JPS61100260A - Artificial dialytic apparatus - Google Patents

Artificial dialytic apparatus

Info

Publication number
JPS61100260A
JPS61100260A JP59222697A JP22269784A JPS61100260A JP S61100260 A JPS61100260 A JP S61100260A JP 59222697 A JP59222697 A JP 59222697A JP 22269784 A JP22269784 A JP 22269784A JP S61100260 A JPS61100260 A JP S61100260A
Authority
JP
Japan
Prior art keywords
pressure
blood
dialyzer
dialysate
ultrafiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59222697A
Other languages
Japanese (ja)
Other versions
JPH0212110B2 (en
Inventor
邦治 鬼村
雨宮 正仁
黒木 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59222697A priority Critical patent/JPS61100260A/en
Publication of JPS61100260A publication Critical patent/JPS61100260A/en
Publication of JPH0212110B2 publication Critical patent/JPH0212110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は中針(シングルニードル)用の人工透析装置に
関し、更に詳しく述べれば、目標とする除水量が正確に
コントロール出来る人工透析g、置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an artificial dialysis device for a medium needle (single needle). Regarding.

〈従来の技術〉 シングルニードルでの人工透析は、人工透析を行う人体
に動脈と静脈とを連結する短絡路(シャント)が出来て
いない場合とか、シャントの具合が悪いときに行われる
。第4図はシングルニードル用人工透析装置の従来例を
示す構成図である。
<Prior Art> Artificial dialysis using a single needle is performed when a shunt connecting an artery and a vein has not been established in the human body undergoing artificial dialysis, or when the condition of the shunt is poor. FIG. 4 is a configuration diagram showing a conventional example of a single-needle artificial dialysis device.

図中、1はダイアライザ、2は血液回路で一端は人体の
血管に接続され、他端は三方に分かれ、一方は血液ポン
プ3、静脈チャンバー4を経てダイアライザ1の入口側
に結合され、もう一方は弁5を介しダイアライザ1の出
口側に接続されている。
In the figure, 1 is a dialyzer, 2 is a blood circuit, one end is connected to the blood vessels of the human body, the other end is divided into three sides, one is connected to the inlet side of dialyzer 1 via blood pump 3 and venous chamber 4, and the other is connected to the inlet side of dialyzer 1. is connected to the outlet side of dialyzer 1 via valve 5.

6は透析回路で、矢印で示すように透析液がダイアライ
ザ1に供給され、排出される。   ′7は血液圧力を
測定する圧力計、8は圧力計7からの信号に基づき血液
ポンプ3並びに弁5を制御する制御回路である。
Reference numeral 6 denotes a dialysis circuit, in which dialysate is supplied to and discharged from the dialyzer 1 as shown by arrows. 7 is a pressure gauge for measuring blood pressure, and 8 is a control circuit for controlling the blood pump 3 and valve 5 based on the signal from the pressure gauge 7.

このような構成で、弁5は最初閉の状態にあり、この状
態から血液ポンプ3を回転させ、人体からシングルニー
ドルを介し血液を取り出す。取り出された血液は血液回
路2を通り、静脈チャンバー4を通ってダイアライザ1
に供給される。
With this configuration, the valve 5 is initially in a closed state, and from this state the blood pump 3 is rotated to extract blood from the human body through the single needle. The extracted blood passes through the blood circuit 2, passes through the venous chamber 4, and enters the dialyzer 1.
supplied to

ダイアライザ1には透析液が流されており、ここで血液
の透析と除水(限外濾過)が行われる。
A dialysate is passed through the dialyzer 1, where blood dialysis and water removal (ultrafiltration) are performed.

圧力計7によって検出された血液の圧力が成る設定値に
達すると、1t1111!1回路8から信号が発信され
、血液ポンプ3の回転を止め、弁5を開とする。
When the blood pressure detected by the pressure gauge 7 reaches a set value, a signal is sent from the 1t1111!1 circuit 8 to stop the rotation of the blood pump 3 and open the valve 5.

L (7) ta ’X!、ツィアウィV1.おい、□
、□された血液が最初に血液が取り出されたと同じ経路
を通って人体に還流される。
L (7) ta'X! , Tsiawi V1. Hey, □
, □ is returned to the human body through the same route from which the blood was initially taken.

この場合、血液ポンプ3には通常しごきポンプが用いら
れ、ポンプが止まれば、この部分は閉となる為、弁5を
介し還流された血液が再びダイアラ斗ザ1側に流れ込む
ことはない。
In this case, a straining pump is usually used as the blood pump 3, and when the pump stops, this part is closed, so that the blood that has been refluxed through the valve 5 does not flow back into the dialer 1 side.

圧力計7によって検出された圧力が下限値に達すると、
弁5が閉となり、血液ポンプ3が回転し、血液が取り出
され、ダイアライブ1において再び透析と除水が行われ
る。このような操作は、目標とする透析と除水が達成さ
れるまで、何回も繰り返えし行われる。
When the pressure detected by the pressure gauge 7 reaches the lower limit,
The valve 5 is closed, the blood pump 3 is rotated, blood is taken out, and dialysis and water removal are performed again in the dial live 1. Such operations are repeated many times until the targeted dialysis and water removal are achieved.

ところで、人工透析装置では、目標とする除水を達成す
る為、ダイアライザ1中の透析膜に加ねる圧力、即ち、
血液側の圧力と透析液側の圧力との差(限外濾過圧。以
下、TMPという)を制御している。
By the way, in an artificial dialysis machine, in order to achieve the target water removal, the pressure applied to the dialysis membrane in the dialyzer 1, that is,
The difference between the pressure on the blood side and the pressure on the dialysate side (ultrafiltration pressure, hereinafter referred to as TMP) is controlled.

これに対し、第4図に示す従来装置では、上、下限の設
定値を予め設定し、これらに基き血液の取り出し、還流
を行うもので、血液圧は刻々変化    !しており、
このような信号を用いたのではTMPの制御を旨く行え
ない欠点があった。
On the other hand, in the conventional device shown in Fig. 4, the upper and lower limit values are set in advance, and blood is taken out and recirculated based on these values, so that the blood pressure changes every moment! and
Using such a signal has the disadvantage that TMP cannot be controlled effectively.

〈発明が解決しようとする問題点〉 本発明の解決しようとする技術的課題は、血液圧力の変
化に暴き血液の取り出し−と還流とを行う、  ように
したシングルニードル用人工透析装置において、目標と
する除水量が確実に実現出来るようにすることにある。
<Problems to be Solved by the Invention> The technical problem to be solved by the present invention is to provide a single-needle artificial dialysis device that extracts and recirculates blood in response to changes in blood pressure. The goal is to ensure that the desired amount of water removal can be achieved.

゛ く問題点を解決するための手段〉 本発明の構成は、ダイアライザへの血液回路に設けられ
た血液ポンプと前記ダイアライザからの血液回路に設け
られた弁とを前記血液回路を流れる血液の圧力が上、下
限設定値に達する毎に制御し、シングルニードルを介し
血液を前記ダイアライブに取り出し、透析・限外濾過後
、前記シングルニードルを介し人体へ血液を還流させる
ようにした装置において、前記ダイアライザへ透析液を
定流分流すための手段と、前記透析液の圧力を検出する
手段と、前記透析液の圧力を調整する手段と、侵出の演
算制御部から所定のタイミングで与えられる制御信号に
基づき、前記ダイアライブの限外濾過量を検出する手段
と、前記血液の圧力からその平均圧力を求め、この圧力
と前記透析液の圧力との間の限外濾過圧並びに前記限外
濾過量に基づき前記ダイアライザの限外濾過能を演算し
、この演算結果に基づき目標除水量を1qる為の限外濾
過圧を設定し、前記透析液の圧力調整手段をこの設定値
になるように制御する演算制御回路とを設けたことにあ
る。
[Means for Solving the Problems] The configuration of the present invention is such that a blood pump provided in a blood circuit to a dialyzer and a valve provided in a blood circuit from the dialyzer are connected to the pressure of blood flowing through the blood circuit. In the apparatus, the blood is controlled every time the upper and lower limit set values are reached, the blood is taken out through the single needle to the dialive, and after dialysis and ultrafiltration, the blood is returned to the human body through the single needle. means for dividing a constant flow of dialysate into a dialyzer, means for detecting the pressure of the dialysate, means for adjusting the pressure of the dialysate, and control given at a predetermined timing from an effusion calculation control unit. means for detecting the amount of ultrafiltration of the dialybe based on the signal; and means for determining the average pressure from the pressure of the blood, and the ultrafiltration pressure between this pressure and the pressure of the dialysate, as well as the ultrafiltration rate. Calculate the ultrafiltration capacity of the dialyzer based on the amount, set an ultrafiltration pressure to subtract 1q from the target water removal amount based on this calculation result, and adjust the dialysate pressure adjustment means to this set value. The reason is that an arithmetic and control circuit is provided.

く作用〉 前記の技術手段は次のように作用する。即ち、前記シン
グルニードル用人工透析装置では、前記ダイアライザに
血液を充填させる動作、人体に血液を還流させる動作が
繰り返し行われる。この間、血液の圧力は上、下限設定
値の間を変動している為、これを使ったのではTMPの
制御が旨く行えない。そこで、演算制御回路でこの圧力
信号の平均値を求め、これと透析液の圧力との差(限外
濾過圧)を、前記限外濾過能に関連し目標除水量が得ら
れる値に設定し、前記透析液側に設けた圧力調整手段を
この設定値になるようにilJ御した。血液側の圧力が
変動しても目標とする除水量が確実に1rノられる。
Function> The above technical means works as follows. That is, in the single-needle artificial dialysis apparatus, the operation of filling the dialyzer with blood and the operation of circulating blood into the human body are repeatedly performed. During this time, the blood pressure is fluctuating between the upper and lower limit set values, so if this is used, TMP cannot be controlled effectively. Therefore, the arithmetic and control circuit calculates the average value of this pressure signal, and sets the difference between this and the pressure of the dialysate (ultrafiltration pressure) to a value that provides the target water removal amount in relation to the ultrafiltration capacity. Then, the pressure adjusting means provided on the dialysate side was controlled so as to have this set value. Even if the pressure on the blood side fluctuates, the target amount of water removal can be achieved reliably by 1r.

〈実施例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明実施例装置の構成図、第2図は第1図の本発明実施例
装置の動作説明図である。第1図において、第4図にお
ける要素と同じ要素には同一符号を付しこれらについて
の説明は省略する。
<Example> The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the apparatus according to an embodiment of the present invention shown in FIG. In FIG. 1, the same elements as those in FIG. 4 are given the same reference numerals, and explanations thereof will be omitted.

9は透析回路で、ダイアライザ1へ透析液を供給する回
路部分9a、ダイアライザ1から透析液を排出する回路
部分9b並びにダイアライザ1の除水能力を測定する為
のバイパス回路部分9Cとより構成されている。回路部
分9aには定流足片10、弁11及び透析液の圧力を検
出する圧力計12が設けられ、回路部分9bには弁13
及び陰圧ポンプ14が設けられ、バイパス回路部分9C
には容器15a、この容器の上、下部に設けられた超音
波センサ15b、15Cからなる計量器15が設けられ
ている。計量器15は、また弁1G及び絞り17を介し
外気と連通ずる構造となっている。
Reference numeral 9 denotes a dialysis circuit, which is comprised of a circuit section 9a for supplying dialysate to the dialyzer 1, a circuit section 9b for discharging the dialysate from the dialyzer 1, and a bypass circuit section 9C for measuring the water removal capacity of the dialyzer 1. There is. The circuit portion 9a is provided with a constant flow leg 10, a valve 11, and a pressure gauge 12 for detecting the pressure of dialysate, and the circuit portion 9b is provided with a valve 13.
and a negative pressure pump 14 are provided, and a bypass circuit portion 9C
is provided with a measuring device 15 consisting of a container 15a and ultrasonic sensors 15b and 15C provided at the top and bottom of this container. The meter 15 also has a structure in which it communicates with the outside air via a valve 1G and a throttle 17.

18は演算制御部で、入力信号として、圧力計7からの
血液の圧力信号、圧力計12からの透析液の圧力信号、
超音波センサ15b、15Gからの信号等が与えられ、
出力信号として、血液ポンプ3及び弁5への制御信号、
TMP制御を行う際の陰圧ポンプ14への制御信号、並
びにダイアライザ1の除水能力を測定覆る際に弁13.
16へ与えられる制御信号等を発生する。
18 is an arithmetic control unit which receives, as input signals, a blood pressure signal from the pressure gauge 7, a dialysate pressure signal from the pressure gauge 12,
Signals etc. from the ultrasonic sensors 15b and 15G are given,
as an output signal a control signal to the blood pump 3 and the valve 5;
A control signal to the negative pressure pump 14 when performing TMP control, and a control signal to the valve 13 when measuring the water removal ability of the dialyzer 1.
16, and generates control signals and the like.

次に、本発明実施例装置の動作について、第2図の波形
図に従い説明を行う。第2図(a)は血液の圧力の変化
状態を、図(b)、図(C)は夫々血液ポンプ3及び弁
5の動作状態を表わす。弁5が閏の状態から、血液ポン
プ3を回転させると、血液の圧力は、図(a)で示すよ
うに上昇する。
Next, the operation of the apparatus according to the embodiment of the present invention will be explained according to the waveform diagram shown in FIG. FIG. 2(a) shows the changing state of blood pressure, and FIG. 2(b) and FIG. 2(C) show the operating states of the blood pump 3 and valve 5, respectively. When the blood pump 3 is rotated from the state where the valve 5 is in the lever position, the blood pressure increases as shown in Figure (a).

演・算制御部18の記憶部には圧力の上限値Mu並びに
下限16MI2が記憶されており、血液圧が1yluま
で上昇すると、血液ポンプ3の回転を停止する制m信号
並びに弁5を開とする制御信号を発生する。これにより
、血液の還流が行われ、血液圧が     1が下がる
。血液圧がMQまで下がったら、血液ポンプ3を回転さ
せ、弁5を開とする制御!Il信号を発生する。このよ
うな操作は、目標とする透析と除水が達成されるまで繰
り返えし行われる。
The upper limit value Mu and lower limit 16MI2 of pressure are stored in the storage unit of the arithmetic control unit 18, and when the blood pressure rises to 1ylu, a control signal to stop the rotation of the blood pump 3 and a control signal to open the valve 5 are sent. Generates a control signal to This causes blood to circulate and blood pressure to drop by 1. When the blood pressure drops to MQ, the blood pump 3 is rotated and the valve 5 is opened! Generates an Il signal. Such operations are repeated until the targeted dialysis and water removal are achieved.

次に、目標とする除水量を得る為の制御方法について説
明する。除水量はダイアライザ1の除水能力を表わす限
外濾過能(以下、UFRPという)に応じて決まり、こ
のUFRPは限外濾過圧TMP、並びに限外濾過率(以
下、UFRという)に応じて決まる。
Next, a control method for obtaining the target water removal amount will be explained. The amount of water removed is determined according to the ultrafiltration capacity (hereinafter referred to as UFRP) representing the water removal ability of the dialyzer 1, and this UFRP is determined according to the ultrafiltration pressure TMP and the ultrafiltration rate (hereinafter referred to as UFR). .

UFRPは個々のダイアライブ毎に異なる上、透析を続
けると経時的に変化する為、定期的にUFRPの測定を
行う必要がある。
Since UFRP differs for each individual dialybe and also changes over time as dialysis continues, it is necessary to measure UFRP periodically.

バイパス回路部分9CはUrRを測定する部分である。The bypass circuit portion 9C is a portion for measuring UrR.

透析・限外濾過が行われている間、弁11は開、弁13
.16は閉の状態にあり、透析液は回路部1分9a、ダ
イアライザ11回路部分9b、計量器15.バイパス回
路部分9cを通って流れている。演算制御部18から所
定のタイミングで与えられる制御1g号によって、弁1
1が開、弁13’、16が閉とされ、計量器15内は外
部から与え13れる空気によって空にされる。
While dialysis/ultrafiltration is being performed, valve 11 is open and valve 13 is open.
.. 16 is in a closed state, and the dialysate is flowing through the circuit section 9a, the dialyzer 11 circuit section 9b, and the meter 15. It flows through bypass circuit section 9c. Valve 1 is controlled by control number 1g given at a predetermined timing from calculation control section 18.
1 is opened, valves 13' and 16 are closed, and the inside of the measuring instrument 15 is emptied by air 13 supplied from the outside.

次いで、演算制御部18からの制御信号によって、弁1
1を間、弁13.16を閏にし、透析液を流す。これに
より、it ffi器15には限外濾過後の透析液が導
入される。超音波センサ15c。
Next, the valve 1 is activated by a control signal from the calculation control section 18.
1 and valves 13 and 16 to the locks to allow the dialysate to flow. Thereby, the dialysate after ultrafiltration is introduced into the it ffi device 15. Ultrasonic sensor 15c.

15bにより、計」器15において透析液が最低レベル
から最高レベルに至るまでの時間を4数し、同じ時間に
ダイアライザ1に供給される透析液との比較から限外濾
過量(除水量)を求め、前記時間から、透過膜の性能を
表わすUFRを求めている。
15b, count the time it takes for the dialysate to reach the highest level from the lowest level in the meter 15, and calculate the amount of ultrafiltration (amount of water removed) by comparing it with the dialysate supplied to the dialyzer 1 at the same time. The UFR, which represents the performance of the permeable membrane, is determined from the above-mentioned time.

求められたtJFR並びにTMPの値に応じ、目標除水
量が得られるTMPを設定し、この設定値に基づき、陰
圧ポンプ14をシ11陣している。
According to the determined values of tJFR and TMP, a TMP at which the target amount of water removal can be obtained is set, and the negative pressure pump 14 is operated 11 times based on this set value.

ところで、TMPは、一般に次の式で求められる。By the way, TMP is generally calculated by the following formula.

TMP=M1−M2−△p   ・・・(1)但し、M
l:血液の圧力、M2:透析液の圧力、Δp:定数。
TMP=M1-M2-△p...(1) However, M
l: blood pressure, M2: dialysate pressure, Δp: constant.

しかしながら、シングルニードル用人工透析装置では、
血液の圧力M1は第2図(a)で示ザように、上、下限
設定16MLJ、MQ間を変動している。この為、これ
を用いたのではυjiffが旨く行えない。本発明では
、演算制御部18において、圧力M1の平均値Mmを求
め、これを使って、TMP=Mm−M2−Δp   −
=(2)なる演算を行い、設定TMPを求め、これに基
づき透析液の圧力M2を制御している為、血液側の圧力
が変動しても目標とする除水量が確実に1Hられる。
However, in single-needle dialysis machines,
As shown in FIG. 2(a), the blood pressure M1 fluctuates between upper and lower limit settings of 16MLJ and MQ. For this reason, υjiff cannot be performed successfully if this is used. In the present invention, the average value Mm of the pressure M1 is determined in the arithmetic control unit 18, and using this, TMP=Mm-M2-Δp-
= (2) is performed to obtain the setting TMP, and the dialysate pressure M2 is controlled based on this, so even if the pressure on the blood side fluctuates, the target water removal amount is reliably achieved by 1H.

尚、シングルニードルによる人工透析は、人工透析を行
う人体にシャントが出来ていない場合とか、シャントの
具合が悪いとき等特殊な場合に行われるものであって、
シングルニードル用専用の人工透析装置を保有すること
は不経済である。第3図はシングルニードル用にも通常
用途にも共用出来る演算制御部18の具体例を示す構成
図であ1    る。図中、18aは血液の圧力信号M
1側とアー1    ス側とを切り換えて加算点18b
に与えるスイッチ、18cは加算点18bからの信号に
比例、微分、積分等の制御演算を施すアナログ演算回路
、18dは入力に血液の圧力信号M1、透析液の圧力信
号M2が加えられている中央処理装置(CPU)で、加
昇点18bに設定TMPを出力する。
Single-needle dialysis is performed in special cases, such as when the human body undergoing dialysis does not have a shunt, or when the shunt is in poor condition.
It is uneconomical to have a dedicated single-needle dialysis machine. FIG. 3 is a block diagram showing a specific example of the arithmetic and control unit 18 that can be used for both single needle and normal applications. In the figure, 18a is a blood pressure signal M
Addition point 18b by switching between the 1 side and the ground side
18c is an analog calculation circuit that performs control calculations such as proportionality, differentiation, and integration on the signal from the addition point 18b; 18d is a center circuit to which blood pressure signal M1 and dialysate pressure signal M2 are applied to inputs; The processing device (CPU) outputs the set TMP to the acceleration point 18b.

尚、このCPUには超音波センサー5b、15c等から
信号が与えられ、限外濾過能の演算を行い、弁11,1
3.16等へ制御信号を与える。
Note that this CPU is given signals from the ultrasonic sensors 5b, 15c, etc., calculates the ultrafiltration capacity, and operates the valves 11, 1.
3.Gives control signals to 16 etc.

シングルニードル用のとき、スイッチ18aをアース側
に切り換え、(2)式に基づき、CPU18dから与え
られる設定TMPに基づきポンプ14の制御が行われる
。通常用途の場合には、スイッチ18aを信号M1側に
切り換え、(1)式に基づく設定TMPによりポンプ1
4をシリ御する。
When using a single needle, the switch 18a is switched to the ground side, and the pump 14 is controlled based on the setting TMP given from the CPU 18d based on equation (2). In the case of normal use, switch 18a is switched to the signal M1 side, and pump 1 is set by setting TMP based on equation (1).
4.

このような構成によれば、スイッチ18bを付加しただ
けの簡単な構成で、シングルニードル用にも、通常用途
用にも共用することが出来る。
According to such a configuration, the simple configuration of adding the switch 18b can be used both for single needle use and for normal use.

〈発明の効果〉 本発明によれば、血液の圧力信号の平均値を求め、この
値と透析液の圧力との間の限外濾過圧を、前記限外濾過
能に関連し目標除水ωが(qられる値に設定し、前記透
析液側に設けた圧力調整手段をこの設定値になるように
制御した為、血液側の圧力が変動しても目標とする除水
量が確実に1qられる。
<Effects of the Invention> According to the present invention, the average value of the blood pressure signal is determined, and the ultrafiltration pressure between this value and the dialysate pressure is determined as the target water removal ω in relation to the ultrafiltration capacity. Since the pressure adjustment means provided on the dialysate side was controlled to this set value, the target amount of water removed was reliably 1q even if the pressure on the blood side fluctuated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の構成図、第2図は第1図の
本発明実施例装置の動作説明図、第3図は本発明実施例
装置における演算υ制御部18の具体例を示す構成図、
第4図はシングルニードル用人工透析装置の従来例を示
ず構成図である。 1・・・ダイアライザ、2・・・血液回路、3・・・血
液ポンプ、5・・・弁、7・・・圧力計、9・・・透析
回路、10・・・定流量弁、11・・・弁、12・・・
圧力計、13・・・弁、14・・・陰圧ポンプ、15・
・・計量器、18・・・演算制御部 第1図 第2図 第3図 第4図
FIG. 1 is a configuration diagram of the apparatus according to the embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the apparatus according to the embodiment of the present invention shown in FIG. 1, and FIG. A configuration diagram shown,
FIG. 4 is a configuration diagram, not showing a conventional example of a single needle artificial dialysis device. DESCRIPTION OF SYMBOLS 1... dialyzer, 2... blood circuit, 3... blood pump, 5... valve, 7... pressure gauge, 9... dialysis circuit, 10... constant flow valve, 11... ...Valve, 12...
Pressure gauge, 13... Valve, 14... Negative pressure pump, 15.
...Measuring instrument, 18... Arithmetic control unit Fig. 1 Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] ダイアライザへの血液回路に設けられた血液ポンプと前
記ダイアライザからの血液回路に設けられた弁とを前記
血液回路を流れる血液の圧力が上、下限設定値に達する
毎に制御し、シングルニードルを介し血液を前記ダイア
ライザに取り出し、透析・限外濾過後、前記シングルニ
ードルを介し人体へ血液を還流させるようにした装置に
おいて、前記ダイアライザへ透析液を定流量流すための
手段と、前記透析液の圧力を検出する手段と、前記透析
液の圧力を調整する手段と、後出の演算制御部から所定
のタイミングで与えられる制御信号に基づき、前記ダイ
アライザの限外濾過量を検出する手段と、前記血液の圧
力からその平均圧力を求め、この圧力と前記透析液の圧
力との間の限外濾過圧並びに前記限外濾過量に基づき前
記ダイアライザの限外濾過能を演算し、この演算結果に
基づき目標除水量を得る為の限外濾過圧を設定し、前記
透析液の圧力調整手段をこの設定値になるように制御す
る演算制御回路とを設けたことを特徴とする人工透析装
置。
A blood pump provided in the blood circuit to the dialyzer and a valve provided in the blood circuit from the dialyzer are controlled each time the pressure of blood flowing through the blood circuit reaches an upper or lower limit set value, and a blood pump provided in the blood circuit from the dialyzer is controlled to In the apparatus, blood is taken out into the dialyzer, and after dialysis and ultrafiltration, the blood is returned to the human body through the single needle, comprising means for flowing a constant flow of dialysate to the dialyzer, and a pressure of the dialysate. means for detecting the amount of ultrafiltration of the dialyzer, means for adjusting the pressure of the dialysate, means for detecting the amount of ultrafiltration of the dialyzer based on a control signal given at a predetermined timing from an arithmetic control section to be described later; The average pressure is calculated from the pressure of the dialysate, the ultrafiltration capacity of the dialyzer is calculated based on the ultrafiltration pressure between this pressure and the pressure of the dialysate, and the ultrafiltration amount, and the target is calculated based on the calculation result. An artificial dialysis apparatus comprising: an arithmetic control circuit that sets an ultrafiltration pressure for obtaining the amount of water removed, and controls the dialysate pressure adjustment means to reach this set value.
JP59222697A 1984-10-23 1984-10-23 Artificial dialytic apparatus Granted JPS61100260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222697A JPS61100260A (en) 1984-10-23 1984-10-23 Artificial dialytic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222697A JPS61100260A (en) 1984-10-23 1984-10-23 Artificial dialytic apparatus

Publications (2)

Publication Number Publication Date
JPS61100260A true JPS61100260A (en) 1986-05-19
JPH0212110B2 JPH0212110B2 (en) 1990-03-19

Family

ID=16786493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222697A Granted JPS61100260A (en) 1984-10-23 1984-10-23 Artificial dialytic apparatus

Country Status (1)

Country Link
JP (1) JPS61100260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265613A (en) * 2002-03-15 2003-09-24 Terumo Corp Method for controlling catheter with expander, blood specimen collection controller and catheter with expander

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116468A (en) * 1980-02-15 1981-09-12 Terumo Corp Single needle dialysis system
JPS5825169A (en) * 1981-08-07 1983-02-15 泉工医科工業株式会社 Blood dialyzing apparatus by single needle type artificial kidney
JPS592749A (en) * 1982-06-30 1984-01-09 横河電機株式会社 Artifical dialysis apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116468A (en) * 1980-02-15 1981-09-12 Terumo Corp Single needle dialysis system
JPS5825169A (en) * 1981-08-07 1983-02-15 泉工医科工業株式会社 Blood dialyzing apparatus by single needle type artificial kidney
JPS592749A (en) * 1982-06-30 1984-01-09 横河電機株式会社 Artifical dialysis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265613A (en) * 2002-03-15 2003-09-24 Terumo Corp Method for controlling catheter with expander, blood specimen collection controller and catheter with expander

Also Published As

Publication number Publication date
JPH0212110B2 (en) 1990-03-19

Similar Documents

Publication Publication Date Title
US5470483A (en) Device and method for controlling the balance of fluids in an extracorporeal blood circuit
JP2532261B2 (en) Equipment for hemodialysis treatment
EP1434646B2 (en) Apparatus for controlling a dialysis apparatus
CA2495561C (en) Blood purifying device and method of operating the same
US4889635A (en) Method and apparatus for controlling the quantities of liquid circulating in the dialysis liquid circuit of an artificial kidney
JP2516928B2 (en) Dialysis machine
JPS61100260A (en) Artificial dialytic apparatus
JPS61131753A (en) Disinfection apparatus for artificial dialytic apparatus
JP2510736B2 (en) Water removal control monitoring system for dialysis equipment
JPS60236661A (en) Artificial kidney dialytic apparatus
JPH0627166Y2 (en) Dialysis machine
JPH0636826Y2 (en) Hemodialysis machine
JPS649027B2 (en)
JPH054839Y2 (en)
JPS6330025B2 (en)
JPH0268069A (en) Blood dialyzer
JPH0212109B2 (en)
JPS6041973A (en) Controller of ultrafiltration amount
EP3763400A1 (en) Apparatus for extracorporeal treatment of blood and method for determining water losses in a membrane gas exchanger of an apparatus for extracorporeal treatment of blood
WO2022175154A1 (en) An apparatus for extracorporeal blood treatment.
JPS60156471A (en) Artificial dialytic apparatus
JPS6325804B2 (en)
JPH0519072Y2 (en)
JPH0516871B2 (en)
JPH069670Y2 (en) Water removal controller for hemodialysis machine