JPS6110011A - Production of photoconductive cadmium selenide - Google Patents

Production of photoconductive cadmium selenide

Info

Publication number
JPS6110011A
JPS6110011A JP12935384A JP12935384A JPS6110011A JP S6110011 A JPS6110011 A JP S6110011A JP 12935384 A JP12935384 A JP 12935384A JP 12935384 A JP12935384 A JP 12935384A JP S6110011 A JPS6110011 A JP S6110011A
Authority
JP
Japan
Prior art keywords
photoconductive
cdse
organic solvent
cadmium selenide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12935384A
Other languages
Japanese (ja)
Inventor
Shigeo Sasaki
茂雄 佐々木
Toshio Hattori
俊雄 服部
Toru Kawakami
徹 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UKIMA GOSEI KK
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
UKIMA GOSEI KK
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UKIMA GOSEI KK, Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical UKIMA GOSEI KK
Priority to JP12935384A priority Critical patent/JPS6110011A/en
Publication of JPS6110011A publication Critical patent/JPS6110011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the response, output, and signal-to-noise ratio of a photoconductive cadmium selenide obtained by the calcination of raw material, by treating the calcined produce with an organic solvent. CONSTITUTION:Unprocessed CdSe powder is calcined and crystallized to obtain photoconductive CdSe powder having particle diameter of about 1-5mu. The photoconductive CdSe is added to an organic solvent (capable of dissolving selenium, e.g. carbon disulfide, benzene, etc.), stirred at about 25-75 deg.C for about 0.2-1hr, filtered, and dried. The obtained final product is suitable as a raw material for the manufacture of an imaging device element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光導電性セレン化カドミウム(以下CdSe
という)の製造方法に関し、更に詳しく言えば、光導電
性材料、特にイメージングデバイス用として高出力およ
び高SN比の光導電性CdSeの提供を目的とする。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to photoconductive cadmium selenide (hereinafter referred to as CdSe).
More specifically, the purpose is to provide a photoconductive material, particularly photoconductive CdSe with high output and high signal-to-noise ratio for use in imaging devices.

(従来の技術) 従来、ファクシミリ等OA機器におけるイメージングデ
バイス用光導電性材料として、CdS、Se、アモルフ
ァスSi等が開発されているが、特にイメージングデバ
イス用として使用するためには、応答速度が速く、また
読み取りを確実にするために、高出力および高SN比の
光導電性材料が要求されている。
(Prior Art) Conventionally, CdS, Se, amorphous Si, etc. have been developed as photoconductive materials for imaging devices in OA equipment such as facsimiles. , and high power and high signal-to-noise ratio photoconductive materials are required to ensure readout.

(発明が解決しようとしている問題点)現在、上記の如
き用途に、CdS 、アモルファスS1あるいはCdS
e等の光導電性材料が提供されているが、例えばCdS
は応答速度が極端に遅く、アルファスSiは、SN比が
十分にとれないという欠点がある。 CdSは有望な材
料であるが、その製造は、−次焼成、二次焼成あるいは
必要に応じて三次焼成を行ない、その間に各種の付活剤
や融剤を混入させて、CdSeの光導電性の向上を図っ
ており、このように製造方法が複雑であるため、コンス
タントな品質が得られず、またイメージングデバイス用
として必要且つ十分なSN比や出力が得られていないの
が実情である。
(Problem to be solved by the invention) Currently, CdS, amorphous S1 or CdS
For example, CdS
has an extremely slow response speed, and Alphas Si has the drawback of not having a sufficient signal-to-noise ratio. CdS is a promising material, but its production involves secondary calcination, secondary calcination, or tertiary calcination as necessary, during which various activators and fluxes are mixed to increase the photoconductivity of CdSe. However, due to the complicated manufacturing method, it is not possible to obtain constant quality, and the S/N ratio and output necessary and sufficient for use in imaging devices cannot be obtained.

(問題を解決するための手段) 本発明者は、上述の如き従来技術の欠点を解決すべく鋭
意研究の結果、従来の光導電性CdSeの性能の不安定
性や低さの原因が、製造時に生じたフリーのセレンやそ
の他の種々の不純物が、光導電性CdSe粒子を包囲し
ており、従来技術における水洗の如き焼成後処理では除
去し得ないためであることを知見し、焼成後の後処理を
、有機溶媒で行なうことにより、従来技術の欠点が解決
されるのみならず、CdSeの出力やSN比が予想外に
飛躍することを知見して本発明を完成した。
(Means for Solving the Problem) As a result of intensive research to solve the above-mentioned drawbacks of the conventional technology, the present inventor discovered that the cause of the instability and low performance of conventional photoconductive CdSe was during manufacturing. It was discovered that this is because free selenium and various other impurities that are generated surround the photoconductive CdSe particles and cannot be removed by post-firing treatments such as washing with water in the prior art. The present invention was completed based on the finding that by performing the treatment with an organic solvent, not only the drawbacks of the prior art were solved, but also the output and signal-to-noise ratio of CdSe were unexpectedly improved.

すなわち、本発明は、焼成後得られた光導電性CdSe
を有機溶媒で処理することを特徴とする光導電性CdS
eの製造方法である。
That is, the present invention provides photoconductive CdSe obtained after firing.
Photoconductive CdS characterized by treating with an organic solvent
This is the manufacturing method of e.

本発明の詳細な説明すると、本発明において使用する光
導電性CdSeとは、従来技術と同様にして、各種カド
ミウム塩とセレンまたはセレン化合物とからCdSe生
粉を得、該生粉を従来公知の方法、例えば該生粉に付活
剤および融剤を混合し、高温処理して付活剤の拡散とC
dSeの結晶化を行なう第一次焼成工程、共付活剤であ
るハロゲンを拡散させる第二次焼成工程および必要に応
じて行なう第三次焼成工程あるい、はこれらの各種の修
正ツノ法を用いて得られるものであり、本発明方法にお
いて使用する光導電性CdSeは、これらの方法に限定
されず、いかなる方法で得られたものでもよいが、最も
好ましいものは、その粒径が、約1〜5ルm程度に焼成
結晶化されたものである。
To explain the present invention in detail, the photoconductive CdSe used in the present invention is obtained by obtaining CdSe raw powder from various cadmium salts and selenium or selenium compounds in the same manner as in the prior art, and converting the raw powder into a conventionally known method. For example, the raw powder is mixed with an activator and a flux, and treated at a high temperature to cause diffusion of the activator and C.
A first calcination step to crystallize dSe, a second calcination step to diffuse halogen as a co-activator, a tertiary calcination step to be carried out as necessary, or various modified horn methods thereof. The photoconductive CdSe used in the method of the present invention is not limited to these methods and may be obtained by any method, but the most preferable one is that the particle size is about It is fired and crystallized to about 1 to 5 μm.

本発明者の詳細な研究によれば、これら従来の光導電性
CdSeの明所出力は、後述の実施例に記載の条件で、
約0 、5〜100mV (負荷抵抗IKΩ)であり、
暗所出力は、約0.1−11−1O0同10MΩ)であ
り、ソノsN比は、約lo′〜10程度である。
According to the inventor's detailed research, the photopic output of these conventional photoconductive CdSe is as follows under the conditions described in the Examples below.
Approximately 0.5 to 100 mV (load resistance IKΩ),
The dark output is about 0.1-11-1O0 (10 MΩ), and the sono-S/N ratio is about lo' to about 10.

本発明方法は、上記の如き焼成後の光導電性CdSeを
有機溶媒で処理することを特徴としている。本発明で使
用する有機溶媒とは、好ましくはセレンを溶解し得る有
機溶剤であり、具体的には、二硫化炭素、ベンゼン等の
44機溶剤であり。
The method of the present invention is characterized in that the photoconductive CdSe after firing as described above is treated with an organic solvent. The organic solvent used in the present invention is preferably an organic solvent that can dissolve selenium, and specifically, a 44-mer solvent such as carbon disulfide or benzene.

これらの溶媒は、単独でも混合物でも使用できるが、S
e等の不純物の溶解性から、単独で用いた方がよい、ま
た使用量は、不純物を除去できる限り、任意の量でよい
These solvents can be used alone or in mixtures, but S
Due to the solubility of impurities such as e, it is better to use them alone, and any amount may be used as long as the impurities can be removed.

本発明者の詳細な研究によれば有機溶媒中に適量の光導
電性CdSeを加え、約25〜75℃の温度で約0.2
〜1時間時間和撹拌し、濾過し、乾燥することによって
行なわれる。
According to detailed research by the present inventor, when an appropriate amount of photoconductive CdSe is added to an organic solvent, the temperature of about 0.2
This is done by stirring for ~1 hour, filtering, and drying.

(作用・効果) 以」―の如くして得られた本発明の光導電性CdSeは
、従来方法により、得た光導電性CdSeに比して、以
下の実施に示す通り応答速度が改善されるとともに、名
所出力が大幅に向上し、そのSN比が、著しく改善され
ている。従って、本発明の光導電性CdSeは、イメー
ジングデバイス用素子として極めて有用であり、これら
を応用した各種装置、例えばファクシミリ、レーザープ
リンタ、コンピューター用入力装置等の感光性材料とし
ても有用である。
(Function/Effect) The photoconductive CdSe of the present invention obtained as described above has an improved response speed as shown in the following implementation compared to the photoconductive CdSe obtained by the conventional method. At the same time, the output of famous spots has been greatly improved, and the signal-to-noise ratio has been significantly improved. Therefore, the photoconductive CdSe of the present invention is extremely useful as an element for imaging devices, and is also useful as a photosensitive material for various devices to which these are applied, such as facsimile machines, laser printers, and input devices for computers.

次に実施例および比較例をあげて本発明を具体的に説明
する。なお、文中部または%とあるのは重量基準である
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. Note that "%" or "%" in the text is based on weight.

実施例1 光導電性を賦与してないCd5el O0部をとり。Example 1 Take the Cd5el O0 part that has not been imparted with photoconductivity.

純水100部に、cdc+2o 、 5〜5部と0.0
1〜0.3部ノCaCl、、 2 H2Oを溶カシタ水
溶液200部とよく混合し、濾過し、120’Oにて1
2時間以上乾燥させる。次に、この乾燥したCdSeを
100部とり、石英管に入れ、十分Nil換し、450
〜800℃にて30分以上焼成する。得られた粉末をガ
ラス製ボールミルにて0.5〜2時間粉砕し、ゆるく焼
結した部分をほぐし、500メツシユのフルイを通し、
純水にてよく水洗し、上述と同様CdCl□溶液の処理
を行ない、濾過し、120℃にて12時間以上乾燥させ
る。このようにして得られたCdSeを再熱処理に供す
るため100部とる。これを石英管に入れ、十分N、l
it検し、400〜6oo℃にて30分以上焼成し、ホ
モミキサーにより軽くほぐし、500メツシユのフルイ
を通し2十分水洗して、99部の光導電性Cd5et−
得た。
100 parts of pure water, 5 to 5 parts of CDC+2O, and 0.0 parts
1 to 0.3 parts of CaCl,.2 H2O was mixed well with 200 parts of dissolved aqueous solution of CaCl, filtered and boiled at 120'O.
Let dry for at least 2 hours. Next, take 100 parts of this dried CdSe, put it in a quartz tube, fully exchange Ni, and
Bake at ~800°C for 30 minutes or more. The obtained powder was ground in a glass ball mill for 0.5 to 2 hours, the loosely sintered parts were loosened, and passed through a 500 mesh sieve.
Wash well with pure water, treat with CdCl□ solution in the same manner as above, filter, and dry at 120° C. for 12 hours or more. 100 parts of the CdSe thus obtained are taken for reheating. Put this in a quartz tube, and add enough N and l.
It was tested, baked at 400-600°C for 30 minutes or more, loosened lightly with a homomixer, passed through a 500 mesh sieve, washed with water for 2 minutes, and prepared with 99 parts of photoconductive Cd5et-
Obtained.

次に、二硫化炭素100部を、得られた光導電性CdS
eに加え、スターラーで十分撹拌する。その後、濾過、
120℃で12時間以上乾燥した。このようにして得ら
れた光導電性Cd5elO部を、スチレン系樹脂とトル
エンの5:l混合物3部と混合し、クシ型アルミ蒸着電
極に厚さ100gmで塗布し、120°Cで乾燥させた
後、光導電特性を測定したところ、第1表のような結果
を得た。
Next, 100 parts of carbon disulfide was added to the resulting photoconductive CdS.
Add to e and stir thoroughly with a stirrer. Then filter,
It was dried at 120° C. for 12 hours or more. The photoconductive Cd5elO portion thus obtained was mixed with 3 parts of a 5:l mixture of styrenic resin and toluene, applied to a comb-shaped aluminum evaporated electrode at a thickness of 100 gm, and dried at 120 °C. After that, the photoconductive properties were measured, and the results shown in Table 1 were obtained.

実施例2 実施例1と同様の方法により焼成して得られた光導電性
CdSeを、ベンゼン100部に入れスターラーで十分
混合し、濾過後、乾燥させる。
Example 2 Photoconductive CdSe obtained by firing in the same manner as in Example 1 is placed in 100 parts of benzene, thoroughly mixed with a stirrer, filtered, and then dried.

このようにして得られた本発明の光導電性CdSeを、
実施例1と同様に光導電特性を測定したところ、第2表
のような結果を得た。
The photoconductive CdSe of the present invention thus obtained is
When the photoconductive properties were measured in the same manner as in Example 1, the results shown in Table 2 were obtained.

脂41EムL− (+aV)   。   (膿V ) 処理なし    95     54   17.59
0処理あり    ?50     88   85,
230・光源   695n腸 ・光量   GOLux ・印加電圧 80 V
Fat 41EmuL- (+aV). (Pus V) No treatment 95 54 17.59
Is there 0 processing? 50 88 85,
230・Light source 695n・Light amount GOlux・Applied voltage 80 V

Claims (2)

【特許請求の範囲】[Claims] (1)焼成後得られた光導電性セレン化カドミウムを有
機溶媒で処理することを特徴とする光導電性セレン化カ
ドミウムの製造方法。
(1) A method for producing photoconductive cadmium selenide, which comprises treating the photoconductive cadmium selenide obtained after firing with an organic solvent.
(2)有機溶剤が、セレン可溶性である特許請求の範囲
第(1)項に記載の製造方法。
(2) The manufacturing method according to claim (1), wherein the organic solvent is selenium-soluble.
JP12935384A 1984-06-25 1984-06-25 Production of photoconductive cadmium selenide Pending JPS6110011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12935384A JPS6110011A (en) 1984-06-25 1984-06-25 Production of photoconductive cadmium selenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12935384A JPS6110011A (en) 1984-06-25 1984-06-25 Production of photoconductive cadmium selenide

Publications (1)

Publication Number Publication Date
JPS6110011A true JPS6110011A (en) 1986-01-17

Family

ID=15007500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12935384A Pending JPS6110011A (en) 1984-06-25 1984-06-25 Production of photoconductive cadmium selenide

Country Status (1)

Country Link
JP (1) JPS6110011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387320A (en) * 1989-08-29 1991-04-12 Kobe Steel Ltd Manufacture of ultra high-strength cold rolled steel sheet having excellent baking hardenability in paint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194716A (en) * 1982-05-07 1983-11-12 Canon Inc Preparation of photoconductive cadmium selenide sulfide
JPS58194714A (en) * 1982-05-06 1983-11-12 Canon Inc Preparation of photoconductive cadmium selenide sulfide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194714A (en) * 1982-05-06 1983-11-12 Canon Inc Preparation of photoconductive cadmium selenide sulfide
JPS58194716A (en) * 1982-05-07 1983-11-12 Canon Inc Preparation of photoconductive cadmium selenide sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387320A (en) * 1989-08-29 1991-04-12 Kobe Steel Ltd Manufacture of ultra high-strength cold rolled steel sheet having excellent baking hardenability in paint

Similar Documents

Publication Publication Date Title
JPS6110011A (en) Production of photoconductive cadmium selenide
JPS6110010A (en) Production of photoconductive cadmium selenide
JP2007508409A (en) Method for preparing oxytitanium phthalocyanine charge generating material and apparatus for preparing the same
JP4660482B2 (en) Method for producing oxytitanium phthalocyanine charge generating material and new oxytitanium phthalocyanine charge generating material from this method
JPH0673303A (en) Production of chlorogallium phthalocyanine crystal
JPH0335064A (en) Production of titanyl phthalocyanine by crystallization
JP3141157B2 (en) Method for producing titanyl phthalocyanine by crystal transformation
US3837850A (en) Photoconductive rutile titanium dioxide
US3251714A (en) Method of preparing a cadmium oxide photoconductor
US4197122A (en) Process for preparing raw particles of cadmium sulfide for electrophotography
JPS6357670A (en) Method of converting crystalline form
JP2873597B2 (en) Method for producing titanyl phthalocyanine by crystal transformation
JPS6187158A (en) Photoconductive organic material
JPH0139964B2 (en)
JP3036352B2 (en) Electrophotographic photoreceptor
JPH0335063A (en) Treating method for phthalocyanine acid paste
JPS6019154B2 (en) Method for producing photoconductive cadmium sulfide
JP4325010B2 (en) LAMINATED ELECTROPHOTOGRAPHIC PHOTOSENSOR, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING CHARGE TRANSPORT LAYER COATING USED FOR THE SAME
JPS63154688A (en) Production of tau-type metal-free phthalocyanine
JPH06136280A (en) Production of alpha-type nonmetallic phthalocyanine
JPS59132175A (en) Manufacture of light conducting material for near infrared rays
JPH0782506A (en) Production of oxotitanium phthalocyanine crystal and electrophotographic photoreceptor containing the compound
KR20090027396A (en) Charge generation materials and the manufacturing method thereof
JPH0466508B2 (en)
JPS5830763A (en) Manufacture of electrophotographic cadmium sulfide powder