxygen permeability coefficient of an amorphous homogeneous membrane of the same material manufactured by melt-extrusion membrane formation, and the oxygen and nitrogen separation coefficient α (O2 /N2) is larger than the separation coefficient of an amorphous homogeneous membrane of the same material produced by melt extrusion film formation, and a method for producing a closed-cell or single-pore membrane. It is something.

本発明で用いうる膜素材は、到達結晶化度20%以上の
熱可塑性の結晶性重合体であり、例えば、ポリエチレン
、ポリプロピレン、ポリ−3−メチル−ブテン−1、ポ
リ−4−メチル−ペンテン−1、等のポリオレフィン、
ポリスチレン、ポリーメチルメタクリレートなどのビニ
ル重合体、ポリ弗化ビニリデン、ポリ弗化ビニルエチレ
ン/四弗化エチレン共重合体などの弗素系重合体、ナイ
ロン6、ナイロン66、ナイロン12などのポリアミド
、ポリエチレンテレツクレート、ポリブチレンテレフタ
レート、ポリエチレン−2,6−ナフタレートなどのポ
リエステル、ポリ−4,4′−ジオキシジフェニル−2
,2−プロパンカーボネートなどのポリカーボネート、
ポリオキシメチレン、ポリメチレンスルフィドなどのポ
リエーテル、ポリチオエーテル、ポリフェニレンオキシ
ド、ポリフェニレンスルフィドなどの合体相互のブレン
ドや共重合体で、到達結晶化度が20%以上のものであ
っても良い。さらに、他の非晶質ポリマーとのブレンド
や無機物とのブレンド等、上記重合物を70%以上含有
する組成物も本発明に用いることができるし、酸化防止
剤、帯電防止剤、防黴剤、滑剤、表面活性剤等をl・要
に応じて適量含有することができる。
The membrane material that can be used in the present invention is a thermoplastic crystalline polymer having an ultimate crystallinity of 20% or more, such as polyethylene, polypropylene, poly-3-methyl-butene-1, poly-4-methyl-pentene. -1, etc. polyolefins,
Vinyl polymers such as polystyrene and polymethyl methacrylate, fluorine-based polymers such as polyvinylidene fluoride and polyvinyl ethylene fluoride/tetrafluoroethylene copolymer, polyamides such as nylon 6, nylon 66, and nylon 12, and polyethylene teretsu. Polyesters such as crate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-4,4'-dioxydiphenyl-2
, polycarbonate such as 2-propane carbonate,
Blends or copolymers of polyethers such as polyoxymethylene and polymethylene sulfide, polythioethers, polyphenylene oxide, polyphenylene sulfide, etc., having an attained crystallinity of 20% or more may be used. Furthermore, compositions containing 70% or more of the above polymers, such as blends with other amorphous polymers or blends with inorganic substances, can also be used in the present invention, and antioxidants, antistatic agents, and antifungal agents can also be used in the present invention. , a lubricant, a surfactant, etc., may be contained in appropriate amounts as required.

本発明の製造方法と類イ以の膜製造方法として、熔融法
による連通多孔JR膜の製造方法に関しては、既に特公
昭46−40119号、特開昭52−15627号等の
公報に開示されている。これらの連通孔多孔質膜の製造
方法の共通の特徴は、膜を貫通する連通孔を生成させる
ことを目的とし、その為に欠陥の少ない積層ラメラ結晶
を発達させるために、いづれも熱可塑性結晶性重合体を
比較的低温、高ドラフト、急冷気味に溶融成形(紡糸、
押出、インフレーション)した後、必要ならば熱処理し
て積層ラメラ結晶を一層完全に発達させ、然る後に、冷
延伸気味に延伸して結晶間を開裂させ連通孔を発生させ
、熱固定することである。
As a membrane manufacturing method similar to the manufacturing method of the present invention, a method for manufacturing a continuous porous JR membrane by a melting method has already been disclosed in Japanese Patent Publication No. 46-40119, Japanese Patent Application Laid-Open No. 52-15627, etc. There is. The common feature of these continuous pore porous membrane manufacturing methods is that they all use thermoplastic crystals to develop laminated lamellar crystals with fewer defects for the purpose of generating communicating pores that penetrate the membrane. Melt-molding (spinning,
After extrusion, inflation), if necessary, heat treatment is performed to develop the laminated lamellar crystals more completely, and then cold stretching is performed to cleave the crystals to create communicating holes, followed by heat setting. be.

また熔融法により、分離係数の向上は見られないが、気
体分離能を持つ不均質膜を製造することも可能である(
特願昭58−69900号、特願昭58−90400号
)。
Although the melting method does not improve the separation coefficient, it is also possible to produce a heterogeneous membrane with gas separation ability (
Japanese Patent Application No. 58-69900, Japanese Patent Application No. 58-90400).

本発明の製造方法は、膜内部にボイドを発生させる点に
於て、上記製法と類似の原理に基づくものと思われるが
、熔融紡糸(又は溶融フィルム押出し等)、延伸等の各
工程の条件のバランスを最適にすることによって、酸素
透過速度と酸素/窒素分離係数が共に向上した膜を製造
できる所に特徴がある。
The production method of the present invention seems to be based on a principle similar to the above production method in that voids are generated inside the membrane, but the conditions for each step such as melt spinning (or melt film extrusion etc.) and stretching etc. By optimizing the balance between the two, it is possible to produce a membrane with improved oxygen permeation rate and oxygen/nitrogen separation coefficient.

中空糸の溶融紡糸温度(もしくはフィルムの熔融押出温
度)(以下、説明の簡略化の為に中空糸膜の場合につい
て話を進める。フィルム押出しやインフレーシぢンの場
合も話は同様である。)は重合体の融点TImより高く
、融点を200℃以上越えないことが好ましい、好適な
紡糸温度は重合体の結晶化速度、重合体の分子量、冷却
条件、紡糸速度やドラフト比、それに後の工程の処理条
件によって異なり、一般的に言って、結晶化速度の遅い
重合体や低分子量の重合体を用いる場合、紡糸速度やド
ラフト比が比較的小さい場合等には、(Tm+10)〜
(1層+50)”Cの低い温度が好ましい、融点より2
00℃以上高い温度では気体の透過速度が大きな膜を得
ることは困難である。
Melt-spinning temperature of hollow fiber (or melt-extrusion temperature of film) (Hereinafter, to simplify the explanation, we will discuss the case of hollow fiber membranes. The story is similar in the case of film extrusion and inflation.) is higher than the melting point TIm of the polymer, and preferably does not exceed the melting point by more than 200°C. The suitable spinning temperature depends on the crystallization rate of the polymer, the molecular weight of the polymer, cooling conditions, spinning speed, draft ratio, and subsequent steps. Generally speaking, when a polymer with a slow crystallization rate or a low molecular weight polymer is used, or when the spinning speed or draft ratio is relatively small, (Tm + 10) ~
(1 layer + 50)"C lower temperature is preferable, 2 below the melting point
At temperatures higher than 00°C, it is difficult to obtain a membrane with a high gas permeation rate.

ドラフト比(−引取速度/吐出速度)は5〜10000
が好ましい、紡糸温度に於ける熔融粘度が7000ボイ
ズ以上である様な高分子量の重合体の場合には5〜20
0の比較的低いドラフト比が適当であるが、一般的には
50以上が好ましい。特に溶融粘度がtoooポイズ以
下の低分子量の重合体を用いて徐冷する場合には、50
0以上の高ドラフトが必要である。また一般的に、吐出
糸を急冷する場合には、徐冷する場合に比べてドラフト
比を低くすることができる。ドラフト比がこの範囲外で
も、本発明の膜を製造することは可能であるが、Piい
気体透過性能が望めない他に、製造が困難になるデメリ
ットが生ずる。
Draft ratio (-take-up speed/discharge speed) is 5 to 10,000
is preferably 5 to 20 in the case of a high molecular weight polymer having a melt viscosity of 7000 voids or more at the spinning temperature.
A relatively low draft ratio of 0 is suitable, but 50 or higher is generally preferred. In particular, when slow cooling is performed using a low molecular weight polymer with a melt viscosity of too poise or less,
A high draft of 0 or more is required. Additionally, in general, when the discharge yarn is rapidly cooled, the draft ratio can be lowered compared to when it is slowly cooled. Even if the draft ratio is outside this range, it is possible to manufacture the membrane of the present invention, but in addition to not being able to expect high gas permeation performance, there are also disadvantages such as difficulty in manufacturing.

押出し速度は、比較的任意に選択できる。遅過ぎ、ある
いは速過ぎる条件では糸切れが牛し易くなるが、装置的
な要求に合せて決定できる。
The extrusion speed can be chosen relatively arbitrarily. If the speed is too slow or too fast, thread breakage is likely to occur, but this can be determined according to equipment requirements.

中空糸紡糸用ノズルは、円環型、馬蹄型、ブリッジ型等
の通常の中空糸紡糸用ノズルを用いることができる。フ
ィルム押出用ダイはTダイやインフレーシラン用の円1
r2状ダイ等、1IT1用いられるフィルム、シート用
グイを用いることができる。
As the hollow fiber spinning nozzle, a conventional hollow fiber spinning nozzle such as an annular type, a horseshoe type, a bridge type, etc. can be used. The die for film extrusion is T die or circle 1 for inflation silane.
A film or sheet gooey used in 1IT1, such as an R2-shaped die, can be used.

中空糸の外径は、ノズル寸法やドラフト等によって5〜
5000μmに設定することが好ましい。5μm以1お
よび5000μm以りでは透過速度の大きな模を得るこ
とが困難となる。中空糸又はフィルムの膜厚も、同様に
して0.5〜1000μmに設定することが好ましい。
The outer diameter of the hollow fiber varies from 5 to 5 depending on the nozzle dimensions, draft, etc.
It is preferable to set it to 5000 μm. If the diameter is greater than 5 μm or greater than 5000 μm, it becomes difficult to obtain a pattern with a high transmission rate. It is preferable that the thickness of the hollow fiber or film is similarly set to 0.5 to 1000 μm.

この範囲外では良好な多孔質膜が生成しに((、気体透
過速度が小さくなる。
Outside this range, a good porous membrane will not be formed ((), and the gas permeation rate will be low.

本発明により製造された膜を気体分M19として用いる
場合には、フィルム(平膜)状より、表面積の大きくと
れる中空糸が有利であり、その外径は20〜300μm
1模厚は2〜20μmがより好ましい。
When using the membrane produced according to the present invention as the gas component M19, hollow fibers are more advantageous than film (flat membrane) shapes because they have a larger surface area, and their outer diameter is 20 to 300 μm.
The thickness of one layer is more preferably 2 to 20 μm.

吐出糸の冷却は急冷することが好ましい、溶融法にょる
連通孔の膜の製造には、吐出糸を急冷し、応力と温度勾
配の存在下に結晶化させることが必須条件であるが、本
発明の製造方法に於て、吐出糸の冷却条件にそれほど厳
しい制約は無い。
It is preferable to cool the discharge thread rapidly.In order to produce a membrane with communicating holes by the melting method, it is essential to rapidly cool the discharge thread and crystallize it in the presence of stress and temperature gradient. In the manufacturing method of the invention, there are no very strict restrictions on the cooling conditions for the discharged yarn.

しかしながら、吐出糸を急冷した方が、より気体透過速
度、分離係数に優れた模を安定して得ることができる。
However, by rapidly cooling the discharge thread, a pattern with better gas permeation rate and separation coefficient can be stably obtained.

冷却方法としては送風の他、チルロールや水(又は湯)
による冷却等通常の冷却方法を用いることができる。冷
却温度は、重合体の結晶化速度にもよるが、一般的には
(Tg−50)〜(Tm−50)℃が好ましい。
In addition to blowing air, cooling methods include chill rolls and water (or hot water).
Ordinary cooling methods such as cooling can be used. The cooling temperature is generally preferably (Tg-50) to (Tm-50)°C, although it depends on the crystallization rate of the polymer.

熔融紡糸によって得られた中空糸は(Tg−20)〜(
Tg+50)℃にて10〜250%延伸を行う(この処
理を非晶延伸と呼ぶことにする)、非晶延伸及び後述の
熱処理を行うことが本発明の最大の特徴である。この処
理を加えることにより、積層ラメラ結晶の巾が小さくな
り、連通細孔の代りに独立気泡が発生する様になると考
えられる。延伸倍率は、急冷条件で紡糸した試料につい
ては20%以上であることが必要である。弱冷又は徐冷
した試料については5%以上であることが好ましい。徐
冷した試料の場合、この工程に於て糸の白色化が見られ
、内部に若干のボイドが発生していると思われるがさし
つかえない。
Hollow fibers obtained by melt spinning have Tg-20 to (Tg-20) to (
The greatest feature of the present invention is that the film is stretched by 10 to 250% at Tg+50)°C (this treatment will be referred to as amorphous stretching), and that the amorphous stretching and heat treatment described below are performed. It is thought that by adding this treatment, the width of the laminated lamellar crystal becomes smaller, and closed cells are generated instead of continuous pores. The stretching ratio needs to be 20% or more for samples spun under quenching conditions. For samples that have been cooled slightly or slowly, it is preferably 5% or more. In the case of the sample that was slowly cooled, whitening of the yarn was observed during this step, and it seems that some voids were generated inside, but this is not a problem.

しかしながら本発明は以下の点で優れている。且ち、第
一に、気体透過速度や分離係数において、より優れた膜
を製造することができる。これは熔融紡糸又は溶融フィ
ルム押出し等の!li!I膜工稈と非晶延伸工程を分け
ることによって、各々の工程の加工条件を、目的に最も
適した条件に設定できるためである。
However, the present invention is superior in the following points. Firstly, a membrane with better gas permeation rate and separation coefficient can be produced. This includes melt spinning or melt film extrusion! li! This is because by separating the I-film process and the amorphous stretching process, the processing conditions for each process can be set to the conditions most suitable for the purpose.

第二に製品の均一性、再現性が増し、工業的に有利であ
る。これは、!li!l膜工程において微妙な冷却条件
の差や熔融温度のゆらぎの影響を受けにくい条件に設定
できるためである。また製膜条件の誤差を、続く非晶延
伸工程で補正することも可能となる。
Secondly, the uniformity and reproducibility of the product increases, which is industrially advantageous. this is,! li! This is because conditions can be set that are less susceptible to subtle differences in cooling conditions and fluctuations in melting temperature in the film process. It is also possible to correct errors in film forming conditions in the subsequent amorphous stretching step.

非晶延伸された中空糸又はフィルムは、緊張を解かずに
引続いて熱処理を行う、熱処理温度は(1g+20)〜
(Tm−5)℃が好ましい。また熱処理をD R1,O
〜3.0で延伸しつつ行っても良い。DRが1未満、即
ち弛緩条件での熱処理は、連通細孔を発生させ、分離係
数の低下を招くので好ましくない。DR3,0以上の高
延伸倍率下での熱処理では、見掛けのi3過係数、分離
係数共に低い値となり好ましくない。
The amorphous stretched hollow fiber or film is subsequently heat treated without releasing the tension, and the heat treatment temperature is (1g+20) ~
(Tm-5)°C is preferred. In addition, heat treatment is performed by D R1,O
It may be performed while stretching at a speed of 3.0 to 3.0. Heat treatment with a DR of less than 1, that is, under relaxing conditions, is not preferred because it generates communicating pores and causes a decrease in the separation coefficient. Heat treatment under a high stretching ratio of DR 3.0 or higher is undesirable because both the apparent i3 excess coefficient and separation coefficient become low values.

本発明の膜の形状は、使用目的に応じて任意に選ぶこと
ができる。例えば中空糸、チューブラ−1平膜状の形態
にすることが可能である。また、膜強度を向上させる為
の構造を導入したり、膜厚に変化をつける等、必要に応
じ種々の形態にすることができる。中空糸(チューブラ
−も含む)の外径は3〜5000μmが適当であり、1
0〜200μmがより好ましい。外径3μm以下あるい
は5000μm以上の中空糸状の膜を製造することも可
能であるが、製造コスト、膜性能等に於て劣ったものと
なり、メリットが無い、膜厚は0.2〜1000μmが
適当である。0.2μm以下では力学的強度が得にくく
、1000μm以上では見掛けの透過係数の低下を招く
。膜厚に関して、平膜(フィルム)の場合も同様である
The shape of the membrane of the present invention can be arbitrarily selected depending on the intended use. For example, it can be in the form of a hollow fiber or a tubular 1 flat membrane. In addition, various forms can be made as necessary, such as by introducing a structure to improve the film strength or by changing the film thickness. The appropriate outer diameter of the hollow fiber (including tubular fibers) is 3 to 5000 μm, and 1
More preferably 0 to 200 μm. It is possible to manufacture a hollow fiber membrane with an outer diameter of 3 μm or less or 5000 μm or more, but the manufacturing cost and membrane performance are inferior, and there is no merit. The appropriate membrane thickness is 0.2 to 1000 μm. It is. If it is 0.2 μm or less, it is difficult to obtain mechanical strength, and if it is 1000 μm or more, the apparent transmission coefficient will decrease. Regarding the film thickness, the same applies to the case of a flat film.

二種以上の気体の混合物から、隔膜分離法によって、選
ばれた気体を分離(il!縮や除去も含む)しようとす
る場合、分離装置の性能として、好ましい気体選択性、
良好な濃縮率、高い透過速度等が要求されるが、これら
の性能は大部分、分1i11膜の性能によつて決定され
る0本発明の膜は、気体の分MI Nl2として良好な
性能を持つものである。気体分離の選択忰は分離係数α
で表される(三種以上の混合ガスから−[171以上の
気体を選択分離する場合も同じである)。
When attempting to separate a selected gas (including reduction and removal) from a mixture of two or more gases by a diaphragm separation method, the performance of the separation device should be the preferred gas selectivity,
A good concentration ratio, a high permeation rate, etc. are required, but these performances are largely determined by the performance of the membrane. It is something you have. The choice of gas separation is the separation coefficient α
(The same applies when selectively separating -[171 or more gases] from a mixture of three or more gases).

従って、本発明の膜は、使用目的の系(混合気体の!!
JWiや混合比と分離対象となる気体の種類等)に通す
る素材(重合体)を選んで製造することができる。
Therefore, the membrane of the present invention can be used in the system for which it is used (mixed gas!!
It can be manufactured by selecting a material (polymer) that passes through JWi, mixing ratio, type of gas to be separated, etc.).

〈作 用〉 本発明の膜を用いることのできる気体分離の系としては
、例えば空気から酸素富化空気のV造、燃焼廃ガスから
のC05H2の回収、廃ガスからのNO2、SO2の除
去、Go102の分離、H2/Coの分離、H2102
の分離、He等の不活性気体の分離回収、メタン/エタ
ンの分離等が挙げられるが、これらに限定されるもので
はない。
<Function> Gas separation systems in which the membrane of the present invention can be used include, for example, production of oxygen-enriched air from air, recovery of CO5H2 from combustion waste gas, removal of NO2 and SO2 from waste gas, Separation of Go102, separation of H2/Co, H2102
separation, separation and recovery of inert gases such as He, separation of methane/ethane, etc., but are not limited to these.

本発明の膜はまた、液体に熔解した気体の選択的除去、
混合気体中の選ばれた気体の液体への選択的熔解、混合
液体からの選ばれた液体の分離(所謂液−液分離やパー
ベーパレーション)等、非多孔Wg膜のi3過によって
実現される分離、濃縮に用いることができる。
The membranes of the invention also provide selective removal of gases dissolved in a liquid.
Selective melting of a selected gas in a mixed gas into a liquid, separation of a selected liquid from a mixed liquid (so-called liquid-liquid separation or pervaporation), etc. are achieved by i3 filtration of a non-porous Wg membrane. Can be used for separation and concentration.

中でも02/N2分離による、空気からの酸素富化空気
の製造に対して、本発明の膜は特に有用である。酸素富
化空気は医療用や、燃焼用空気として利用価4Nの高い
ものであるが、これらの目的に用いるためには、富化空
気の酸素濃度と共に、酸素富化空気の発生速度が高いこ
とが非常に重要である。即ち酸素透過速度の大きな膜が
求められる。
The membranes of the present invention are particularly useful for the production of oxygen-enriched air from air, especially by O2/N2 separation. Oxygen-enriched air has a high utility value of 4N for medical purposes and combustion air, but in order to use it for these purposes, it is necessary to have a high oxygen concentration and a high generation rate of oxygen-enriched air. is very important. That is, a membrane with a high oxygen permeation rate is required.

本発明の膜及び製造法はこれらの要求に対し、以下の様
な非常に優れた特徴を備えている。即ち、■酸素透過係
数Po (O2)、及び分離係数α(O2/N2)に優
れた素材を用いることができるため高濃度酸素が得られ
る(例えばポリ−4−メチルペンテン1 : P (O
2) −1,3×IF?、α(O2/N2 ) =3.
6) 、■気体分離の活性層である非多孔薄膜の厚さを
見掛けの膜厚の1/10以下にすることができ、膜表面
積当りの透過速度を太き(できる、■膜表面積の大きな
、細い中空糸膜を形成することが可能である(例えば中
空糸の外径30μmの場合、■d当りの表面積′llX
10”n(となり充填密度は平膜の約100倍)、■細
い中空糸に於ても機械的強度が高い、即ち膜にかける圧
力(−次圧)を大きくすることができる、■製造工程が
単純で、生産性が高いため安価である、等である。
The membrane and manufacturing method of the present invention meet these requirements and have the following excellent features. That is, it is possible to use a material with excellent oxygen permeability coefficient Po (O2) and separation coefficient α (O2/N2), so that a high concentration of oxygen can be obtained (for example, poly-4-methylpentene 1 : P (O2)).
2) -1,3×IF? , α(O2/N2) =3.
6) , ■ The thickness of the non-porous thin membrane, which is the active layer for gas separation, can be reduced to 1/10 or less of the apparent membrane thickness, and the permeation rate per membrane surface area can be increased. , it is possible to form a thin hollow fiber membrane (for example, when the outer diameter of the hollow fiber is 30 μm, the surface area per d is
10”n (packing density is about 100 times that of a flat membrane), ■ Mechanical strength is high even in thin hollow fibers, that is, the pressure applied to the membrane (-subpressure) can be increased, ■ Manufacturing process It is simple, has high productivity, and is therefore inexpensive.

特に上記特徴の■〜■は湿式法、半乾式湿式法により製
造した不均質膜に無い特徴であり、透過速度、酸素富化
濃度等の総合的な膜性能に於てこれまで知られている、
湿式法、半乾式湿式法により製造された不均質膜やその
他の複合膜を凌駕する性能を持つ分離膜であることを示
すものである。上記の特徴は、酸素富化膜として使用さ
れる場合に止まらず、伯の気体の分離等に於ても発揮さ
れることは言うまでもない。
In particular, the above characteristics (■ to ■) are features that are not found in heterogeneous membranes manufactured by wet or semi-dry wet methods, and are not known to date in terms of overall membrane performance such as permeation rate and oxygen enrichment concentration. ,
This shows that the separation membrane has performance superior to heterogeneous membranes and other composite membranes manufactured by wet methods, semi-dry wet methods, and other composite membranes. It goes without saying that the above characteristics are exhibited not only when used as an oxygen-enriching membrane, but also when separating gases.

本発明の膜は、その表面へのNt、八g、 Pd等の金
属の蒸着、ポリビニルピリジン、ポリエチレングリコー
ル等の重合体のコーティング、あるいはまた液状ポリエ
チレングリコール等の液体の含浸等の処理を施し、さら
に高い分離係数を持つ気体分離膜として用いることがで
きる。
The membrane of the present invention is subjected to treatments such as vapor deposition of a metal such as Nt, 8g, or Pd on its surface, coating with a polymer such as polyvinylpyridine or polyethylene glycol, or impregnation with a liquid such as liquid polyethylene glycol. It can also be used as a gas separation membrane with a higher separation coefficient.

〈実施例〉 以下実施例をあげて説明する。<Example> This will be explained below by giving examples.

実施例1 メルトインデックス(ASTM  D−1238による
)26のポリ−4−メチルペンテン−1を直P!5鶴の
1スリツトタイプの中空糸紡糸用ノズルを用いて、紡糸
温度295℃、引取速度420m/分、ドラフト比20
00で熔融紡糸を行い、外径65μm、膜r¥9.0μ
mの中空糸を得た。
Example 1 Poly-4-methylpentene-1 with a melt index (according to ASTM D-1238) of 26 was directly processed! Using a 5-tsuru one-slit type hollow fiber spinning nozzle, the spinning temperature was 295°C, the take-up speed was 420 m/min, and the draft ratio was 20.
Melt spinning was carried out at 00, outer diameter 65μm, membrane r¥9.0μ
m hollow fibers were obtained.

この時ノズル下5〜55cmの範囲を、温度20℃、風
速1m/秒の横風でもって急冷した。得られた中空糸を
、温度35℃にて延伸倍率D R= 1.3になるよう
、ローラー系を用いて連続的に非晶延伸を行い、次いで
、糸の緊張を解くこと無(,190℃の熱風循環恒温槽
中に導入し、定長で1秒間滞留させることにより熱処理
を行った。熱処理した中空糸は続いて、温度35℃、ロ
ーラー間10cmにてDRl、2だけ冷延伸し、緊張を
解くこと無く130℃にてDRl、3だけ熱延伸を行い
、さらに、その長さを保ったまま190℃にて3秒間熱
固定を行った。得られた中空糸は外径56μm、膜Pi
(7,9μmであった。この中空糸は白色を呈しており
、空孔の発生が予想されたが、走査型電子顕微鏡(SE
M)による、中空糸内・外表面のa察では、細孔は認め
られないことから、独立気泡であると推定される。
At this time, the area 5 to 55 cm below the nozzle was rapidly cooled with a cross wind at a temperature of 20 DEG C. and a wind speed of 1 m/sec. The obtained hollow fibers were continuously subjected to amorphous stretching using a roller system at a temperature of 35° C. so that the stretching ratio D R = 1.3, and then the fibers were stretched without releasing the tension (190° C.). Heat treatment was performed by introducing the fiber into a hot air circulation constant temperature bath at ℃ and holding it at a constant length for 1 second.The heat-treated hollow fiber was then cold-stretched by DRl, 2 at a temperature of 35℃ and a distance of 10 cm between rollers. Heat stretching was performed at 130°C for DRl, 3 without releasing the tension, and heat setting was performed at 190°C for 3 seconds while maintaining the length.The obtained hollow fibers had an outer diameter of 56 μm and a membrane shape. Pi
(The diameter was 7.9 μm. This hollow fiber had a white color, and the generation of pores was expected, but it was
Since no pores were observed in the inspection of the inner and outer surfaces of the hollow fibers by M), it is presumed that the fibers were closed cells.

製造した中空糸の酸素及び窒素のi21過係数及び分離
係数を測定した。測定条件は1kg/aJの圧力で中空
糸の内側を加圧し、外側へ透過してくるガスの流量を測
定した。膜厚及び膜面積は中空糸の断面の顕微鏡観察よ
り求めた。測定結果はP (O2)−6,8X10″″
 (−(STP) ・cIll/d・sec −cmf
lg) 、α−4,6であった0本実施例と同じ紡糸装
置を用いて得られた非晶質中空糸の値Po(O2) −
1,3×l O−9(単位は同じ)、α−3,6と比較
すると、i3過係数が5.2倍向上している上に、分離
係数も1.28倍向上している。
The i21 excess coefficient and separation coefficient of oxygen and nitrogen of the produced hollow fibers were measured. The measurement conditions were to pressurize the inside of the hollow fiber at a pressure of 1 kg/aJ and measure the flow rate of gas permeating to the outside. The membrane thickness and membrane area were determined by microscopic observation of the cross section of the hollow fiber. The measurement result is P (O2)-6,8X10″″
(-(STP) ・cIll/d・sec -cmf
lg), α-4,6 0 The value of the amorphous hollow fiber obtained using the same spinning device as in this example Po(O2) −
When compared with 1,3×l O-9 (same units) and α-3,6, the i3 excess coefficient is improved by 5.2 times, and the separation factor is also improved by 1.28 times.

実施例2 熱処理を、D R1,3の延伸を加えながら行った以外
は実施例1と全く同様にして製造した膜の気体透過特性
は、P (O2) =6.I X 10− 、α−5,
2であった。
Example 2 The gas permeation properties of a membrane produced in the same manner as in Example 1 except that the heat treatment was performed while adding DR1,3 stretching were as follows: P (O2) = 6. IX10-, α-5,
It was 2.

比較例1 熱処理温度が200℃であること以外は実施例1と同じ
方法により製造した膜の気体透過特性はP (O2) 
=1.5×IO″、α=2.0であり、分離係数の向上
は見られなかった。
Comparative Example 1 The gas permeation property of a membrane manufactured by the same method as Example 1 except that the heat treatment temperature was 200°C was P (O2)
= 1.5 x IO'', α = 2.0, and no improvement in the separation coefficient was observed.

実施例3 熱処理条件が200℃、熟処理時延伸倍率力月、3であ
ること以外は実施例1と同じ条件で製造した膜の気体通
過特性はP (O2) =7.7 X 10−’ 、α
=3.9であった。比較例!との比較でも刈る様にHq
性1iとの向上は、各工作の加工強度の微妙な組合せに
より実現することができる。
Example 3 The gas permeation properties of a membrane produced under the same conditions as in Example 1 except that the heat treatment conditions were 200°C and the stretching magnification during dry treatment was 3 were P (O2) = 7.7 x 10-' ,α
=3.9. Comparative example! Even in comparison with Hq
Improvements in the properties of steel 1i can be achieved by delicately combining the machining strengths of each machining process.

比較例2 紡糸を、室温30℃に於て、冷却風を送ることなしに1
テったこと及びドラフト比が500であること以外は実
施例1と同じ処理により、気体分離膜の製造を試みたが
冷延伸工程に於て糸が破断し、製造不能であった。
Comparative Example 2 Spinning was carried out at a room temperature of 30°C without blowing cooling air.
An attempt was made to manufacture a gas separation membrane using the same process as in Example 1, except that the membrane was stretched and the draft ratio was 500, but the yarn broke during the cold stretching process, making it impossible to manufacture.

比較例3 非晶延伸を行わないこと以外は実施例1と全く同じ方法
で製造した膜の気体透過特性はP、 (O2) =8.
4 X l O′、α=0.95と気体分離能を持たな
いものであった。連通細孔が生成しているものと考えら
れ、非晶延伸工作の必要なことが中Iる。
Comparative Example 3 The gas permeation properties of a membrane produced in exactly the same manner as in Example 1 except for not performing amorphous stretching were P, (O2) = 8.
4 X l O', α=0.95, and had no gas separation ability. It is thought that communicating pores are formed, and an amorphous stretching process is necessary.

比較例4 熱処理工程に於てD R0,8とした以外は実施例Iと
全く同じ方法で製造した膜の気体透過特性はP (O2
) −1,OX 10−” 、α=0.94であった。
Comparative Example 4 The gas permeation property of a membrane manufactured in the same manner as in Example I except that D R0.8 was set in the heat treatment step was P (O2
) −1,OX 10−”, α=0.94.

熱処理時に弛緩させると非晶延伸の効果が相殺されるこ
とが判る。
It can be seen that the effect of amorphous stretching is offset by relaxation during heat treatment.

比較例5 非晶延伸を行わず、代りに熱処理時に1.5の延伸を行
った以外は実施例iと全く同じ方法で製造した膜はP(
O2)=4.0X10→、α−1,8であった。透過速
度は高くなるものの、分離係数の向」−は見られない。
Comparative Example 5 A film produced in exactly the same manner as in Example i except that no amorphous stretching was carried out and instead a 1.5 stretch was carried out during heat treatment was P(
O2) = 4.0X10→, α-1,8. Although the permeation rate increases, no change in separation coefficient is observed.

実施例4 ノズルに直径10waの円環状ノズルを使用し、溶融温
度285℃、引取速度820m/分、ドラフト比100
0で紡糸した以外は実施例1と全(同じ方法で製造した
膜は、外径155μm、膜厚14μmであり、この膜の
気体透過特性はP (O2) =6.I X l O−
、α−4,6であった。
Example 4 An annular nozzle with a diameter of 10 wa was used, the melting temperature was 285°C, the take-up speed was 820 m/min, and the draft ratio was 100.
The membrane was manufactured in the same manner as in Example 1, except that it was spun at 0.0 (The membrane produced by the same method had an outer diameter of 155 μm and a membrane thickness of 14 μm, and the gas permeation properties of this membrane were P (O2) = 6.I X l O-
, α-4,6.

〈発明の効果〉 以上実施例に示した様に、本発明の方法で製造した分離
膜は、酸素/M素等の気体分離能に優れるのみならず、
大きな気体透過速度を有し、空気からの酸素富化空気の
製造、燃焼ガスからのC01H2の回収、天然ガスから
のHe等不活性ガスの回収等、混合気体の分離を必要と
する幅広い分野で、高効率で経済性に優れた気体分離装
置の設計を容易ならしめるものである。又、本分離膜及
び製造方法は、膜構造から容易に類准できる様に、気体
分離以外の分野、例えばバーヘーパレーションによる有
機液体の分団1等にも効果を発揮する。
<Effects of the Invention> As shown in the examples above, the separation membrane produced by the method of the present invention not only has excellent gas separation ability such as oxygen/M element, but also
It has a high gas permeation rate and is used in a wide range of fields that require the separation of mixed gases, such as the production of oxygen-enriched air from air, the recovery of CO1H2 from combustion gas, and the recovery of inert gases such as He from natural gas. This facilitates the design of a highly efficient and economical gas separation device. Furthermore, the present separation membrane and manufacturing method are also effective in fields other than gas separation, such as in the separation of organic liquids by barheparation, as can be easily analogized from the membrane structure.

Claims (1)

【特許請求の範囲】[Claims] 1、熱可塑性の結晶性重合体を(1)溶融温度がTm〜
(Tm+200)℃(但しTmは結晶融点)、ドラフト
比Dfが20≦Df≦10000の条件にて熔融押出し
製膜して得た中空糸又はフィルムを、(2)(Tg−2
0)〜(Tg+50)℃(但しTgはガラス転移温度)
にて、元の長さの5〜200%延伸した後、(3)Tg
〜Tmの温度で熱処理を行い、その後、(4)(Tg−
50)〜(Tm−10)℃の温度で延伸倍率1.1〜5
.0に延伸し、次いで、(5)Tg〜Tmの温度で熱固
定することを特徴とする、25℃における見掛けの酸素
透過係数が、溶融押出し製膜により製造した、同じ素材
の非晶均質膜の酸素透過係数の2倍以上であり、かつ2
5℃に於ける酸素と窒素の分離係数α(O_2/N_2
)が、溶融押出し製膜により製造した、同じ素材の非晶
均質膜の分離係数より大である様な気体透過特性を持つ
、独立気泡又は半連通孔の膜を製造する方法。
1. The thermoplastic crystalline polymer (1) has a melting temperature of Tm ~
(Tm + 200) °C (where Tm is the crystal melting point) and the draft ratio Df is 20≦Df≦10000.
0) to (Tg+50)°C (Tg is the glass transition temperature)
After stretching 5 to 200% of the original length, (3) Tg
Heat treatment is performed at a temperature of ~Tm, and then (4) (Tg-
Stretching ratio 1.1 to 5 at a temperature of 50) to (Tm-10)°C
.. 0, and then heat-set at a temperature of (5) Tg to Tm. is more than twice the oxygen permeability coefficient of
Separation coefficient α of oxygen and nitrogen at 5℃ (O_2/N_2
) is greater than the separation coefficient of an amorphous homogeneous membrane of the same material produced by melt extrusion membrane formation, and a method for producing a closed-cell or semi-open pore membrane.
JP22127084A 1984-10-23 1984-10-23 Preparation of membrane Granted JPS61101206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22127084A JPS61101206A (en) 1984-10-23 1984-10-23 Preparation of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22127084A JPS61101206A (en) 1984-10-23 1984-10-23 Preparation of membrane

Publications (2)

Publication Number Publication Date
JPS61101206A true JPS61101206A (en) 1986-05-20
JPH0415014B2 JPH0415014B2 (en) 1992-03-16

Family

ID=16764142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22127084A Granted JPS61101206A (en) 1984-10-23 1984-10-23 Preparation of membrane

Country Status (1)

Country Link
JP (1) JPS61101206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884359B2 (en) 2000-09-27 2005-04-26 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
CN103551046A (en) * 2013-11-11 2014-02-05 天津风云水资源科技有限公司 Preparation method for hydrophobic ammonia nitrogen removal film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS5938322A (en) * 1982-08-27 1984-03-02 Fuaanesu Juko Kk Heating furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS5938322A (en) * 1982-08-27 1984-03-02 Fuaanesu Juko Kk Heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884359B2 (en) 2000-09-27 2005-04-26 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
CN103551046A (en) * 2013-11-11 2014-02-05 天津风云水资源科技有限公司 Preparation method for hydrophobic ammonia nitrogen removal film
CN103551046B (en) * 2013-11-11 2016-03-23 天津风云水资源科技有限公司 A kind of preparation method of hydrophobic ammonia nitrogen removal film

Also Published As

Publication number Publication date
JPH0415014B2 (en) 1992-03-16

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US4384023A (en) Porous polyethylene film
US7413804B2 (en) Braid-reinforced hollow fiber membrane
Rajabzadeh et al. Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method
US4741829A (en) Composite hollow fibers and method of making same
JP2509030B2 (en) Ultra-permeable polypropylene microporous film and method for producing the same
JPS6335726B2 (en)
US4919856A (en) Process for producing membranes for use in gas separation
JPH0526528B2 (en)
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH0691943B2 (en) Method for producing high resolution polymer membrane
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPS6245318A (en) Preparation of gas separation membrane
JPS61101227A (en) Membrane and its preparation
KR940001854B1 (en) Microporous membranes having increased pore densities and process for making the same
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPS6342006B2 (en)
JPS61101206A (en) Preparation of membrane
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPS61432A (en) Gas separation composite membrane
JPS584810A (en) Microporous hollow fiber