JPS6098143A - Air-fuel ratio control method of internal-combustion engine - Google Patents

Air-fuel ratio control method of internal-combustion engine

Info

Publication number
JPS6098143A
JPS6098143A JP20465683A JP20465683A JPS6098143A JP S6098143 A JPS6098143 A JP S6098143A JP 20465683 A JP20465683 A JP 20465683A JP 20465683 A JP20465683 A JP 20465683A JP S6098143 A JPS6098143 A JP S6098143A
Authority
JP
Japan
Prior art keywords
air
cylinder
fuel ratio
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20465683A
Other languages
Japanese (ja)
Inventor
Takeshi Atago
阿田子 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20465683A priority Critical patent/JPS6098143A/en
Publication of JPS6098143A publication Critical patent/JPS6098143A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform air-fuel ratio control of each cylinder by controlling the fuel supply on the basis of air-fuel ratio of combustion gas in each cylinder detected in accordance to the exhaustion timing of each cylinder while correcting the open/close time of an electromagnetic switch on the basis of rotation and suction air. CONSTITUTION:Suction Qa and rotation N indicating the operating condition of engine 1 are measured respectively by an air flow sensor 6 and a rotation sensor then provided to a control unit 11 to calculate the valve open times T1-T4 of injector 3 for feeding fuel to each cylider. Then the air-fuel ratio of such cylinder as assigned synchronously with the injection timing at the position of crank phase delay angle QB to be determined by the engine rotation N and suction per single rotation Qa/N is sampled by a sensor 10 and fed to the control unit 11. Consequently, the open-valve pulses T1-T4 of each cylinder to be produced next are corrected to T1'-T4' thus to control fuel supply to each cylinder.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の空燃比制御方法に係り、特に燃料の
シーケンシャル噴射を行うシステムにおける各気筒別制
御を行う空燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine, and more particularly to an air-fuel ratio control method for controlling each cylinder separately in a system that performs sequential injection of fuel.

〔発明の背景〕[Background of the invention]

従来からエンジンに供給した燃料量は排気管に設けた例
えば排気ガス中の酸素濃度を検出して空燃比をめる空燃
比センサにより空燃比(A/F)として監視されている
が、このセンサは複斂の気筒のそれぞれに設けられた排
気管の集合部に1個だけ設けられていたため、各気筒に
おける空燃比を詳細に測定することは不可能であった。
Conventionally, the amount of fuel supplied to the engine has been monitored as the air-fuel ratio (A/F) by an air-fuel ratio sensor installed in the exhaust pipe that detects the oxygen concentration in the exhaust gas and calculates the air-fuel ratio. Since only one exhaust pipe was provided at the gathering part of the exhaust pipes provided in each of the compound cylinders, it was impossible to measure the air-fuel ratio in each cylinder in detail.

最近になってエンジンの性能を充分に引き出すためには
、特開昭58−48730号公報にあるように各気筒の
吸気タイミングに同期して燃料を順次噴射するシーケン
シャル噴射が有効であることが判明するに至り、各気筒
の空燃比をそれぞれ別々に測定する要求が高まってきて
いる。しかし空燃比センサを各排気管にそれぞれ1つず
つ取付けることはコストの面で問題があるため、1つの
センサにより各気筒の空燃比を検出する方法が必要にな
ってきた。
Recently, it has been found that sequential injection, which sequentially injects fuel in synchronization with the intake timing of each cylinder, is effective as described in Japanese Patent Application Laid-open No. 58-48730 to fully bring out the engine's performance. As a result, there is an increasing demand for measuring the air-fuel ratio of each cylinder separately. However, attaching one air-fuel ratio sensor to each exhaust pipe poses a problem in terms of cost, so a method of detecting the air-fuel ratio of each cylinder using one sensor has become necessary.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたもので、その目的と
するところは、多気筒エンジンの気1に1ごとの燃料量
制御が容易にかつ高精度で行うことのできる空燃比のフ
ィードバック制御方法を提供するにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide air-fuel ratio feedback control that allows easy and highly accurate fuel amount control for each cylinder of a multi-cylinder engine. We are here to provide you with a method.

〔発明の概要〕[Summary of the invention]

本発明は多気筒エンジンの吸気流量または負荷を検出す
る検出器と、エンジンの回転数を検出する検出器とこれ
らの検出量に応じてエンジンに燃料を供給するために各
気筒に少くとも1つ以」=設けられた電磁開閉器と、こ
れらの電磁開閉器の開閉時間と開閉タイミングを決定す
る電子回路と、エンジンの排気管に設けられた燃焼ガス
の空燃比を測定する測定器とからなる、エンジンへの供
給燃料制御装置によって、エンジンの各気筒の回転角度
によって排気タイミングをめ、この排気タイミングに応
じてそれぞれの気筒の燃焼ガスの空燃比の噴出を行い、
この検出された空燃比に応じて燃料を供給する’[1(
磁開閉器の開閉時間をめて燃料供給量を制御するように
し、しかも各気筒のエンジンの回転数および吸入空気量
−によって?[f、磁開閉器の開閉時間を修正すること
により所期の目的を達成するようになしたものである。
The present invention includes a detector for detecting the intake flow rate or load of a multi-cylinder engine, a detector for detecting the rotational speed of the engine, and at least one detector for each cylinder for supplying fuel to the engine according to these detected amounts. = consists of installed electromagnetic switches, an electronic circuit that determines the opening/closing time and timing of these electromagnetic switches, and a measuring device installed in the engine exhaust pipe that measures the air-fuel ratio of combustion gas. , the exhaust timing is set by the fuel supply control device to the engine according to the rotation angle of each cylinder of the engine, and the air-fuel ratio of combustion gas is injected from each cylinder according to this exhaust timing,
Fuel is supplied according to the detected air-fuel ratio'[1(
The amount of fuel supplied is controlled by adjusting the opening/closing time of the magnetic switch, and also by the engine speed and intake air amount of each cylinder? [f. The intended purpose is achieved by modifying the opening/closing time of the magnetic switch.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係る内燃機関の空燃比側一方法の一実施例
を図面を参照して説明する。
An embodiment of the air-fuel ratio method for an internal combustion engine according to the present invention will be described below with reference to the drawings.

第1図および第2図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

第1図においてエンジン1には気前数に対応して吸気管
2が設けられており、それ−ビれの吸気管2には燃料噴
射弁インジェクタ3が設けられている。
In FIG. 1, an engine 1 is provided with intake pipes 2 corresponding to the number of intake pipes, and a fuel injection valve injector 3 is provided in each of the intake pipes 2.

これらの吸気管2は上流のコレクタ4において1つにま
とめられ、さらにその上流にはエンジン1の吸気量を決
定する絞り弁5が設けられている。
These intake pipes 2 are combined into one at an upstream collector 4, and a throttle valve 5 for determining the intake air amount of the engine 1 is provided further upstream.

このエンジン1の吸気りは該絞り弁5のさらに上流に設
けられたエアフロセンサ6によって測定されるようにな
っている。エンジン1の回転liは該エンジン1に設け
られた配電器7に内蔵された回転センサ(図示せず)に
よって検出され、同様にエンジン1の温度は温度センサ
8によって検出される。またエンジン1の各気筒からの
排気ガスを1つにまとめて排気する排気管9には燃焼ガ
スの全焼比を検知する空燃比センサ10が設けられてい
る。これらの絞り弁5、エアフロセンサ6、回転センサ
、温度センサ8および空燃比センサ1゜からの信号はそ
れぞれコントロールユニッ)11に入力される。燃料は
燃料タンク12より燃料ポンプ13とレギュレータ14
とによって加圧調圧されて前記インジェクタ3に送られ
、このインジェクタ3の開閉は前記コントロールユニッ
ト11よりの信号によって行われ、燃料量の計量は該イ
ンジェクタ3の開弁時間によって行われるようになって
いる@ 以下本発明の一実施例による制御動作について説明する
。第2図は第1図に示したエンジンlの入出力関係を示
したブロックダイヤグラムであり、コントロールユニッ
ト11に対して左側はセンサ類、右側はアクチュエータ
類である。センサ類には前述のように絞り弁5の開度セ
ンサ、エアフロセンサ6、回転センサ、温度センサ8、
空燃比センサ10などがあり、センサA、B、C,l)
、E。
The intake air of the engine 1 is measured by an air flow sensor 6 provided further upstream of the throttle valve 5. The rotation li of the engine 1 is detected by a rotation sensor (not shown) built into a power distributor 7 provided in the engine 1, and the temperature of the engine 1 is similarly detected by a temperature sensor 8. Furthermore, an air-fuel ratio sensor 10 is provided in an exhaust pipe 9 that collectively exhausts exhaust gases from each cylinder of the engine 1 to detect a total combustion ratio of combustion gases. Signals from the throttle valve 5, airflow sensor 6, rotation sensor, temperature sensor 8, and air-fuel ratio sensor 1° are input to a control unit 11, respectively. Fuel is supplied from a fuel tank 12 to a fuel pump 13 and a regulator 14.
The fuel is pressurized and regulated and sent to the injector 3, which is opened and closed by a signal from the control unit 11, and the amount of fuel is measured by the valve opening time of the injector 3. The control operation according to an embodiment of the present invention will be described below. FIG. 2 is a block diagram showing the input/output relationship of the engine l shown in FIG. 1, with sensors on the left and actuators on the right with respect to the control unit 11. As mentioned above, the sensors include an opening sensor for the throttle valve 5, an air flow sensor 6, a rotation sensor, a temperature sensor 8,
There are air-fuel ratio sensors 10, sensors A, B, C, l).
,E.

Fとして示しである。アクチュエータ類にはインジェク
タ3(インジェクタA、B、C,Dとして示しである)
、ポンプ13などがある。15は■丁。
It is shown as F. The actuators include injector 3 (shown as injectors A, B, C, and D).
, pump 13, etc. 15 is ■ding.

源である。またコントロールユニット11内には左側に
示す波形整形回路16と、AD変換器や入出力の交換演
算処理を行うIlo LSI部17と、このl10LS
I部17に指令を出すCPTJ部18と、さらに右側に
はインジェクタ3に対する出力アクチュエータ19およ
びポンプ13に対する出力アクチュエータ207>どが
配置されている。
It is the source. Also, inside the control unit 11, there is a waveform shaping circuit 16 shown on the left side, an Ilo LSI section 17 that performs exchange calculation processing of an AD converter and input/output, and this l10LS.
A CPTJ unit 18 that issues a command to the I unit 17 is disposed, and further to the right side, an output actuator 19 for the injector 3 and an output actuator 207 for the pump 13 are arranged.

第3図は直列4気筒の場合の各気筒のエンジンのクラン
ク角度と工程との関係を示す説明図である。第3図にお
いては4気節エンジンの吸気タイミングと噴射タイミン
グを完全に同期させた場合を示しており、1サイクルが
7203であるため第1気筒の吸気のつぎにくる第3気
筒の吸気との間の角度は180°となり順次燃料が噴射
されてゆく。
FIG. 3 is an explanatory diagram showing the relationship between the engine crank angle and the process for each cylinder in the case of an in-line four-cylinder engine. Figure 3 shows a case where the intake timing and injection timing of a four-stroke engine are completely synchronized, and since one cycle is 7203, the intake timing of the third cylinder which comes after the intake of the first cylinder is the same as that of the third cylinder. The angle between them is 180°, and fuel is injected sequentially.

また排気のタイミングは吸気に対して540°ずれてい
るため、例えば第3気筒の排気タイミングは第1気筒の
吸気タイミングと同一時間で行われることになる。
Further, since the exhaust timing is shifted by 540 degrees from the intake timing, for example, the exhaust timing of the third cylinder is performed at the same time as the intake timing of the first cylinder.

第4図は排気管9に設けられた空燃比センサ10による
空燃比の検出結果を第3気筒がRichで第2気筒が(
、eanである場合について示した[株]である。第4
図における実線はエンジンの回転が低速の場合を示し、
エンジンの回転が高速ニ;’i: ル従って破線で示す
ように次第に位相が遅れるようになる。すなわち例えば
第3気筒の空燃比を測定する場合は、低速時にはクラン
ク角度がθ夏の位相でサンプリングを行い、高速になる
に従ってクランク角度θ2へと位相を遅らせて検出すれ
ばよい。その他の気筒についても同様に基準クランク角
度、例えば第4気油の場合は1805からθ鵬の角度だ
け位相を遅らせた角弱の点でそれぞれ空燃比をサンプリ
ングすればよい。
FIG. 4 shows the detection results of the air-fuel ratio by the air-fuel ratio sensor 10 installed in the exhaust pipe 9. The third cylinder is Rich and the second cylinder is (
, ean. Fourth
The solid line in the figure indicates when the engine rotation speed is low;
When the engine rotates at high speed, the phase gradually becomes delayed as shown by the broken line. That is, when measuring the air-fuel ratio of the third cylinder, for example, sampling may be performed at the crank angle θ summer phase when the speed is low, and the phase may be delayed to the crank angle θ2 as the speed increases. For the other cylinders, the air-fuel ratio may be similarly sampled at a point where the phase is delayed from the reference crank angle, for example, 1805 in the case of the 4th gas oil by an angle of θ.

第5図はエンジンの回転数Nと単位回転当りの吸気:I
Q、、/Nによって変化するサンプリングすべき位置の
位相遅れ角度θ。の測定結果を示す図で、図に示された
ようにθ1はNが大きくなるほど、またQ、/Nが大き
くなるほど次第に大きくなる。
Figure 5 shows engine rotation speed N and intake air per unit rotation: I
The phase delay angle θ of the position to be sampled varies depending on Q, , /N. As shown in the figure, θ1 gradually increases as N increases and as Q and /N increase.

第6図は第5図のグラフをマツプとしたものでろりエン
ジンの回転数Nと単位回転当りの吸気量Q、/Nとによ
って決まるサンプリングすべきクランク角度の位相遅れ
角度θ。、、を示している。
FIG. 6 is a map of the graph in FIG. 5, and shows the phase delay angle θ of the crank angle to be sampled, which is determined by the engine rotation speed N and the intake air amount Q, /N per unit rotation. , , is shown.

第7図は本発明の一実施例による燃料供給量制御を70
−チャートとして示したもので、エンジン1の運転条件
を示す吸気量Q、とエンジン回転数Nとをそれぞれエア
フロセ/す6および回転センサによって測定し、コント
ロールユニット11に入力して各気筒に燃料を供給する
だめの噴射弁インジェクタ3の開弁時間T1〜T4が計
算される。コノ開弁パルスTl=T4は各気筒の特性、
窒気の分配、インジェクタ3のばらつきなどによって決
まる一定の定数を掛けて各気筒毎に各々個別の値となっ
てもよい。つぎに第6図のマツプに示した如くエンジン
1の回転数Nと単位回転当り吸気MQ、/Nとによって
決定されるクランク位相遅れ角度θ。の位置において、
噴射のタイミングに同期して空燃比センサ10により指
定された気筒の空燃比のサンプリング測定を行い、との
空燃比のデータをコントロールユニット11に入力して
メモリにストアする。このデータによりつぎに出力され
る各気筒の開弁パルスTs”−□T4をそれぞれTl′
〜T 、/ に修正して正確な開弁時間をインジェクタ
につぎつぎに出力し、各気前毎の燃料供給悌を個々に正
確に制御する。
FIG. 7 shows fuel supply amount control according to an embodiment of the present invention.
- This is shown as a chart, in which the intake air amount Q, which indicates the operating conditions of the engine 1, and the engine rotation speed N are measured by the air flow controller 6 and the rotation sensor, respectively, and input into the control unit 11 to supply fuel to each cylinder. The valve opening times T1 to T4 of the injection valve injector 3 for supplying the fuel are calculated. The valve opening pulse Tl=T4 is the characteristic of each cylinder,
It may be possible to obtain individual values for each cylinder by multiplying by a certain constant determined by the distribution of nitrogen gas, variations in the injectors 3, etc. Next, as shown in the map of FIG. 6, the crank phase delay angle θ is determined by the rotational speed N of the engine 1 and the intake air MQ, /N per unit rotation. At the position of
The air-fuel ratio of the designated cylinder is sampled and measured by the air-fuel ratio sensor 10 in synchronization with the injection timing, and the air-fuel ratio data is input to the control unit 11 and stored in the memory. Based on this data, the valve opening pulse Ts''-□T4 of each cylinder to be outputted next is determined as Tl'
~T, / to output accurate valve opening times to the injectors one after another to accurately control the fuel supply for each portion individually.

なおこの開弁パルスTの修正は各気筒の空燃比信号を各
々気前毎に独立してストアすることが基本となるが、各
気筒間で関連をもたせて制御するようにしてもよい。
Note that this modification of the valve opening pulse T is basically performed by storing the air-fuel ratio signal of each cylinder independently for each generous portion, but it may also be controlled in a manner that the cylinders are related to each other.

〔発明の効果〕〔Effect of the invention〕

と記のように本発明によれば、空燃比センサの出力の時
分割(角度分割)によるサンプリングにより、多気筒エ
ンジンの気筒毎の空燃比の制御が可能となったので、従
来の制御に比べて正確な供給燃料量の制御が可能となっ
た。またサンプリング角度、ツブの採用により空燃比の
検出精度が向上し、気筒制御が容易に正確にできるよう
になったので、その効果は大である。
As described above, according to the present invention, it is possible to control the air-fuel ratio for each cylinder of a multi-cylinder engine by time-division (angle-division) sampling of the output of the air-fuel ratio sensor, which is faster than conventional control. This makes it possible to accurately control the amount of fuel supplied. In addition, the adoption of sampling angles and knobs has improved air-fuel ratio detection accuracy, making cylinder control easier and more accurate, which has a significant effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る内燃機関の空燃比制
御方法の一実施例を示す・システム図、第3図は第1図
および第2図に示すシステムにおけるエンジンが直列4
気筒の場合の各気筒におけるクランク角度と工程の関係
を示す説明図、第4図は排気管における空燃比センサの
出力を示す説明図、第5図、第6図は空燃比信号をサン
プリングすべき位置のクランク角度を示す説明図、第7
ツ1は本発明の一実施例による燃料供給i代制m11を
示すフローチャートである。
1 and 2 show an embodiment of the air-fuel ratio control method for an internal combustion engine according to the present invention. A system diagram, and FIG. 3 shows an example of the system shown in FIGS.
An explanatory diagram showing the relationship between the crank angle and the process in each cylinder in the case of cylinders, Figure 4 is an explanatory diagram showing the output of the air-fuel ratio sensor in the exhaust pipe, and Figures 5 and 6 show how the air-fuel ratio signal should be sampled. Explanatory diagram showing the crank angle of the position, 7th
1 is a flowchart showing fuel supply i-alternative control m11 according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、多気筒エンジンの吸気量または負荷の少くともいず
れかの検出と、前記エンジンの回転数の検出とにより、
制御装置を介して前記各気筒への燃料噴射時期と噴射量
を制御するとともに、排気ガス中の成分を検出して空燃
比制御を行う内燃機関の空燃比制御方法において、前記
エンジンの回転角度によって決まる前記各気筒の排気タ
イミングに応じて各気前ごとに前記排気ガス中の成分を
検出し、この検出信号に応じて前記各気筒への燃料の供
給時期と供給量とを制御することを特徴とする内燃機関
の空燃比制御方法。
1. By detecting at least either the intake air amount or the load of the multi-cylinder engine, and detecting the rotation speed of the engine,
In an air-fuel ratio control method for an internal combustion engine, which controls the fuel injection timing and injection amount to each cylinder via a control device, and also detects components in exhaust gas to control the air-fuel ratio, A component in the exhaust gas is detected for each generous amount according to a determined exhaust timing of each cylinder, and the timing and amount of fuel supplied to each cylinder are controlled in accordance with this detection signal. An air-fuel ratio control method for an internal combustion engine.
JP20465683A 1983-11-02 1983-11-02 Air-fuel ratio control method of internal-combustion engine Pending JPS6098143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20465683A JPS6098143A (en) 1983-11-02 1983-11-02 Air-fuel ratio control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20465683A JPS6098143A (en) 1983-11-02 1983-11-02 Air-fuel ratio control method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6098143A true JPS6098143A (en) 1985-06-01

Family

ID=16494108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20465683A Pending JPS6098143A (en) 1983-11-02 1983-11-02 Air-fuel ratio control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6098143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142238A (en) * 1987-11-27 1989-06-05 Japan Electron Control Syst Co Ltd Air-fuel ratio feedback control device for electronic control fuel injection type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142238A (en) * 1987-11-27 1989-06-05 Japan Electron Control Syst Co Ltd Air-fuel ratio feedback control device for electronic control fuel injection type internal combustion engine

Similar Documents

Publication Publication Date Title
JPS62150059A (en) Combustion control for internal combustion engine
JPH0240054A (en) Air-fuel ratio control device for internal combustion engine for vehicle
US4499881A (en) Method and apparatus for controlling internal combustion engines
US5569847A (en) Air-fuel ratio estimator for internal combustion engine
JP2007231883A (en) Air fuel ratio control device for internal combustion engine
JP2012172653A (en) Controller for internal combustion engine
US6830042B2 (en) System for calculating air-fuel ratio of each cylinder of multicylinder internal combustion engine
US4897791A (en) Asynchronous fuel injection method
JPS59108867A (en) Control for internal-combustion engine
JPS6098143A (en) Air-fuel ratio control method of internal-combustion engine
JPS6318766Y2 (en)
JP3972532B2 (en) Exhaust gas purification device for multi-cylinder engine
JPS5718453A (en) Ignition timing control method for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine
JPS61157741A (en) Detecting device of intake air quantity
JPH04194349A (en) Intake air quantity detector of internal combustion engine with supercharger
JPS60261947A (en) Accelerative correction of fuel injector
JPS63268951A (en) Fuel supply control device for internal combustion engine
JPH0660584B2 (en) Fuel injector for multi-cylinder engine
JP3054979B2 (en) Wall flow correction control device for internal combustion engine
JPH01142233A (en) Fuel control method at acceleration time for electronic control fuel injection engine
JPH0151665B2 (en)
JPH0584386B2 (en)
JPH0650078B2 (en) Electronically controlled fuel injection device
JPH0436032A (en) Fuel injection controller of engine