JP3928888B2 - Blood purification equipment - Google Patents

Blood purification equipment Download PDF

Info

Publication number
JP3928888B2
JP3928888B2 JP06898496A JP6898496A JP3928888B2 JP 3928888 B2 JP3928888 B2 JP 3928888B2 JP 06898496 A JP06898496 A JP 06898496A JP 6898496 A JP6898496 A JP 6898496A JP 3928888 B2 JP3928888 B2 JP 3928888B2
Authority
JP
Japan
Prior art keywords
blood
valve
liquid
flow rate
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06898496A
Other languages
Japanese (ja)
Other versions
JPH09239024A (en
Inventor
朋之 和田
旬 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP06898496A priority Critical patent/JP3928888B2/en
Publication of JPH09239024A publication Critical patent/JPH09239024A/en
Application granted granted Critical
Publication of JP3928888B2 publication Critical patent/JP3928888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、血液浄化装置、特に重篤な循環器系の合併症を有する腎疾患や多臓器不全等の救急・集中治療領域での持続緩徐式血液濾過法(以下単に「CHF」という)並びに持続的血液濾過透析法(以下単に「CHDF」という)に好適な装置に関するものである。
【0002】
【従来の技術】
近年、循環器系の合併症を有する腎疾患や多臓器不全等の治療にCHFあるいはCHDFの血液浄化法が効果を上げている。CHFは半透膜を収容した血液浄化器に血液を流し、膜を介して濾過された液を排出すると共に置換液を体内に補充することを持続的に緩徐に施行するものである。また、CHDFはCHFの小分子量除去能力を改善するために、CHFに加えて濾過液側に透析液を流して透析効果を得られるようにしたものである。これらの治療は、血液浄化器に血液を循環する血液ポンプ、血液浄化器から濾過液を排出する濾過液ポンプ、患者に置換液を補充する補液ポンプ、血液浄化器に透析液を供給する透析液ポンプ(CHDFの場合のみ)の流量をそれぞれ設定し、体液の変化量(透析液量+補液量−濾過液量)が目的の量になるように管理して施行される。
【0003】
【発明が解決しようとする課題】
通常、濾過液の排出や置換液の注入には無菌性を保つために、チューブを圧閉してしごきながら送液する、いわゆるチュービングポンプが使われる。しかし、チュービングポンプの流量はチューブの物性が疲労や温度によって変化するために一定の流量を保つことは難しく、通常の使用範囲内での条件変化に対して5〜10%の誤差をまぬがれない。体液の変化量を厳密に管理するためには、各ポンプの流量を頻回に計量して調節する必要がある。この操作は煩雑であり、また、誤操作を招きやすいという観点から患者の常時監視が強いられるなどの問題点がある。
これに対しては図2に示すように、重量計により置換液の注入量や濾過液の排出量を測定しながら、各ポンプを自動調整する方法も考案されているが、置換液の補充や濾過液の廃棄を行なう際、一度治療を停止しなければならず、煩雑な手順を必要とする。また、誤って治療中に補充や廃棄操作を行い、大きな誤差を生じるケースもある。加えて、補充や廃棄操作の頻度を少なくするために、重量計の測定レンジを広くし、大量の置換液や濾過液を一度に吊せるようにすると、測定精度が劣化すると共に振動等による外乱が大きくなり、誤差を招くことになる。
本発明は上記従来技術の問題点を解決するためになされたもので、腎疾患や多臓器不全等の治療の際、血液浄化装置の濾過液、透析液、置換液の流量を自動的に測定し制御することで、操作の容易化を図ると共に患者の安全性を確保できる装置を提供することを課題とする。
【0004】
【課題を解決するための手段】
患者の血液を半透膜を収容した血液浄化器(16)に導入して再度患者に戻す血液循環路(17)(18)と、該血液循環路を介して患者に置換液を補給する補液路(22)(24)と、該血液浄化器から血液濾過液を排出する濾過液排出路(20)(23)とから、または、該血液循環路と該補液路と該血液浄化器に透析液を供給する透析液供給路(19)(21)と該血液浄化器から血液濾過液及び使用済み透析液を排出する濾過液・透析液排出路(20)(23)から成る、血液濾過、血液透析または血液濾過透析を行う血液浄化装置において、補液路(22)(24)には、血液循環路(17)(18)に近い側から、送液ポンプ(7)と、計量バッグ(13)及び重量計(3)と、バルブ(10)と、置換液貯留部(15)とがこの順に設けられ、濾過液排出路または濾過液・透析液排出路(20)(23)には、血液循環路(17)(18)に近い側から、送液ポンプ(6)と、計量バッグ(12)及び重量計(2)と、バルブ(9)とがこの順に設けられ、透析液供給路(19)(21)には、血液循環路(17)(18)に近い側から、送液ポンプ(5)と、計量バッグ(11)及び重量計(1)と、バルブ(8)と、透析液貯留部(14)とがこの順に設けられ、これら各送液ポンプと各重量計と各バルブはそれぞれ個別制御可能に制御装置(25)に連結されており、該制御装置(25)は各重量計のデータを常に監視し、補液路(22)(24)においては、バルブ(10)を開けて置換液貯留部(15)から計量バッグ(13)に液を分け取った後にバルブ(10)を閉じる初期状態と、該計量バッグの単位時間あたりの重量減少に応じて実流量と設定流量とが等しくなるよう送液ポンプ(7)の回転数を制御する操作とを繰り返し、透析液供給路(19)(21)においては、バルブ(8)を開けて透析液貯留部(14)から計量バッグ(11)に液を分け取った後にバルブ(8)を閉じる初期状態と、該計量バッグの単位時間あたりの重量減少に応じて実流量と設定流量とが等しくなるよう送液ポンプ(5)の回転数を制御する操作とを繰り返し、濾過液排出路または濾過液・透析液排出路(20)(23)においては、バルブ(9)を閉じた状態で計量バッグ(12)の単位時間あたりの重量増加に応じて実流量と設定流量とが等しくなるよう送液ポンプ(6)の回転数を制御する操作と、バルブ(9)を開けて計量バッグ(12)に溜まった液を廃棄する操作とを繰り返し、以上の流量制御を各液路で個別に行って除水誤差を少なくすることを特徴とする血液浄化装置。
【0005】
【実施例】
次に本発明装置の一実施例を図面にて説明する。
図1は本発明装置でCHDFを実施する場合の構成を示すフロー図である。血液ポンプ4により患者から取り出された血液は採血ライン17を通り、濾過膜Mを収容した血液浄化器16に導入され、返血ライン18から再度患者に戻るように血液循環路を形成している。また、返血ライン18には補液ライン24が接続されており補液ポンプ7で置換液を患者に注入できる。一方、血液浄化器16の濾過膜Mで濾過された血液成分は、濾過液ライン20に設けられた濾過液ポンプ6により排出される。更に、透析液ポンプ5により、透析液供給ライン19から血液浄化器16に透析液を供給し、濾過液と共に濾過液ポンプ6で排出されるようになっている。
ここで、補液ポンプの流量をQC (ml/h)、濾過液ポンプの流量をQF (ml/h)、透析液ポンプの流量をQD (ml/h)とすると、患者の体液量の変化dV(ml/h)は、dV=QD +QC −QF
で表される。通常、患者は腎機能低下により尿量減少を来して水分過剰になっている場合が多く、dVを負の値にして水分を除去(以下単に「除水」という)するように設定するため、治療中の総体液変化量は除水量と呼ばれ管理される。除水量は正確に管理されなければならないが、治療時間が長いために、QD 、QC 、QF の僅かな誤差が大きな除水量誤差を生む。例えば、QD =500ml/h、QC =400ml/h、QF =1,000ml/hで20時間の治療を行った場合、除水量は2,000mlとなるが、各ポンプが±5%の誤差を持っているとすると、除水誤差は(±25±20±50)×20=±1,900mlとなり、目的とした除水量に対してはほぼ±100%の誤差を持つことになる。そこで、本発明装置ではQD 、QC 、QF を実測して各ポンプをフィードバック制御することで除水量の精度を向上している。
【0006】
まず、透析液流量QD の制御について説明する。透析液貯溜部14に溜められた透析液は透析液補充ライン21に設けられたバルブ8を開けることにより落差で計量バッグ11に送られる。重量計1は計量バッグ11の重さを測定し、制御装置25にデータを送る。
制御装置25は計量バッグ11の重さが一定の値以上になったことを検知してバルブ8を閉じ、計量バッグ11への透析液の流れを止め、この状態を初期状態とする。透析液ポンプ5は、予め設定された流量に応じた回転数でモーターを駆動することで透析液を血液浄化器16へ送り始める。制御装置25は、重量計1のデータを常に監視し、単位時間当たりの重量変化から透析液の実流量を計算するが、この実流量と設定流量の間に差があればモーターの回転数を自動的に調整し、設定流量と実流量が等しくなるように制御する。やがて計量バッグ11の中の透析液の残りが少なくなり、重量が一定の値を下回れば、制御装置25は再度バルブ8を開き計量バッグ11に透析液を充填し、初期状態に戻す。バルブ8が開いている間、透析液ポンプ5は直前の回転数を保持するが、初期状態に戻れば再度制御が始まる。以上を繰り返すことによって透析液流量は精度良く設定流量を保つことができる。なお、バルブ8が開いている間は透析液ポンプは制御されないが、制御している時間よりはるかに短く、ポンプの流量特性が急激に変化することはないために、大きな誤差にはならない。
【0007】
補液流量QC は透析液流量QD と同様に制御される。即ち、置換液貯溜部15に溜められた置換液は置換液補充ライン22に設けられたバルブ10を開けることにより落差で計量バッグ13に送られる。重量計3は計量バッグ13の重さを測定し、制御装置25にデータを送る。制御装置25は計量バッグ13の重さが一定の値以上になったことを検知してバルブ10を閉じ、計量バッグ13への置換液の流れを止め、この状態を初期状態とする。補液ポンプ7は、予め設定された流量に応じた回転数でモーターを駆動することで置換液を補液ライン24、返血ライン18を介して患者へ注入し始める。制御装置25は、重量計3のデータを常に監視し、単位時間当たりの重量変化から置換液の実流量を計算するが、この実流量と設定流量の間に差があればモーターの回転数を自動的に調整し、設定流量と実流量が等しくなるように制御する。やがて計量バッグ13の中の置換液の残りが少なくなり、重量が一定の値を下回れば、制御装置25は再度バルブ10を開き計量バッグ13に置換液を充填し、初期状態に戻す。バルブ10が開いている間、補液ポンプ7は直前の回転数を保持するが、初期状態に戻れば再度制御が始まる。
【0008】
濾過液流量QF は以下の通り制御装置25で制御される。濾過液ポンプ6は予め設定された流量に応じた回転数でモーターを駆動することで濾過液を計量バッグ12に送り始める。この時バルブ9は閉じられており、重量計2によって検出された計量バッグ12の重量変化は濾過液の実流量となる。この実流量が設定流量と等しくなるようにモーターの回転数を制御する。やがて計量バッグ12が充満し重量が一定の値を上回ればバルブ9を開けて計量バッグ12中の濾液を廃液ライン23から廃棄する。この時濾過液ポンプ6は直前の回転数を保持するが、計量バッグ12の重量が一定の値を下回って濾過液の廃棄が終了するとバルブ9が閉じられ、再度同様の回転数制御が始まる。
以上によって各ポンプは高い流量精度を維持することができ、その結果、除水量の誤差を少なく管理できる。
また、本実施例によると置換液や透析液の補充や濾過液の廃棄は、重量測定に直接影響しないため、治療を停止することなく任意に行なえる。更に、各重量計の測定レンジは各計量バッグの容量の範囲でよく測定精度を高く保てると共に外乱も少なくなる。
【0009】
【発明の効果】
以上説明したように、本発明によれば透析液流量、補液流量、濾過液流量を自動的に高い精度で制御でき、スタッフによる頻回な計量及び調節作業を必要とせずに安全に患者の体液量管理を行いながら治療ができる。
【図面の簡単な説明】
【図1】本発明装置の1実施例の構成を示すフロー図である。
【図2】従来装置の1例の構成を示すフロー図である。
【符号の説明】
1、2、3 重量計
4 血液ポンプ
5 透析液ポンプ
6 濾過液ポンプ
7 補液ポンプ
8、9、10 バルブ
11、12、13 計量バッグ
14 透析液貯溜部
15 置換液貯溜部
16 血液浄化器
17 採血ライン
18 返血ライン
19 透析液供給ライン
20 濾過液ライン
21 透析液補充ライン
22 置換液補充ライン
23 廃液ライン
24 補液ライン
25 制御装置
26 濾過液貯溜部
[0001]
[Industrial application fields]
The present invention relates to a blood purification apparatus, particularly a continuous slow blood filtration method (hereinafter simply referred to as “CHF”) in an emergency / intensive treatment area such as renal diseases having severe circulatory system complications and multiple organ failure. The present invention relates to a device suitable for continuous hemodiafiltration (hereinafter simply referred to as “CHDF”).
[0002]
[Prior art]
In recent years, CHF or CHDF blood purification methods have been effective in the treatment of renal diseases and circulatory organ complications. CHF continuously and slowly applies blood to a blood purifier containing a semipermeable membrane, discharges the filtered solution through the membrane, and replenishes the body with a replacement solution. In addition, in order to improve the small molecular weight removal capability of CHF, CHDF is designed to obtain a dialysis effect by flowing a dialysate to the filtrate side in addition to CHF. These treatments include a blood pump that circulates blood to the blood purifier, a filtrate pump that drains filtrate from the blood purifier, a replacement fluid pump that replenishes the patient with replacement fluid, and a dialysate that supplies dialysate to the blood purifier The flow rate of the pump (only in the case of CHDF) is set, and the amount of change in body fluid (dialyzed fluid amount + replacement fluid amount−filtrate amount) is controlled and enforced.
[0003]
[Problems to be solved by the invention]
Usually, a so-called tubing pump is used for discharging the filtrate and injecting the replacement liquid, in order to maintain sterility, and feeding the liquid while closing the tube. However, it is difficult to keep the flow rate of the tubing pump constant because the physical properties of the tube change due to fatigue and temperature, and an error of 5 to 10% cannot be overcome with respect to the change of conditions within the normal use range. In order to strictly manage the amount of change in body fluid, it is necessary to frequently measure and adjust the flow rate of each pump. This operation is complicated, and there is a problem that the patient is constantly monitored from the viewpoint of erroneous operation.
In contrast to this, as shown in FIG. 2, a method of automatically adjusting each pump while measuring the injection amount of the replacement liquid and the discharge amount of the filtrate with a weight meter has been devised. When discarding the filtrate, the treatment must be stopped once and a complicated procedure is required. In some cases, replenishment or disposal operations are mistakenly performed during treatment, resulting in a large error. In addition, in order to reduce the frequency of replenishment and disposal operations, if the measuring range of the weigh scale is widened so that a large amount of replacement liquid or filtrate can be suspended at one time, measurement accuracy deteriorates and disturbance due to vibrations, etc. Will increase and introduce errors.
The present invention has been made to solve the above-described problems of the prior art, and automatically measures the flow rate of filtrate, dialysate, and replacement fluid of a blood purification device when treating kidney disease, multiple organ failure, and the like. It is an object of the present invention to provide an apparatus capable of facilitating the operation and ensuring patient safety by controlling it.
[0004]
[Means for Solving the Problems]
Blood circulation paths (17) and (18) for introducing the patient's blood into a blood purifier (16) containing a semipermeable membrane and returning it to the patient again, and a replacement fluid for supplying a replacement fluid to the patient via the blood circulation path Dialyze from the passages (22), (24) and the filtrate discharge passages (20), (23) for discharging the blood filtrate from the blood purifier, or to the blood circulation path, the replacement fluid path, and the blood purifier. A blood filtration system comprising a dialysate supply path (19) (21) for supplying a liquid and a filtrate / dialysate discharge path (20) (23) for discharging the blood filtrate and used dialysate from the blood purifier; In the blood purification apparatus that performs hemodialysis or hemodiafiltration, the fluid replacement paths (22) and (24) are connected to the liquid supply pump (7) and the measuring bag (13) from the side close to the blood circulation paths (17) and (18). ) And weight scale (3), valve (10), and replacement liquid reservoir (15). The filtrate discharge path or the filtrate / dialysate discharge path (20) (23) is provided in this order from the side close to the blood circulation path (17) (18), and the liquid feeding pump (6) and the measuring bag ( 12) and the weigh scale (2) and the valve (9) are provided in this order, and the dialysate supply passages (19) and (21) are fed from the side close to the blood circulation passages (17) and (18). A pump (5), a measuring bag (11) and a weighing scale (1), a valve (8), and a dialysate reservoir (14) are provided in this order. Each valve is connected to a control device (25) so as to be individually controllable. The control device (25) constantly monitors data of each weighing scale, and in the replacement fluid paths (22) and (24), the valve (10) Open the valve and separate the liquid from the replacement liquid reservoir (15) into the weighing bag (13). The initial state of closing (10) and the operation of controlling the rotation speed of the liquid feeding pump (7) so that the actual flow rate and the set flow rate become equal according to the weight reduction per unit time of the measuring bag are repeated, and dialysis In the liquid supply passages (19) and (21), the valve (8) is opened, and after the liquid is separated from the dialysate reservoir (14) into the measuring bag (11), the valve (8) is closed, Repeat the operation to control the rotation speed of the liquid feed pump (5) so that the actual flow rate and the set flow rate become equal according to the weight reduction per unit time of the measurement bag, and the filtrate discharge path or filtrate / dialysate discharge In the passages (20) and (23), the liquid feed pump (6) is set so that the actual flow rate and the set flow rate become equal according to the weight increase per unit time of the measuring bag (12) with the valve (9) closed. Operation to control the rotation speed of Blood purification, characterized in that repeated operations and to discard the accumulated liquid in the weighing bag by opening the valve (9) (12), the above flow rate control to reduce the water removal error performed individually in each liquid path apparatus.
[0005]
【Example】
Next, an embodiment of the apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing the configuration when CHDF is implemented in the apparatus of the present invention. The blood taken out from the patient by the blood pump 4 passes through the blood collection line 17, is introduced into the blood purifier 16 containing the filtration membrane M, and forms a blood circulation path so as to return to the patient from the blood return line 18 again. . Further, a replacement fluid line 24 is connected to the blood return line 18 so that the replacement fluid can be injected into the patient by the replacement fluid pump 7. On the other hand, the blood component filtered by the filtration membrane M of the blood purifier 16 is discharged by the filtrate pump 6 provided in the filtrate line 20. Further, the dialysate pump 5 supplies the dialysate from the dialysate supply line 19 to the blood purifier 16, and the filtrate is discharged together with the filtrate by the filtrate pump 6.
Here, assuming that the flow rate of the replacement fluid pump is Q C (ml / h), the flow rate of the filtrate pump is Q F (ml / h), and the flow rate of the dialysate pump is Q D (ml / h), The change dV (ml / h) of dV = Q D + Q C −Q F
It is represented by Usually, patients often have excessive hydration due to decreased urine volume due to decreased renal function, and dV is set to a negative value to remove water (hereinafter simply referred to as “water removal”). The amount of change in total body fluid during treatment is called the amount of water removal and is managed. The water removal amount must be managed accurately, but since the treatment time is long, slight errors in Q D , Q C , and Q F cause a large water removal amount error. For example, when treatment is performed for 20 hours with Q D = 500 ml / h, Q C = 400 ml / h, Q F = 1,000 ml / h, the water removal amount is 2,000 ml, but each pump is ± 5% If there is an error, the water removal error is (± 25 ± 20 ± 50) × 20 = ± 1,900 ml, and it has an error of about ± 100% for the target water removal amount. . Therefore, in the present invention device Q D, Q C, it is improved the precision of dewatering amount by by actually measuring the Q F feedback control of each pump.
[0006]
First, control of the dialysate flow rate Q D will be described. The dialysate stored in the dialysate reservoir 14 is sent to the measuring bag 11 by a drop by opening the valve 8 provided in the dialysate replenishment line 21. The weight scale 1 measures the weight of the weighing bag 11 and sends data to the control device 25.
The control device 25 detects that the weight of the measuring bag 11 has exceeded a certain value, closes the valve 8, stops the flow of dialysate to the measuring bag 11, and sets this state as the initial state. The dialysate pump 5 starts to send dialysate to the blood purifier 16 by driving the motor at a rotation speed corresponding to a preset flow rate. The control device 25 constantly monitors the data of the weigh scale 1 and calculates the actual flow rate of the dialysate from the change in weight per unit time. If there is a difference between the actual flow rate and the set flow rate, the rotational speed of the motor is determined. It adjusts automatically and controls the set flow rate to be equal to the actual flow rate. When the remaining dialysate in the measuring bag 11 is reduced and the weight falls below a certain value, the control device 25 opens the valve 8 again and fills the measuring bag 11 with the dialysate and returns to the initial state. While the valve 8 is open, the dialysate pump 5 maintains the previous rotational speed, but when it returns to the initial state, the control starts again. By repeating the above, the dialysate flow rate can be maintained at the set flow rate with high accuracy. While the valve 8 is open, the dialysate pump is not controlled, but it is much shorter than the controlled time, and the flow rate characteristic of the pump does not change abruptly.
[0007]
The replacement fluid flow rate Q C is controlled in the same manner as the dialysate flow rate Q D. That is, the replacement liquid stored in the replacement liquid reservoir 15 is sent to the measuring bag 13 by a drop by opening the valve 10 provided in the replacement liquid replenishment line 22. The weighing scale 3 measures the weight of the weighing bag 13 and sends data to the control device 25. The control device 25 detects that the weight of the measuring bag 13 has become a certain value or more, closes the valve 10, stops the flow of the replacement liquid to the measuring bag 13, and sets this state as the initial state. The replacement fluid pump 7 starts injecting the replacement fluid into the patient via the replacement fluid line 24 and the blood return line 18 by driving the motor at a rotation speed corresponding to a preset flow rate. The control device 25 constantly monitors the data of the weigh scale 3 and calculates the actual flow rate of the replacement liquid from the change in weight per unit time. If there is a difference between the actual flow rate and the set flow rate, the rotational speed of the motor is determined. It adjusts automatically and controls the set flow rate to be equal to the actual flow rate. When the remaining amount of the replacement liquid in the measurement bag 13 eventually decreases and the weight falls below a certain value, the control device 25 opens the valve 10 again, fills the measurement bag 13 with the replacement liquid, and returns to the initial state. While the valve 10 is open, the replacement fluid pump 7 maintains the previous rotational speed, but when it returns to the initial state, the control starts again.
[0008]
The filtrate flow rate Q F is controlled by the control device 25 as follows. The filtrate pump 6 starts to send the filtrate to the measuring bag 12 by driving the motor at a rotation speed corresponding to a preset flow rate. At this time, the valve 9 is closed, and the change in the weight of the measuring bag 12 detected by the weigh scale 2 becomes the actual flow rate of the filtrate. The rotational speed of the motor is controlled so that this actual flow rate becomes equal to the set flow rate. Eventually, when the measuring bag 12 is full and the weight exceeds a certain value, the valve 9 is opened and the filtrate in the measuring bag 12 is discarded from the waste liquid line 23. At this time, the filtrate pump 6 maintains the previous rotational speed, but when the weight of the measuring bag 12 falls below a certain value and the disposal of the filtrate is finished, the valve 9 is closed and the same rotational speed control is started again.
As described above, each pump can maintain a high flow rate accuracy, and as a result, the error of the water removal amount can be managed with a small amount.
In addition, according to the present embodiment, replacement of the replacement fluid and dialysate and discarding of the filtrate do not directly affect the weight measurement, and can be performed arbitrarily without stopping the treatment. In addition, the measurement range of each weighing scale may be in the range of the capacity of each weighing bag, and the measurement accuracy can be kept high and disturbance can be reduced.
[0009]
【The invention's effect】
As described above, according to the present invention, the dialysate flow rate, the replacement fluid flow rate, and the filtrate flow rate can be automatically controlled with high accuracy, and the patient's body fluid can be safely and without requiring frequent measurement and adjustment work by the staff. Treatment can be performed while controlling the amount.
[Brief description of the drawings]
FIG. 1 is a flowchart showing the configuration of one embodiment of a device of the present invention.
FIG. 2 is a flowchart showing a configuration of an example of a conventional apparatus.
[Explanation of symbols]
1, 2, 3 Weigh scale 4 Blood pump 5 Dialysate pump 6 Filtrate pump 7 Replacement fluid pump 8, 9, 10 Valve 11, 12, 13 Metering bag 14 Dialysate reservoir 15 Replacement fluid reservoir 16 Blood purifier 17 Blood collection Line 18 Blood return line 19 Dialysate supply line 20 Filtrate line 21 Dialysate replenishment line 22 Replacement liquid replenishment line 23 Waste liquid line 24 Supplement liquid line 25 Controller 26 Filtrate reservoir

Claims (1)

患者の血液を半透膜を収容した血液浄化器(16)に導入して再度患者に戻す血液循環路(17)(18)と、該血液循環路を介して患者に置換液を補給する補液路(22)(24)と、該血液浄化器から血液濾過液を排出する濾過液排出路(20)(23)とから、または、該血液循環路と該補液路と該血液浄化器に透析液を供給する透析液供給路(19)(21)と該血液浄化器から血液濾過液及び使用済み透析液を排出する濾過液・透析液排出路(20)(23)から成る、血液濾過、血液透析または血液濾過透析を行う血液浄化装置において、補液路(22)(24)には、血液循環路(17)(18)に近い側から、送液ポンプ(7)と、計量バッグ(13)及び重量計(3)と、バルブ(10)と、置換液貯留部(15)とがこの順に設けられ、濾過液排出路または濾過液・透析液排出路(20)(23)には、血液循環路(17)(18)に近い側から、送液ポンプ(6)と、計量バッグ(12)及び重量計(2)と、バルブ(9)とがこの順に設けられ、透析液供給路(19)(21)には、血液循環路(17)(18)に近い側から、送液ポンプ(5)と、計量バッグ(11)及び重量計(1)と、バルブ(8)と、透析液貯留部(14)とがこの順に設けられ、これら各送液ポンプと各重量計と各バルブはそれぞれ個別制御可能に制御装置(25)に連結されており、該制御装置(25)は各重量計のデータを常に監視し、補液路(22)(24)においては、バルブ(10)を開けて置換液貯留部(15)から計量バッグ(13)に液を分け取った後にバルブ(10)を閉じる初期状態と、該計量バッグの単位時間あたりの重量減少に応じて実流量と設定流量とが等しくなるよう送液ポンプ(7)の回転数を制御する操作とを繰り返し、透析液供給路(19)(21)においては、バルブ(8)を開けて透析液貯留部(14)から計量バッグ(11)に液を分け取った後にバルブ(8)を閉じる初期状態と、該計量バッグの単位時間あたりの重量減少に応じて実流量と設定流量とが等しくなるよう送液ポンプ(5)の回転数を制御する操作とを繰り返し、濾過液排出路または濾過液・透析液排出路(20)(23)においては、バルブ(9)を閉じた状態で計量バッグ(12)の単位時間あたりの重量増加に応じて実流量と設定流量とが等しくなるよう送液ポンプ(6)の回転数を制御する操作と、バルブ(9)を開けて計量バッグ(12)に溜まった液を廃棄する操作とを繰り返し、以上の流量制御を各液路で個別に行って除水誤差を少なくすることを特徴とする血液浄化装置。Blood circulation paths (17) and (18) for introducing the patient's blood into a blood purifier (16) containing a semipermeable membrane and returning it to the patient again, and a replacement fluid for supplying a replacement fluid to the patient via the blood circulation path Dialyze from the passages (22), (24) and the filtrate discharge passages (20), (23) for discharging the blood filtrate from the blood purifier, or to the blood circulation path, the replacement fluid path, and the blood purifier. A blood filtration system comprising a dialysate supply path (19) (21) for supplying a liquid and a filtrate / dialysate discharge path (20) (23) for discharging the blood filtrate and used dialysate from the blood purifier; the blood purification apparatus for performing hemodialysis or hemodiafiltration, the replacement fluid channel (22) (24), from the side close to the blood circuit (17) (18), and liquid feed pump (7), the weighing bag (13 ) And weight scale (3), valve (10), and replacement liquid reservoir (15). The filtrate discharge path or the filtrate / dialysate discharge path (20) (23) is provided in this order from the side close to the blood circulation path (17) (18), and the liquid feeding pump (6) and the measuring bag ( 12) and the weigh scale (2) and the valve (9) are provided in this order, and the dialysate supply passages (19) and (21) are fed from the side close to the blood circulation passages (17) and (18). A pump (5), a measuring bag (11) and a weighing scale (1), a valve (8), and a dialysate reservoir (14) are provided in this order. Each valve is connected to a control device (25) so as to be individually controllable. The control device (25) constantly monitors data of each weighing scale, and in the replacement fluid paths (22) and (24), the valve (10) Open the valve and separate the liquid from the replacement liquid reservoir (15) into the weighing bag (13). The initial state of closing (10) and the operation of controlling the rotation speed of the liquid feeding pump (7) so that the actual flow rate and the set flow rate become equal according to the weight reduction per unit time of the measuring bag are repeated, and dialysis In the liquid supply passages (19) and (21), the valve (8) is opened, and after the liquid is separated from the dialysate reservoir (14) into the measuring bag (11), the valve (8) is closed, Repeat the operation to control the rotation speed of the liquid feed pump (5) so that the actual flow rate and the set flow rate become equal according to the weight reduction per unit time of the measurement bag, and the filtrate discharge path or filtrate / dialysate discharge In the passages (20) and (23), the liquid feed pump (6) is set so that the actual flow rate and the set flow rate become equal according to the weight increase per unit time of the measuring bag (12) with the valve (9) closed. Operation to control the rotation speed of The operation of opening the valve (9) and discarding the liquid accumulated in the measuring bag (12) is repeated, and the above flow rate control is individually performed in each liquid path to reduce the water removal error. apparatus.
JP06898496A 1996-03-01 1996-03-01 Blood purification equipment Expired - Lifetime JP3928888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06898496A JP3928888B2 (en) 1996-03-01 1996-03-01 Blood purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06898496A JP3928888B2 (en) 1996-03-01 1996-03-01 Blood purification equipment

Publications (2)

Publication Number Publication Date
JPH09239024A JPH09239024A (en) 1997-09-16
JP3928888B2 true JP3928888B2 (en) 2007-06-13

Family

ID=13389447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06898496A Expired - Lifetime JP3928888B2 (en) 1996-03-01 1996-03-01 Blood purification equipment

Country Status (1)

Country Link
JP (1) JP3928888B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767478B1 (en) * 1997-08-21 1999-10-01 Hospal Ind DEVICE AND METHOD FOR ADJUSTING THE CONCENTRATION OF SODIUM IN A DIALYSIS FLUID FOR A PRESCRIPTION
CN100569303C (en) * 2002-08-08 2009-12-16 旭化成可乐丽医疗株式会社 Apparatus for purifying blood and control method thereof
US7837167B2 (en) * 2003-09-25 2010-11-23 Baxter International Inc. Container support device
US20060064053A1 (en) * 2004-09-17 2006-03-23 Bollish Stephen J Multichannel coordinated infusion system
JP4978178B2 (en) * 2006-02-07 2012-07-18 株式会社ジェイ・エム・エス Blood purification circuit
JP4978179B2 (en) * 2006-02-07 2012-07-18 株式会社ジェイ・エム・エス Blood purification equipment
US9011678B2 (en) 2006-02-07 2015-04-21 Jms Co., Ltd. Blood purification apparatus and blood purification circuit
JP4908044B2 (en) 2006-04-14 2012-04-04 株式会社ジェイ・エム・エス Weight detection device and balance control device
CN101610799B (en) 2007-02-15 2011-12-28 旭化成可乐丽医疗株式会社 Blood purification system
EP2123313A4 (en) 2007-03-09 2011-10-05 Asahi Kasei Kuraray Medical Co Method of forming body fluid purification cassette
JP2010162228A (en) * 2009-01-16 2010-07-29 Jms Co Ltd Method of manufacturing measuring container for dialysis
JP2010162226A (en) * 2009-01-16 2010-07-29 Jms Co Ltd Measuring container for dialysis
DE102011010067A1 (en) 2011-02-01 2012-08-02 Fresenius Medical Care Deutschland Gmbh Method and device for controlling an extracorporeal blood treatment device
JP5968101B2 (en) * 2012-06-15 2016-08-10 旭化成メディカル株式会社 Method for reducing liquid in circuit of blood purification apparatus, blood purification apparatus and program
WO2016104720A1 (en) * 2014-12-25 2016-06-30 アサヒカセイメディカルヨーロッパゲーエムベーハー Blood treatment system
US10682451B2 (en) 2015-04-22 2020-06-16 Nikkiso Co., Ltd. Calibration method for flowmeters in blood dialysis system
US11590271B2 (en) 2017-10-31 2023-02-28 Nextkidney Sa Easily movable blood purification systems
DE102018118564A1 (en) * 2018-07-31 2020-02-06 Fresenius Medical Care Deutschland Gmbh Device and method for producing a dialysis solution
JP7189736B2 (en) * 2018-11-08 2022-12-14 日機装株式会社 blood purifier
WO2023110977A2 (en) * 2021-12-15 2023-06-22 Baxter International Inc. Weight-based systems for use in extracorporeal blood treatment

Also Published As

Publication number Publication date
JPH09239024A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3928888B2 (en) Blood purification equipment
EP1434646B1 (en) Method and apparatus for controlling a dialysis apparatus
CA2495561C (en) Blood purifying device and method of operating the same
CA2724060C (en) A hemodialysis or hemo(dia)filtration apparatus and a method for controlling a hemodialysis or hemo(dia)filtration apparatus
EP2029192B1 (en) Dynamic weight balancing of flow in kidney failure treatment systems
JP4295940B2 (en) Extracorporeal blood purification device
JP4250712B2 (en) Automatic hemodialysis machine
JPH11347116A (en) Blood refining apparatus
JP2000107284A (en) Dialysis apparatus and washing priming method
EP2091589A1 (en) An apparatus for extracorporeal blood treatment
JP4337981B2 (en) Blood purification equipment
JP2004049350A (en) Peritoneal dialysis apparatus and peritoneal dialysis method
JP3924449B2 (en) Blood purification equipment
JP3186518B2 (en) Continuous blood purification device
JP2024075976A (en) Blood Purification Device
JPH069670Y2 (en) Water removal controller for hemodialysis machine
JPH0522181Y2 (en)
JP2004180899A (en) Sustaining blood purifying device and operating method therefor
JPH03292961A (en) Blood dialyzer
JPH0337951B2 (en)
JPH0323179B2 (en)
JPH0356740B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350