JPH069670Y2 - Water removal controller for hemodialysis machine - Google Patents

Water removal controller for hemodialysis machine

Info

Publication number
JPH069670Y2
JPH069670Y2 JP1989028698U JP2869889U JPH069670Y2 JP H069670 Y2 JPH069670 Y2 JP H069670Y2 JP 1989028698 U JP1989028698 U JP 1989028698U JP 2869889 U JP2869889 U JP 2869889U JP H069670 Y2 JPH069670 Y2 JP H069670Y2
Authority
JP
Japan
Prior art keywords
metering pump
rotary metering
flow rate
dialyzer
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989028698U
Other languages
Japanese (ja)
Other versions
JPH02118554U (en
Inventor
幸夫 水野
秀裕 棚橋
Original Assignee
株式会社三陽電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三陽電機製作所 filed Critical 株式会社三陽電機製作所
Priority to JP1989028698U priority Critical patent/JPH069670Y2/en
Publication of JPH02118554U publication Critical patent/JPH02118554U/ja
Application granted granted Critical
Publication of JPH069670Y2 publication Critical patent/JPH069670Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は腎不全患者の治療に用いられる血液透析装置
に関し、特に除水量を制御する除水量制御装置に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION “Industrial field of application” The present invention relates to a hemodialysis apparatus used for treating a patient with renal failure, and more particularly to a water removal amount control device for controlling the water removal amount.

「従来の技術」 現在行われている除水量制御のうち代表的なものとして
ECUM方式がある。ECUM方式は第4図に示すようにして行
われる。すなわち患者11からの血液は血液ポンプ12
により透析器13へ供給され、透析器13で水分や老廃
物が除去された血液はドリップチャンバ14を介して患
者11に戻される。一方透析液は液供給流路15より第
1開閉弁16を介して透析器13へ供給され、透析器1
3よりの透析液は排液流路17より第2開閉弁18を介
し、更に陰圧ポンプ19により引かれて排液される。第
1開閉弁16の入口と第2開閉弁18の出口との間に分
岐路21が連結され、分岐路21に第3開閉弁22が挿
入される。
"Conventional technology" As a representative one of the current water removal control
There is an ECUM system. The ECUM method is performed as shown in FIG. That is, the blood from the patient 11 is supplied by
The blood thus supplied to the dialyzer 13 and from which water and wastes have been removed by the dialyzer 13 is returned to the patient 11 via the drip chamber 14. On the other hand, the dialysate is supplied from the liquid supply channel 15 to the dialyzer 13 via the first on-off valve 16, and the dialyzer 1
The dialysate from No. 3 is drained from the drainage channel 17 via the second opening / closing valve 18 and further by the negative pressure pump 19. The branch passage 21 is connected between the inlet of the first opening / closing valve 16 and the outlet of the second opening / closing valve 18, and the third opening / closing valve 22 is inserted in the branch passage 21.

測定モードにおいて第1開閉弁16、第2開閉弁18が
閉とされ、第3開閉弁22が開とされ、透析器13及び
第2開閉弁18間に設けられた除水量測定用ポンプ23
が引かれ、所定の除水量とした時の透析器13の透析液
側圧力Qが圧力測定器24で測定される。この透析液側
圧力Qと、血液側圧力Pとの差P−Q(TMP:透過膜
圧力)と除水量との関係が求まる。
In the measurement mode, the first opening / closing valve 16 and the second opening / closing valve 18 are closed, the third opening / closing valve 22 is opened, and the water removal amount measuring pump 23 provided between the dialyzer 13 and the second opening / closing valve 18
Is drawn, and the dialysate-side pressure Q of the dialyzer 13 when the predetermined amount of water is removed is measured by the pressure measuring device 24. A relationship between the difference P−Q (TMP: permeable membrane pressure) between the dialysate side pressure Q and the blood side pressure P and the amount of water removed can be obtained.

透析モードでは第1開閉弁16、第2開閉弁18を開と
し、第3開閉弁22を閉として、透析器13に透析液を
流し、この時のTMPが前記測定したTMPとなるよう
に制御する。
In the dialysis mode, the first opening / closing valve 16 and the second opening / closing valve 18 are opened, the third opening / closing valve 22 is closed, and the dialysate is caused to flow into the dialyzer 13, and the TMP at this time is controlled to be the measured TMP. To do.

また往復式定量ポンプを二つ設けて、透析器に対する流
入、流出透析液量を等しくし、第3の除水ポンプにより
除水量に相当する液量を強制的に除水する方式がある。
この方式の代表的なものを第5図に示す。すなわち往復
式定量ポンプ25,26を設け、これらを連動とし、往
復式定量ポンプ25の計量室25bから透析液を透析器
13へ供給している時に、透析器13から透析液を定量
ポンプ25の計量室25aに取込み、一方定量ポンプ2
6の計量室26aに供給すべき透析液を取込み、計量室
26bに取込んだ透析液を排液する。逆に定量ポンプ2
6の計量室26aの透析液を透析器13へ供給する時、
透析器13からの透析液を計量室26bに取込み、定量
ポンプ25は計量室25bに供給すべき透析液を取込
み、計量室25aの透析液を排液する。
In addition, there is a system in which two reciprocating metering pumps are provided to make the inflow and outflow dialysate amounts to the dialyzer equal, and forcibly remove the amount of liquid corresponding to the dewatering amount by the third dewatering pump.
A typical example of this system is shown in FIG. That is, the reciprocating metering pumps 25 and 26 are provided, and these are interlocked with each other. When the dialysate is being supplied from the metering chamber 25b of the reciprocating metering pump 25 to the dialyzer 13, the dialyser 13 supplies the dialysate to the metering pump 25. It is taken into the measuring chamber 25a, while the metering pump 2
The dialysate to be supplied to the measuring chamber 26a of No. 6 is taken in, and the dialysate taken in to the measuring chamber 26b is discharged. On the contrary, metering pump 2
When the dialysate in the measuring chamber 26a of No. 6 is supplied to the dialyzer 13,
The dialysate from the dialyzer 13 is taken into the measuring chamber 26b, the metering pump 25 takes in the dialysate to be supplied to the measuring chamber 25b, and the dialysate in the measuring chamber 25a is discharged.

透析器13から排出される透析液は除水用ポンプ27に
よっても引かれ、この除水用ポンプ27により引く透析
液の量は、定量ポンプ25又は26により透析器13へ
供給する量と透析器13より引く量との差の量とする。
The dialysate discharged from the dialyzer 13 is also drawn by the water removing pump 27, and the amount of dialysate drawn by the water removing pump 27 is the same as the amount supplied to the dialyzer 13 by the metering pump 25 or 26. The difference from the amount subtracted from 13.

このようにして4つの計量室を用いることにより、定量
ポンプの往復動による透析液の流れが不連続となる問題
を解決している。
By using the four measuring chambers in this manner, the problem of discontinuous flow of dialysate due to the reciprocating movement of the metering pump is solved.

「考案が解決しようとする課題」 第4図に示す従来方式においては測定モード時以外は除
水量の測定が行われず、また透析液が流れている場合
と、停止している場合とで透析器13の内部の圧力が異
なり、誤差の原因となる。最近の透析器ではTMP当り
の除水量が従来のものの5倍程度もあるものが出現し、
従来問題とならなかった小さなTMPの誤差が、大きな
除水誤差の原因となり、臨床上の問題となっている。
“Problems to be solved by the device” In the conventional method shown in FIG. 4, the water removal amount is not measured except in the measurement mode, and the dialyzer is used when the dialysate is flowing and when it is stopped. The pressure inside 13 is different and causes an error. In recent dialysers, the amount of water removed per TMP is about 5 times that of conventional ones, and
A small TMP error, which has not been a problem in the past, causes a large water removal error and is a clinical problem.

他方第5図に示す方式には、計量室間の誤差が累積され
ることと、計量室の切替えを頻繁に行う必要があり、こ
の切替えタイミングにより誤差が生じるという欠点があ
る。更に透析液中には炭酸カルシウムが、透析器の下流
液には低分子量の蛋白質などがそれぞれ含まれるため、
これらによる弁の動作不良、ポンプの容積変化も無視で
きない。
On the other hand, the method shown in FIG. 5 has a drawback that errors among the measuring chambers are accumulated and that the measuring chambers need to be switched frequently, and errors occur depending on the switching timing. Furthermore, since the dialysate contains calcium carbonate and the dialyser contains low molecular weight proteins, etc.,
The malfunction of the valve and the change in the volume of the pump due to these cannot be ignored.

「課題を解決するための手段」 この考案によれば第1回転式定量ポンプにより透析液が
透析器へ供給され、透析器よりの透析液が第2回転式定
量ポンプで引かれる。第1回転式定量ポンプと並列に第
1バイパス弁が接続され、第2回転式定量ポンプと並列
に第2バイパス弁が接続される。第1回転式定量ポンプ
及び第2回転式定量ポンプ間に密閉路を構成する手段が
設けられる。その密閉路を流れる液の流量が流量測定手
段により測定される。校正モードにおいて密閉路を構成
した状態で第2バイパス弁を開として第1回転式定量ポ
ンプの流量を流量測定手段により測定し、第1バイパス
弁を開として第2回転式定量ポンプの流量を流量測定手
段により測定し、これらの測定出力により第1回転式定
量ポンプと第2回転式定量ポンプとの流量差をゼロにす
る。透析モードにおいては校正モードで得られた回転数
に第1,第2回転式定量ポンプをそれぞれ設定し、透析
器に対して流入する透析液量と、流出する透析液量との
差が第3回転式定量ポンプにより引かれる。あるいは第
3回転式定量ポンプを省略し、第2回転式定量ポンプを
設定除水量に対応した分第1回転式定量ポンプよりも多
く回転させる。
"Means for Solving the Problem" According to the present invention, the dialysate is supplied to the dialyzer by the first rotary metering pump, and the dialysate from the dialyzer is drawn by the second rotary metering pump. A first bypass valve is connected in parallel with the first rotary metering pump, and a second bypass valve is connected in parallel with the second rotary metering pump. Means for forming a closed passage is provided between the first rotary metering pump and the second rotary metering pump. The flow rate of the liquid flowing through the closed path is measured by the flow rate measuring means. In the calibration mode, the second bypass valve is opened and the flow rate of the first rotary metering pump is measured by the flow rate measuring means while the closed path is configured, and the flow rate of the second rotary metering pump is measured by opening the first bypass valve. The measurement is performed by the measuring means, and the flow rate difference between the first rotary metering pump and the second rotary metering pump is set to zero by these measurement outputs. In the dialysis mode, the first and second rotary metering pumps are set to the rotation speeds obtained in the calibration mode, and the difference between the dialysate volume flowing into and out of the dialyzer is the third volume. It is pulled by a rotary metering pump. Alternatively, the third rotary metering pump is omitted, and the second rotary metering pump is rotated more than the first rotary metering pump corresponding to the set water removal amount.

「実施例」 第1図はこの考案の実施例を示し、第4図と対応する部
分には同一符号を付けてある。この考案においては液供
給流路15に第1回転式定量ポンプ31が設けられ、排
液流路17に第2回転式定量ポンプ32が設けられる。
第1回転式定量ポンプ31と並列に第1バイパス弁33
が接続され、第2回転式定量ポンプ32と並列に第2バ
イパス弁34が接続される。第1回転式定量ポンプ31
と第2回転式定量ポンプ32との間に密閉路を構成する
手段が設けられる。このためこの例ではバイパスカプラ
35が設けられ、透析器13から液供給流路15を外し
てバイパスカプラ35の一端に連結し、透析器13から
排液流路17を外してバイパスカプラ35の他端に連結
することができるようにされる。上記密閉路の流量を測
定するために透析器13と第1回転式定量ポンプ31と
の間の液供給流路15に流量計36が設けられる。透析
器13と第2回転式定量ポンプ32との間の排液流路1
7に第3回転式定量ポンプ37が分岐接続される。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those in FIG. 4 are designated by the same reference numerals. In this invention, the liquid supply flow path 15 is provided with a first rotary metering pump 31, and the drainage flow path 17 is provided with a second rotary metering pump 32.
The first bypass valve 33 is provided in parallel with the first rotary metering pump 31.
Is connected, and the second bypass valve 34 is connected in parallel with the second rotary metering pump 32. First rotary metering pump 31
Means for forming a closed passage is provided between the second rotary metering pump 32 and the second rotary metering pump 32. Therefore, in this example, the bypass coupler 35 is provided, the liquid supply flow path 15 is removed from the dialyzer 13 and is connected to one end of the bypass coupler 35, and the drainage flow path 17 is removed from the dialyzer 13 to remove the bypass coupler 35. Allowed to connect to the end. A flow meter 36 is provided in the liquid supply flow path 15 between the dialyzer 13 and the first rotary metering pump 31 to measure the flow rate in the closed passage. Drainage flow path 1 between the dialyzer 13 and the second rotary metering pump 32
A third rotary metering pump 37 is branched and connected to 7.

この装置は二つのモードがある。第一は校正モードで、
第二は透析モードである。校正モードにおいては液供給
流路15及び排液流路17は透析器13から外されてバ
イパスカプラ35に連結されて上記密閉路が構成され
る。第1バイパス弁33を閉とし、第2バイパス弁34
を開とし、第1回転式定量ポンプ31を例えば500m
l/minの速度で運転し、第2回転式定量ポンプ32は
停止する。この時の第1回転式定量ポンプ31の流量を
流量計36で測定する。次に第1バイパス弁33を開と
し、第2バイパス弁34を閉とし、第1回転式定量ポン
プ31を停止し、第2回転式定量ポンプ32を例えば5
00ml/minの速度で運転し、この時の第2回転式定
量ポンプ32の流量を流量計36で測定する。これら第
1,第2回転式定量ポンプ31,32の測定流量の差が
ゼロになるように第1回転式定量ポンプ31あるいは第
2回転式定量ポンプ32のポンプ回転数を制御する。こ
れにより第1回転式定量ポンプ31及び第2回転式定量
ポンプ32の透析モードにおける回転数を決定する。
This device has two modes. The first is the calibration mode,
The second is the dialysis mode. In the calibration mode, the liquid supply flow path 15 and the drainage flow path 17 are removed from the dialyzer 13 and are connected to the bypass coupler 35 to form the closed path. The first bypass valve 33 is closed, and the second bypass valve 34
Is opened and the first rotary metering pump 31 is, for example, 500 m
It operates at a speed of 1 / min, and the second rotary metering pump 32 stops. The flow rate of the first rotary metering pump 31 at this time is measured by the flow meter 36. Next, the first bypass valve 33 is opened, the second bypass valve 34 is closed, the first rotary metering pump 31 is stopped, and the second rotary metering pump 32 is set to, for example, 5
The operation is performed at a speed of 00 ml / min, and the flow rate of the second rotary metering pump 32 at this time is measured by the flow meter 36. The pump speed of the first rotary metering pump 31 or the second rotary metering pump 32 is controlled so that the difference between the measured flow rates of the first and second rotary metering pumps 31, 32 becomes zero. Thus, the rotation speeds of the first rotary metering pump 31 and the second rotary metering pump 32 in the dialysis mode are determined.

透析モードにおいては液供給流路15及び排液流路17
をバイパスカプラ35から外して透析器13に連結し、
透析器13に対する送液を開始する。この時、第1回転
式定量ポンプ31及び第2回転式定量ポンプ32は校正
モードで得られた回転数を維持する。第3回転式定量ポ
ンプ37は除水率定器で設定された量に相当する回転数
で運転する。つまり第1回転式定量ポンプ31及び第2
回転式定量ポンプ32により透析器13に対する透析液
の流入、流出を等しくすると共に除水量に相当する量を
第3回転式定量ポンプ37により強制的に抜きとる。こ
のようにして除水量を高精度に制御して計画的に除水を
行うことができる。しかし回転式定量ポンプは定量性に
経時的変化を伴うが、これを校正モードにより校正し、
この欠点を補うことにより往復式ポンプより高精度の除
水量制御を実現することができる。
In the dialysis mode, the liquid supply flow path 15 and the drainage flow path 17
Is removed from the bypass coupler 35 and connected to the dialyzer 13,
The liquid supply to the dialyzer 13 is started. At this time, the first rotary metering pump 31 and the second rotary metering pump 32 maintain the rotation speed obtained in the calibration mode. The third rotary metering pump 37 operates at a rotation speed corresponding to the amount set by the water removal rate meter. That is, the first rotary metering pump 31 and the second
The rotary metering pump 32 equalizes the inflow and outflow of the dialysate into the dialyzer 13, and the third rotary metering pump 37 forcibly withdraws an amount corresponding to the amount of water removed. In this way, the amount of water removed can be controlled with high accuracy to remove water systematically. However, the rotary metering pump has a change in quantification with time.
By compensating for this drawback, it is possible to realize more precise water removal amount control than the reciprocating pump.

回転式定量ポンプにはモイノポンプを使用し、このポン
プの駆動源にはパルスモータを用いることができる。校
正モードにおける流量測定手段としては第2図に示すよ
うに、第2回転式定量ポンプ32の吐出側に計量器38
を設け、第2バイパス弁34を開とし、第1回転式定量
ポンプ31により送液した時に、液が計量器38の下の
基準レベルから上の基準レベルに達するまでの時間を測
定し、次に第1バイパス弁33を開とし、第2回転式定
量ポンプ31により送液した時に、液が計量器38の下
の基準レベルから上の基準レベルに達するまでの時間を
測定し、両測定時間が等しくなるように、第1回転式定
量ポンプ31又は第2回転式定量ポンプ32の回転数を
制御してもよい。この第2図に示す例では第3回転式定
量ポンプを設けずに、第2回転式定量ポンプ32の回転
数を校正モードで得られた値に設定除水量分を加えて制
御するようにした場合である。
A Moino pump can be used as the rotary metering pump, and a pulse motor can be used as a drive source of this pump. As a flow rate measuring means in the calibration mode, as shown in FIG. 2, a meter 38 is provided on the discharge side of the second rotary metering pump 32.
Is provided, the second bypass valve 34 is opened, and when the liquid is fed by the first rotary metering pump 31, the time required for the liquid to reach the upper reference level from the lower reference level of the measuring instrument 38 is measured. When the first bypass valve 33 is opened and the liquid is fed by the second rotary metering pump 31, the time taken for the liquid to reach the upper reference level from the lower reference level of the measuring device 38 is measured. The rotational speeds of the first rotary metering pump 31 or the second rotary metering pump 32 may be controlled so that the two values become equal. In the example shown in FIG. 2, the rotation speed of the second rotary metering pump 32 is controlled by adding the set amount of water removal to the value obtained in the calibration mode without providing the third rotary metering pump. This is the case.

密閉路の構成のためにバイパスカプラ35を使用するこ
となく、第3図に示すように液供給流路15に第1開閉
弁16を、排液流路17に第2開閉弁18を、分岐路2
1に第3開閉弁22をそれぞれ設け、校正モード時には
第1開閉弁16、第2開閉弁18を閉とし、第3開閉弁
22を開として分岐路21を通じる密閉路を構成しても
よい。第3図の例では第3回転式定量ポンプ37の吐出
側にカップによる計量機構39を設け、除水量を計測
し、第3回転式定量ポンプ37の回転数を補正するよう
にしている。
As shown in FIG. 3, the first opening / closing valve 16 is branched to the liquid supply flow path 15, the second opening / closing valve 18 is branched to the drainage flow path 17, without using the bypass coupler 35 for the construction of the closed path. Road 2
1 may be provided with the third on-off valve 22, and in the calibration mode, the first on-off valve 16 and the second on-off valve 18 may be closed, and the third on-off valve 22 may be opened to form a closed passage through the branch passage 21. . In the example of FIG. 3, a metering mechanism 39 using a cup is provided on the discharge side of the third rotary metering pump 37, the amount of water removed is measured, and the rotation speed of the third rotary metering pump 37 is corrected.

密閉路の構成としては透析器13の血液の流れを停止し
てもよい。第3回転式定量ポンプ13を透析器13の流
入側に分岐接続して、除水量に対応した分だけ透析液を
減少して透析器13へ供給してもよい。
As a structure of the closed passage, the blood flow in the dialyzer 13 may be stopped. The third rotary metering pump 13 may be branched and connected to the inflow side of the dialyzer 13, and the dialysate may be reduced and supplied to the dialyzer 13 by an amount corresponding to the amount of water removed.

「考案の効果」 以上述べたようにこの考案によれば回転式定量ポンプを
使用して高精度で除水量を制御することができ、高除水
能膜にも十分対応できる除水量制御装置を実現できる。
計量室をもつ往復式定量ポンプを使用する場合と比較し
て弁の開閉を頻繁に行う必要がなく、かつ校正モードを
適当に挿入することにより誤差が累積されることなく、
常に正しい制御を行うことができる。
"Effect of the device" As described above, according to the present invention, a water removal amount control device capable of controlling the water removal amount with high accuracy by using a rotary metering pump and sufficiently corresponding to a high water removal capacity membrane is provided. realizable.
Compared to the case of using a reciprocating metering pump with a metering chamber, it is not necessary to open and close the valve frequently, and by inserting the calibration mode appropriately, errors do not accumulate,
You can always get the right control.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示すブロック図、第2図及
び第3図はそれぞれ他の実施例を示すブロック図、第4
図及び第5図はそれぞれ従来の除水量制御装置を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are block diagrams showing other embodiments, respectively.
FIG. 5 and FIG. 5 are block diagrams showing a conventional water removal amount control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】透析器へ液供給流路を通じて透析液を供給
し、上記透析器へ供給された血液から老廃物を除去して
透析液と共に排液流路へ排出する血液透析装置におい
て、 上記液供給流路に挿入された第1回転式定量ポンプと、 上記排液流路に挿入された第2回転式定量ポンプと、 上記第1回転式定量ポンプと並列に接続された第1バイ
パス弁と、 上記第2回転式定量ポンプと並列に接続された第2バイ
パス弁と、 上記第1回転式定量ポンプ及び上記第2回転式定量ポン
プ間に密閉路を構成する手段と、 上記密閉路を流れる液の流量を測定する流量測定手段
と、 上記密閉路を構成した状態で上記第2バイパス弁を開と
して、上記第1回転式定量ポンプの流量を上記流量測定
手段により測定する第1測定手段と、 上記密閉路を構成した状態で上記第1バイパス弁を開と
して、上記第2回転式定量ポンプの流量を上記流量測定
手段により測定する第2測定手段と、 上記第1測定手段の測定出力と、上記第2測定手段の測
定出力とにより、上記第1回転式定量ポンプと上記第2
回転式定量ポンプとの流量差をゼロにする手段と、 を具備する血液透析装置の除水量制御装置。
1. A hemodialysis apparatus for supplying dialysate to a dialyzer through a liquid supply flow path to remove waste products from the blood supplied to the dialyzer and discharging the waste together with the dialysate into a drainage flow path. A first rotary metering pump inserted into the liquid supply channel, a second rotary metering pump inserted into the drainage channel, and a first bypass valve connected in parallel with the first rotary metering pump. A second bypass valve connected in parallel with the second rotary metering pump; means for forming a sealed path between the first rotary metering pump and the second rotary metering pump; Flow rate measuring means for measuring the flow rate of the flowing liquid, and first measuring means for measuring the flow rate of the first rotary metering pump by the flow rate measuring means by opening the second bypass valve in the state where the closed path is configured. And the above-mentioned closed path is configured Second measurement means for measuring the flow rate of the second rotary metering pump by the flow rate measurement means by opening the first bypass valve, measurement output of the first measurement means, and measurement output of the second measurement means. And the first rotary metering pump and the second
A means for controlling the amount of water removed from a hemodialysis machine, comprising: means for reducing the flow rate difference from the rotary metering pump to zero.
JP1989028698U 1989-03-13 1989-03-13 Water removal controller for hemodialysis machine Expired - Lifetime JPH069670Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989028698U JPH069670Y2 (en) 1989-03-13 1989-03-13 Water removal controller for hemodialysis machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989028698U JPH069670Y2 (en) 1989-03-13 1989-03-13 Water removal controller for hemodialysis machine

Publications (2)

Publication Number Publication Date
JPH02118554U JPH02118554U (en) 1990-09-25
JPH069670Y2 true JPH069670Y2 (en) 1994-03-16

Family

ID=31252277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989028698U Expired - Lifetime JPH069670Y2 (en) 1989-03-13 1989-03-13 Water removal controller for hemodialysis machine

Country Status (1)

Country Link
JP (1) JPH069670Y2 (en)

Also Published As

Publication number Publication date
JPH02118554U (en) 1990-09-25

Similar Documents

Publication Publication Date Title
US6042784A (en) Method and apparatus for ultrafiltration in hemodialysis
US5702597A (en) Device for preparing a treatment liquid by filtration
US4997570A (en) Method and device for ultrafiltration during hemodialysis
JPH0455075B2 (en)
JP3928888B2 (en) Blood purification equipment
JPH0364148B2 (en)
JPH069670Y2 (en) Water removal controller for hemodialysis machine
JP4337981B2 (en) Blood purification equipment
JPH0630201Y2 (en) Water removal controller for hemodialysis machine
JP2769514B2 (en) Water removal control device for hemodialysis machine
JPS61131753A (en) Disinfection apparatus for artificial dialytic apparatus
JPH0522181Y2 (en)
JPH0636826Y2 (en) Hemodialysis machine
JP4502707B2 (en) Hemodialysis machine that repeatedly injects and removes water intermittently
JPH06245996A (en) Dialysis filter device
JPH0627166Y2 (en) Dialysis machine
JPS649025B2 (en)
JPH1176395A (en) Dialytic system
JPH0516871B2 (en)
CN114144211A (en) Dialysis device with three balancing chambers
JPH0212109B2 (en)
JPH0622622B2 (en) Blood purification device
JPH0531182A (en) Hemodialyzer
JPS6411321B2 (en)
JPH0531183A (en) Hemodialyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050113

A521 Written amendment

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090109

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120116

LAPS Cancellation because of no payment of annual fees