JPS6097813A - Manufacture of high polymeric formed body - Google Patents

Manufacture of high polymeric formed body

Info

Publication number
JPS6097813A
JPS6097813A JP58205772A JP20577283A JPS6097813A JP S6097813 A JPS6097813 A JP S6097813A JP 58205772 A JP58205772 A JP 58205772A JP 20577283 A JP20577283 A JP 20577283A JP S6097813 A JPS6097813 A JP S6097813A
Authority
JP
Japan
Prior art keywords
vessel
explosive
pressed
formed body
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58205772A
Other languages
Japanese (ja)
Other versions
JPH022404B2 (en
Inventor
Katsuyuki Nakamura
克之 中村
Toru Niwatsukino
庭月野 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58205772A priority Critical patent/JPS6097813A/en
Publication of JPS6097813A publication Critical patent/JPS6097813A/en
Publication of JPH022404B2 publication Critical patent/JPH022404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To form a high-density and hard formed body for precision machinery component by a method wherein high polymeric material packed in a metal vessel is pressed by exploding. CONSTITUTION:Particles of poly-para-phenylene terephthal amide, the molecular weight of which is 38,000, employed as high polymeric material 4 is packed in a metal vessel 5 and pre-pressed by means of a piston press. After that, the air in the vessel is evacuated through a discharge pipe 7 by means of a vacuum pump and finally the pipe 7 is melted off. Explosive pressing is carried out by exploding powder explosives 3, the main component of which is ammonium nitrate and which are charged in an exterior vessel 6, under the condition that the vessel 5 obtained by the above-mentioned operation is installed in the exterior vessel 6 by energizing the desired current to an electric detonator 1. At this time, the impact pressure applied from above is damped by a clay clot 2 placed on the upper part of the vessel 5. The resultant explosive-pressed formed body is of extremely dense.

Description

【発明の詳細な説明】 本発明は、高分子成形体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing a polymer molded article.

更に詳しくは高分子材料を爆発圧搾法によって成形し成
形体を製造する方法に関するものである。
More specifically, the present invention relates to a method for producing a molded article by molding a polymer material by an explosive compression method.

従来、金属粉末を爆発圧搾により成形する方法は公知で
ある。例えば、円柱状や角柱状の容器内に金属粉末を装
填し、周囲を爆薬層で包み、その爆薬1#を起爆するこ
とにより金属粉末を圧搾成形する方法がある。(デュポ
ン社、特公昭36−1952号公報;野村羊観、工業化
薬協会誌22゜(e) 321−325 (1961)
 ) 又、板状や球状など他の形状の成形体を得る方法
も種々考案されている。
Conventionally, a method of forming metal powder by explosive compression is known. For example, there is a method in which metal powder is loaded into a cylindrical or prismatic container, surrounded by an explosive layer, and the explosive 1# is detonated to compress and mold the metal powder. (DuPont, Special Publication No. 36-1952; Yokan Nomura, Industrial Chemicals Association Journal 22゜(e) 321-325 (1961)
) Various methods have also been devised to obtain molded bodies of other shapes, such as plate-like or spherical shapes.

(0,V、 Roman 、 V、 G、 Gorob
tsov、、 Minsk 、 220600 。
(0, V, Roman, V, G, Gorob
tsov, Minsk, 220600.

83 (1979) ; H,R,Thornton 
、 D、 R,Garrett 、 SAMPLEQu
arterly 、 July 1977 、 l 、
 41 (1977) )しかし、このような技術を高
分子材料に適用し成形体を得る試みは行われていない。
83 (1979); H, R, Thornton
, D., R. Garrett, SAMPLEQu.
arterly, July 1977, l.
41 (1977)) However, no attempt has been made to apply such a technique to a polymeric material to obtain a molded body.

その理由として、高分子物質は金属と比べ、はるかに化
学的安定性に欠けるため、爆発圧搾の高衝撃を加えると
炭化や劣化が起るとの危惧によるものと思われる。
The reason for this appears to be that polymer materials are much less chemically stable than metals, so there is a fear that carbonization and deterioration will occur if the high impact of explosive compression is applied.

実際、有機化合物の化学的な不安定性に着目して、逆に
爆発で発生させた高衝撃によつて有機化合物に反応を起
させようとの試みや、高分子物質にラジカルの発生や誘
起分極の発生などを起させようとの試みがなされている
。(田中芳雄、機能材料1983年2月号、1〜12 
(1983))。しかし、このような試みでは、目的と
する反応はわずかであるのに対し、材料の炭化や分解、
解重合などが起っており、高分子材料の成形物を得よう
とする試みとは全くそぐわないものである。
In fact, focusing on the chemical instability of organic compounds, attempts have been made to induce reactions in organic compounds using the high impact generated by explosions, as well as the generation of radicals and induced polarization in polymeric substances. Attempts are being made to cause this to occur. (Yoshio Tanaka, Functional Materials February 1983 issue, 1-12
(1983)). However, in such attempts, the desired reaction is small, but carbonization and decomposition of the material,
Depolymerization has occurred, and this is completely unsuitable for attempts to obtain molded products of polymeric materials.

本発明者らは、高分子材料の種々の特性を考慮しつつ、
爆発圧搾時の衝撃集中による材料の炭化や劣化、分解な
どの現象、およびその予防策について鋭意研究の結果、
劣化現象の伴わない高分子成形体を得ることに成功し、
本発明に到達した。
The present inventors took into consideration various properties of polymer materials, and
As a result of intensive research into phenomena such as carbonization, deterioration, and decomposition of materials due to impact concentration during explosive compression, and measures to prevent them,
Succeeded in obtaining a polymer molded product without deterioration phenomena,
We have arrived at the present invention.

す゛なわち、本発明は、高分子材料を爆発圧搾によって
成形することを特徴とする高分子成形体の製造方法であ
る。
That is, the present invention is a method for producing a polymer molded article, which is characterized by molding a polymer material by explosive compression.

本発明において高分子材料とは、繰り返し単位でつらな
った重合体や共重合体、重合性基や架橋性基を有し繰り
返し単位を構成可能な重合体用前駆体であり、分子量は
500以上の高分子量物質である。このような高分子材
料は既存および公知の重合体、共重合体あるいはそれら
の前駆体が使用できる。その例は、Polymer H
andbook(J.Brandrup,E.H.Im
mergut,1975,John Wiley&So
ns),J.PolymerSci,Macromol
ecular Reviews,14,265〜378
(1979)(C,Arnold 、 JR,)、合成
高分子I−1巻(村橋ら編、朝倉書店)、近代工業化学
16〜20巻(小田ら編,朝倉書店)、新しい耐熱性高
分子(H.Leeら編,永井ら訳,化学同人)、Pol
ymer SynthesesVol I−III(S
.R.Sandlerら,Academic Pres
s,Inc、、) など既存の文献に記載されている重
合体や共重合体および重合性基や架橋性基を有する重合
体用前駆体である。
In the present invention, the polymer material refers to a polymer or copolymer made of repeating units, or a precursor for a polymer that has a polymerizable group or a crosslinkable group and can constitute repeating units, and has a molecular weight of 500 or more. It is a high molecular weight substance. Existing and known polymers, copolymers, or precursors thereof can be used as such polymeric materials. An example is Polymer H
andbook (J.Brandrup, E.H.Im
mergut, 1975, John Wiley & So
ns), J. PolymerSci, Macromol
ecular Reviews, 14, 265-378
(1979) (C, Arnold, JR,), Synthetic Polymers Volume I-1 (edited by Murahashi et al., Asakura Shoten), Modern Industrial Chemistry Volumes 16-20 (edited by Oda et al., Asakura Shoten), New Heat-Resistant Polymers ( edited by H. Lee et al., translated by Nagai et al., Kagaku Doujin), Pol
ymer Syntheses Vol I-III (S
.. R. Sandler et al., Academic Press
These are polymers and copolymers, and precursors for polymers having polymerizable groups and crosslinkable groups, which are described in existing literature such as S, Inc., ).

これら高分子材料の分子量は500以−ヒである必要が
ある。これは、分子量が500以下の場合爆発圧搾で得
られる成形体の機械的性質が劣り、例えば、成形体を切
断したり切削すること自体困難なためである。分子量の
上限に制限はなく、一般の溶融成形が困難な超高分子量
の材料も適用できる。又、溶融可能の材料、溶融不可能
ないしは溶融困難な材料のいずれにも適用可能である。
The molecular weight of these polymeric materials must be 500 or more. This is because when the molecular weight is 500 or less, the mechanical properties of the molded product obtained by explosive compression are poor, and for example, it is difficult to cut or cut the molded product itself. There is no upper limit to the molecular weight, and ultra-high molecular weight materials that are difficult to melt and mold in general can also be applied. Further, it is applicable to both meltable materials and non-meltable or difficult-to-melt materials.

これら高分子材料の若干列をあげるならば、ポリエチレ
ン、ポリプロピレン、ポリブタジエン、ポリスチレン、
ポリアクリロニトリル、ポリテトラフルオロエチレン、
ポリ塩化ビニル、フエノキシ樹脂、ポリオキシメチレン
、ポリアミド、ポリイミPおよびその前駆体、ポリカー
ゼネート、ポリエステル、ポリサルホン、ポリフエニレ
ンサルファイド、ポリフエニレンオキシド、ポリメタク
リレート、グアナミン樹脂、ジアリルフタレート樹脂、
フエノール樹脂、不飽和ポリエステル樹脂、ポリキシ樹
脂、フラン樹脂、ポリウレタン樹脂、メラミン樹脂、ユ
リア樹脂、キシレン樹脂、ポリビニルアルコール、芳香
族ポリアミr1 ポリベンズチアゾールやその前駆体、
ポリベンズオキサゾールやその前駆体などである。
To name a few of these polymer materials, polyethylene, polypropylene, polybutadiene, polystyrene,
polyacrylonitrile, polytetrafluoroethylene,
Polyvinyl chloride, phenoxy resin, polyoxymethylene, polyamide, polyimide P and its precursors, polycarbonate, polyester, polysulfone, polyphenylene sulfide, polyphenylene oxide, polymethacrylate, guanamine resin, diallyl phthalate resin,
Phenol resin, unsaturated polyester resin, polyoxy resin, furan resin, polyurethane resin, melamine resin, urea resin, xylene resin, polyvinyl alcohol, aromatic polyamide r1 polybenzthiazole and its precursors,
These include polybenzoxazole and its precursors.

本発明で用いる高分子材料の形状は粉体状、粒状、ペレ
ットやチップ状、・ソルゾ状、繊維状、フィルム状、薄
片状、塊状、板状などが用いられ、形状に制限はない。
The shape of the polymeric material used in the present invention may be powder, granule, pellet, chip, sorzo, fiber, film, flake, lump, plate, etc., and the shape is not limited.

一般に、粉粒体、・クルプ状、フィルム状や薄片状など
微細な形状を有する材料を直接成形することは困難であ
るが、本発明ではそれが可能であり、これら形状の材料
にとって特に有利な方法である。
Generally, it is difficult to directly mold materials with fine shapes such as powder, granules, curds, films, and flakes, but this is possible with the present invention, which is particularly advantageous for materials with these shapes. It's a method.

本発明において、上記高分子材料を爆発圧搾する方法と
しては例えば、鋼管などの金属管中に試料を充填し、そ
の鋼管のまわりに爆薬をつめ、電気雷管などの超爆物で
起爆し爆どうを発生させ圧搾する方法や試料をゴム、プ
ラスチック、金嘱その他の容器に充填し、あるいは試料
のみを予備成形しておき、この充填物あるいは予備成形
物を鋼管などの金属管中に充填し、金属管と試料との隙
間に不活性の媒体を充填して上記と同様爆どうを発生さ
せ圧搾する方法、または、凹型の容器中に試料を充填し
、その上に金属板を置き、更にその上部に火薬を装填し
て爆ごうを発生させ圧搾する方法、その他、従来金属の
爆発圧搾方法として知られている方法などを活用するこ
とが出来る。
In the present invention, the method of explosively squeezing the polymeric material is, for example, filling a sample into a metal tube such as a steel tube, packing an explosive around the steel tube, and detonating it with a super explosive such as an electric detonator. A method of generating and squeezing a sample, filling a rubber, plastic, metal or other container, or preforming only the sample, and filling this filling or preform into a metal pipe such as a steel pipe, There is a method of filling the gap between the metal tube and the sample with an inert medium and generating and squeezing it in the same way as above, or filling the sample in a concave container, placing a metal plate on top of it, and then It is possible to utilize methods such as loading gunpowder into the upper part to generate explosives and squeezing them, and other methods conventionally known as explosive squeezing methods for metals.

本発明の爆発圧搾を実施するにあたって高分子材料は予
じめ緻密な状態に装填しておくことが必要である。すな
わち、容器部分の空間など試料装填空間において高分子
材料は、その真密度の少くとも0.75倍以上のかさ密
度を持つよう装填されていることが極めて重要であり、
好ましくは0.8以上、特に好ましくは0.85以上に
装填されていることである。高分子材料においては、特
に粉末状や・ぞルプ状、繊維状、薄片状やフィルム状な
ど微細な形状をとると極めてかさ高の状態となり、この
まま爆発圧搾を行うと爆発の衝撃が材料の空隙内での激
しい移動、衝突を引きおこし、衝撃の集中や摩擦熱の発
生、派生的な酸化などをひき起し、材料の炭化や劣化、
分解の原因となる。このような現象を最小限に抑えるた
め、本発明において、前記のような予備装填段階で原料
高分子材料の真密度の0.75倍以上のかさ密度になる
よう装填しておくことが重要である。このような予備装
填の方法としては、例えば、精水圧加圧法、一軸一方向
加圧法、一軸二方向加圧法などの加圧方法が使用できる
In carrying out the explosive compression of the present invention, it is necessary to load the polymeric material in a dense state in advance. In other words, it is extremely important that the polymer material be loaded in the sample loading space such as the container space so that it has a bulk density that is at least 0.75 times its true density.
The loading is preferably 0.8 or more, particularly preferably 0.85 or more. Polymer materials, especially when they are in fine shapes such as powders, solps, fibers, flakes, and films, become extremely bulky. Violent movement within the interior causes collisions, concentration of impact, generation of frictional heat, secondary oxidation, etc., resulting in carbonization and deterioration of the material.
May cause decomposition. In order to minimize this phenomenon, in the present invention, it is important to load the bulk density of the raw polymer material at least 0.75 times the true density of the raw polymer material at the pre-loading stage as described above. be. As such a preloading method, for example, a pressurization method such as a purified water pressurization method, a uniaxial unidirectional pressurization method, a uniaxial bidirectional pressurization method, etc. can be used.

又、高分子材料の爆発圧搾時には試料容器内や試料空隙
は空気を排気してI KPa以下好ましくは100Pa
以下、特に10Pa以下の真空状態にしたり、アルゴン
、ヘリウム、窒素などの不活性ガスに置換しておくこと
が、成形体の炭化、酸化など不必要な劣化を抑制するた
めに好ましい。
Also, during explosive compression of polymeric materials, the inside of the sample container and the sample cavity are evacuated to a pressure of I KPa or less, preferably 100 Pa.
Hereinafter, it is particularly preferable to maintain a vacuum state of 10 Pa or less or replace the molded body with an inert gas such as argon, helium, or nitrogen in order to suppress unnecessary deterioration such as carbonization and oxidation of the compact.

本発明の爆発を起させる爆薬としては種々の爆発速度の
爆薬が使用できるが、一般には1000m/gから70
00m/aの爆薬、好ましくは4000 m/a以下、
特に好ましくは15o o m/sから3000 m/
sの爆発速度を持つ低爆発速度9爆薬である。これは、
一般に爆発速度の大きい爆薬を用いる程、高い圧力が潜
られるが、一方で圧搾された成形体の中心部に高度の衝
撃波の影響によると思われる空隙を生じやすく、又、爆
発速度が低すぎると圧搾が不十分で満足できる成形体が
得られないためである。
Explosives with various detonation velocities can be used as the explosives for causing the explosion of the present invention, but in general, explosives with detonation velocities ranging from 1000 m/g to 70 m/g can be used.
00 m/a explosive, preferably below 4000 m/a,
Particularly preferably from 15 o m/s to 3000 m/s
It is a low detonation velocity 9 explosive with a detonation velocity of s. this is,
In general, the higher the explosive velocity is used, the higher the pressure can be applied, but on the other hand, it is easy to create a void in the center of the compacted compact, which is thought to be due to the effects of high-level shock waves, and if the explosive velocity is too low, This is because the pressing is insufficient and a satisfactory molded product cannot be obtained.

爆薬の使用量は、使用する爆薬の種類、爆薬の装填方法
と圧搾方法との関係、圧搾する高分子材料の形状や種類
、成形体に付加する特性などによつて選定するが、一般
には、原料高分子材料の一重量部に対して100重量部
以下で条件を選定できる。
The amount of explosive to be used is selected depending on the type of explosive to be used, the relationship between the loading method of the explosive and the squeezing method, the shape and type of the polymer material to be squeezed, and the characteristics to be added to the molded article.In general, The conditions can be selected to be 100 parts by weight or less relative to 1 part by weight of the raw polymer material.

爆薬の種類としては、公知、既存の各種爆薬から選定す
れば良いが、その若干例をあげれば、硝酸アンモニウム
を基材として、これに鋭感剤としてTNT、テトリル、
ヘキソーゲン、PETN、可燃物として澱粉や木粉、爆
発速度調整剤として食塩やタルクなどの不活性剤などを
調合した粉状爆薬が安全性が高く、取扱いが容易であり
、成分の配合割合をかえることにより所望の性能を得る
ことができるので好ましい。
The type of explosive may be selected from various known and existing explosives, but some examples include ammonium nitrate as a base material and sensitizers such as TNT, tetryl,
Powdered explosives prepared with hexogen, PETN, combustible materials such as starch and wood flour, and detonation rate modifiers such as salt and talc are highly safe and easy to handle, and the proportions of the ingredients can be changed. This is preferable because desired performance can be obtained by doing so.

このようにして得られる本発明の成形体は、その成形体
のかさ密度が原料の高分子材料の真密度に対して少くと
も0.9倍以上、特に0.94倍以上に達している極め
て緻密な成形体である。
The molded product of the present invention obtained in this way has a bulk density that is at least 0.9 times or more, particularly 0.94 times or more, the true density of the raw polymer material. It is a dense molded body.

この、ようにして得られた爆発圧搾成形体は、必要に応
じて加熱処理を行ったり、切削や切断など機械加工を行
ったり塑性加工を行ったりして目的の用途に使用できる
The explosive compression molded product obtained in this way can be used for the intended purpose by subjecting it to heat treatment, machining such as cutting or cutting, or plastic working, if necessary.

本発明で得られる成形体は、通常の静的な圧力で成形さ
れただけの一般の圧縮成形体ひ比べ、はるかに緻密性に
優れ、高度な密度を有し、硬度も高い。又、一般の圧縮
成形法では成形体の切削や切断などの後加工を実施しよ
うとしても、成形体がもろく、くずれてしまう場合でも
本発明の方法によれば加工が可能なほど、一体化してお
り、機械的特性にも優れる。このため本発明の成形体は
精密機械部品や電子材料部品など高度な性能を要求され
る部品用材料として有用である。
The molded product obtained by the present invention has far superior compactness, high density, and high hardness compared to a general compression molded product that is simply molded under normal static pressure. In addition, even if the molded body is brittle and crumbles even if the molded body is subjected to post-processing such as cutting or cutting in the general compression molding method, the method of the present invention allows the molded body to be integrated so that it can be processed. It also has excellent mechanical properties. Therefore, the molded article of the present invention is useful as a material for parts that require high performance, such as precision mechanical parts and electronic material parts.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1 分子1t a s、o o oのポリノぞラフエニレン
テレフタルアミド(以下はPPTAと略記する)の粒状
物(平均粒径300μm)を高分子材料として64g使
用し、これ゛を第1図に示す肉厚2日外径30mの金属
容器5(内容積55.2a++りにつめ、予じめピスト
ンプレスにより151 MPaで予備圧搾して装填し、
内部の空気を排気・ぞイゾ7を通して真空ポンプにより
排気し、1〜10 MPaとしその状態でノソイプを溶
断した。予備装填物のかさ密度は1.16で、原料PP
TAの真密度1.44の約0.81倍であった。
Example 1 64 g of granules (average particle size 300 μm) of polynozorough ethylene terephthalamide (hereinafter abbreviated as PPTA) with a molecular weight of 1 t a s, o o o were used as a polymer material, and this was The metal container 5 shown in the figure with a wall thickness of 2 days and an outer diameter of 30 m (inner volume 55.2 a++ thick, pre-pressed and loaded at 151 MPa with a piston press,
The internal air was evacuated by a vacuum pump through an exhaust gas pipe 7 to a pressure of 1 to 10 MPa, and the nosoip was fused under that condition. The bulk density of the preload is 1.16, and the raw material PP
It was about 0.81 times the true density of TA, which is 1.44.

爆発圧搾は予備圧搾装填物を第1図のように設置し、上
部にある電気電管1に所要電流を通電し起爆すると、こ
れが硝酸アンモニウムを主成分とする粉状爆薬3(爆速
2500m/s)1.5Kgに伝爆し、上部から下部へ
と衝撃波を伴いながら爆ごうが進む。この際、装填容器
上部の粘土塊2は上方向から加わる衝撃圧力を緩衝し装
填容器の破損を防止する。装嘆容器は爆薬の中心に配置
し衝撃波が平均して伝わるようにし、外装容器6と金属
容器5の間隔(薬厚)は40mmとした。
For explosive compression, a preliminary compression charge is installed as shown in Figure 1, and when the required current is applied to the electric tube 1 at the top to detonate it, it explodes into a powdered explosive 3 whose main component is ammonium nitrate (detonation speed 2500 m/s). The bomb exploded to 1.5 kg, and the explosion proceeded from the top to the bottom, accompanied by a shock wave. At this time, the clay lump 2 at the top of the loading container buffers the impact pressure applied from above and prevents damage to the loading container. The loading container was placed at the center of the explosive so that the shock wave was transmitted evenly, and the distance between the outer container 6 and the metal container 5 (drug thickness) was 40 mm.

このようにして爆発圧搾した試料は金属容器に入ったま
ま輪切り状に切断してビッカース硬度計で中心部の硬度
を測定したところ32であった。
The sample thus explosively pressed was cut into slices while still in the metal container, and the hardness of the center portion was measured using a Vickers hardness tester, and the hardness was 32.

又、サンプルを切り出しかさ密度を測定したところ1.
38に達し、原料PPTAの真密度1,44の約096
倍に達していた。なお、成形体を管方向(縦方向)に切
断した断面は終爆側(下部側)の中心部を中心に若干黒
色を帯びているものの材料の激しい劣化は認められなか
った。
In addition, when the sample was cut out and the bulk density was measured, 1.
The true density of the raw material PPTA is approximately 0.096, which is 1.44.
It had doubled. In addition, although the cross section of the molded body cut in the tube direction (vertical direction) was slightly blackish centered around the center on the end-of-explosion side (lower side), no severe deterioration of the material was observed.

実施例 2 PPTA粒状物(最高粒径250μm)を用い、予備装
填時の圧搾を79MPaとし、又、爆薬の薬厚を60m
に変え(爆薬量25Kg)、その他は実施例1と同様の
実験を実施した。予備装填物のかさ密度は1.1?、爆
発圧搾成形物のかさ比重は1.40に達し、それぞれ原
料PPTAの真密度1.44に対し約0.81倍および
約0.97倍に達した。また成形体は殆んど劣化は認め
られなかった。
Example 2 PPTA granules (maximum particle size 250 μm) were used, the compression during preloading was 79 MPa, and the thickness of the explosive was 60 m.
(explosive amount: 25 kg), and otherwise conducted the same experiment as in Example 1. Is the bulk density of the preload 1.1? The bulk specific gravity of the explosive compression molded product reached 1.40, which was about 0.81 times and about 0.97 times the true density of raw material PPTA, which was 1.44, respectively. Moreover, almost no deterioration was observed in the molded product.

比較例1 平均粒径400μmのPPTA粒状物を用い、予備圧搾
には殆んど圧力をかけずに装填し、その他の条件は実施
例1と同様にして実施した。予備装填物のかさ密度は0
.5であり、PPTAの真密度の0.35倍であつた。
Comparative Example 1 PPTA granules having an average particle size of 400 μm were used, the pre-compression was carried out with almost no pressure applied, and the other conditions were the same as in Example 1. The bulk density of the preload is 0
.. 5, which was 0.35 times the true density of PPTA.

爆発圧搾成形体の中心部は空胴になり、その周辺は黒色
に炭化状に変化していだ。この成形体は極めてもろく、
切削に耐えない物であった。なお成形体の周辺部のみに
ついてサンプルを取り測定したかさ密度は1.1であり
、原料PPTAの真密度の0.76倍であった。
The center of the explosion-molded body became a cavity, and the surrounding area began to turn black and carbonized. This molded body is extremely brittle;
It was something that could not withstand cutting. The bulk density measured by taking a sample only from the periphery of the molded body was 1.1, which was 0.76 times the true density of the raw material PPTA.

比較例 2 比較例1の条件において予備圧搾を79MPaとして予
備装填を行い、又、火薬として7000m/sの爆速の
火薬を用いた。この際薬厚は15mとした。その結果、
予備装填段階でのかさ密度は0.9であり、PPTAの
真密度1.44のα63倍であつだ。一方、爆発圧搾後
は中心部は完全に空胴に黒化分解し、周辺部もほとんど
炭化(黒化)していた。
Comparative Example 2 Under the conditions of Comparative Example 1, preliminary compression was set to 79 MPa, and preliminary loading was performed, and explosives with an explosive velocity of 7000 m/s were used as explosives. At this time, the thickness of the drug was 15 m. the result,
The bulk density at the preloading stage is 0.9, which is α63 times the true density of PPTA, which is 1.44. On the other hand, after explosive squeezing, the center was completely blackened and decomposed into a hollow cavity, and most of the surrounding areas were also carbonized (blackened).

火薬として3500m/sの爆速のものを用いた場合に
は周辺部は完全には炭化(黒化)されずに残っていたが
極めてもろかった。
When explosives with an explosive velocity of 3,500 m/s were used, the surrounding area was not completely carbonized (blackened) but remained extremely brittle.

実施例 3 分子量3500のPPTAオリゴマーを用い、又、薬厚
を55mmとして実施例2と同様の実験を行つた。なお
、PPTAの粒度は210〜297μmの範囲の物、お
よび210〜105μmの範囲の物を用いた。
Example 3 An experiment similar to Example 2 was conducted using a PPTA oligomer with a molecular weight of 3500 and a drug thickness of 55 mm. In addition, the particle size of PPTA used was in the range of 210 to 297 μm and in the range of 210 to 105 μm.

予備装填物のかさ密度は共に1.20であり、又、爆発
圧搾後の成形体のかさ密度も、共に1.48であり、そ
れぞれPPTAの真比重1.44に対し0.83及び1
.03倍に達した。予備装填物は極めてもろいのに対し
、爆発圧搾成形体は切削や切断に耐えるだけ十分一体化
しており、又、成形体は着干黒色部が認められるものの
劣化は殆んど起っていなかった。なお、この成形体のビ
ッカース硬度は29に達し、又、原料粒度範囲210〜
105μmの成形体から切り出して測定した曲げ弾性率
(ビン間隔15m、試料厚さs wm)は19 GPa
に達した。
The bulk densities of the preload are both 1.20, and the bulk densities of the molded product after explosive compression are both 1.48, which are 0.83 and 1, respectively, compared to the true specific gravity of PPTA, which is 1.44.
.. It reached 03 times. While the preload was extremely brittle, the explosion-pressed molded product was sufficiently integrated to withstand cutting and cutting, and although the molded product had dry black areas, there was almost no deterioration. . The Vickers hardness of this molded product reached 29, and the raw material particle size range was 210 to 29.
The flexural modulus measured by cutting out a 105 μm molded body (bin spacing 15 m, sample thickness s wm) was 19 GPa.
reached.

実施例 4 平均粒径20μmのポリフェニレンサルファイP粉末(
ライドンP−4)を高分子材料として用。
Example 4 Polyphenylene sulfite P powder with an average particle size of 20 μm (
Rydon P-4) is used as a polymer material.

い薬厚75簡として実施例1と同様の実験を実施した。An experiment similar to that in Example 1 was conducted using a thin film with a thickness of 75 mm.

予備圧搾装填後のかさ密度は1.09であり、父、爆発
圧搾成形物では1.21であった。これは、原料ポリフ
ェニレンサルファイPのJ密i1.34に対してそれぞ
れ0.81倍および0,90倍に対応する。予備圧搾段
階のものは極めてもろく切断に供し得ないが、爆発圧搾
成形体では切断が可能になり、中心部のビッカーズ硬度
は29であつた。
The bulk density after pre-press loading was 1.09, and the bulk density of the original explosive press-molded product was 1.21. This corresponds to 0.81 times and 0.90 times the J density i1.34 of raw material polyphenylene sulfide P, respectively. The material in the pre-squeezing stage was extremely brittle and could not be cut, but the explosively pressed material could be cut, and the center had a Vickers hardness of 29.

成形体は褐色の強いものであるが劣化は認められなかっ
た。
Although the molded product had a strong brown color, no deterioration was observed.

実施例5 平均粒径30μmのポリエチレンテレフタレート粉末(
ηsp/c0.57)の高分子材料として用い、薬厚5
5mmと実施例1と同様の実験を実権した。
Example 5 Polyethylene terephthalate powder with an average particle size of 30 μm (
Used as a polymer material with ηsp/c0.57), drug thickness 5
5 mm, and an experiment similar to that in Example 1 was conducted.

予備圧搾装填後(圧力151 MPa)のかさ密度1.
22、爆発圧搾成形体のかさ密度1.38であり、それ
ぞれ原料ポリエチレンテレフタレートの真密度1.37
に対して、0.89倍および1.01倍に達している。
Bulk density after pre-compression loading (pressure 151 MPa) 1.
22, the bulk density of the explosive compression molded product is 1.38, and the true density of the raw material polyethylene terephthalate is 1.37, respectively.
Compared to that, it reaches 0.89 times and 1.01 times.

爆発圧搾成形体は殆んど黒化しておらず、劣化は認めら
れなかった。又、予備圧搾体が極めてもろいのに対し、
切断可能なまでに一体化が進んでいた。
The explosion-pressed molded product was hardly blackened and no deterioration was observed. Also, while the pre-squeezed body is extremely fragile,
The integration had progressed to the point that it could be cut.

実施例 6 平均粒径20μmのポリアクリロニトリル粉末(分子量
約7万)を用い実施例1と同様の実鹸を行った。予備圧
搾装填後のかさ密度1.00、爆発圧搾成形体のかさ密
度1.12であり、原料ポリアクリロニトリルの真密度
1.17に対して、それぞれ0.85および096倍で
あった。爆発圧搾成形体は透明感があり、切削や切断に
耐えるに十分一体化しており、黒化などの劣化も見られ
ない。成形体中心部のピッカース硬度は30であつた。
Example 6 The same method as in Example 1 was carried out using polyacrylonitrile powder (molecular weight approximately 70,000) with an average particle size of 20 μm. The bulk density after preliminary compression loading was 1.00, and the bulk density of the explosion-pressed molded product was 1.12, which were 0.85 and 096 times, respectively, the true density of the raw material polyacrylonitrile, which was 1.17. The explosive compression molded product has a transparent appearance, is sufficiently integrated to withstand cutting and cutting, and shows no deterioration such as blackening. The Pickers hardness at the center of the molded body was 30.

実施例7 平均粒径25μmのポリテトラフルオロエチレン(ポリ
フロンM−12)を用い、予備圧搾圧力を39MPaと
して実施例1と同様の実験を行つた。
Example 7 An experiment similar to Example 1 was conducted using polytetrafluoroethylene (Polyflon M-12) with an average particle size of 25 μm and a preliminary compression pressure of 39 MPa.

予備圧搾後のかさ密度は2.17、爆発圧搾成形体のか
さ密度は?−20であり、原料ポリテトラフルオロエチ
レンの真密度2.20に討して、それぞれ0.99およ
びi、oo倍であった。成形体は全く黒色を帯びず劣化
も認められずかつ切削、切断が十分0T能な一体化され
たものであった。
The bulk density after pre-squeezing is 2.17. What is the bulk density of the explosion-pressed compact? -20, which is 0.99 and i, oo times higher than the true density of raw material polytetrafluoroethylene, which is 2.20. The molded product was not blackish at all, no deterioration was observed, and it was an integrated product with sufficient 0T cutting ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で用いた爆発圧搾装置の断面図である
。 1・・・電気雷管、2・・・粘土、3・・・爆薬、41
高分子材料、5・・・金属容器、6・・・外装容器、7
・・・排気ノぞイブ。 特許出願人 工業技術院長  16− 第 rり 3 5 ノ6
FIG. 1 is a sectional view of the explosive compression device used in Example 1. 1...Electric detonator, 2...Clay, 3...Explosive, 41
Polymer material, 5... Metal container, 6... Outer container, 7
...Exhaust Nozo Eve. Patent applicant Director of the Agency of Industrial Science and Technology 16- No. 3 5 No. 6

Claims (2)

【特許請求の範囲】[Claims] 1.高分子材料を爆発圧搾によつて成形することを特徴
とする高分子成形体の製造方法
1. A method for producing a polymer molded article, characterized by molding a polymer material by explosive compression.
2.高分子材料が、あらかじめその真密度の0.75倍
以上のかさ密度になるよう装填されることを特徴とする
特許請求の範囲第1項に記載の高分子成形体の製造方法
2. The method for producing a polymer molded article according to claim 1, characterized in that the polymer material is loaded in advance so that the bulk density is 0.75 times or more the true density of the polymer material.
JP58205772A 1983-11-04 1983-11-04 Manufacture of high polymeric formed body Granted JPS6097813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205772A JPS6097813A (en) 1983-11-04 1983-11-04 Manufacture of high polymeric formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205772A JPS6097813A (en) 1983-11-04 1983-11-04 Manufacture of high polymeric formed body

Publications (2)

Publication Number Publication Date
JPS6097813A true JPS6097813A (en) 1985-05-31
JPH022404B2 JPH022404B2 (en) 1990-01-18

Family

ID=16512410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205772A Granted JPS6097813A (en) 1983-11-04 1983-11-04 Manufacture of high polymeric formed body

Country Status (1)

Country Link
JP (1) JPS6097813A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217118A (en) * 1984-04-13 1985-10-30 Agency Of Ind Science & Technol Rigid molding and manufacture thereof
JPS60217119A (en) * 1984-04-13 1985-10-30 Agency Of Ind Science & Technol Highly rigid molding and manufacture thereof
EP0405202A2 (en) * 1989-06-27 1991-01-02 Linde Aktiengesellschaft Method of manufacturing plastic articles
US6218867B1 (en) 1997-12-26 2001-04-17 Sharp Kabushiki Kaisha Pass transistor circuit
JP2018523859A (en) * 2015-08-21 2018-08-23 コーニング オプティカル コミュニケイションズ リミテッド ライアビリティ カンパニー Fiber optic connector subassembly and related methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838619A (en) * 1981-07-15 1983-03-07 インステイテユ−ツ・ポ・メタロツナニイ・アイ・テクノロギア・ナ・メタリテ Explosion molding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838619A (en) * 1981-07-15 1983-03-07 インステイテユ−ツ・ポ・メタロツナニイ・アイ・テクノロギア・ナ・メタリテ Explosion molding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217118A (en) * 1984-04-13 1985-10-30 Agency Of Ind Science & Technol Rigid molding and manufacture thereof
JPS60217119A (en) * 1984-04-13 1985-10-30 Agency Of Ind Science & Technol Highly rigid molding and manufacture thereof
JPH0471693B2 (en) * 1984-04-13 1992-11-16 Kogyo Gijutsuin
JPH0521727B2 (en) * 1984-04-13 1993-03-25 Kogyo Gijutsuin
EP0405202A2 (en) * 1989-06-27 1991-01-02 Linde Aktiengesellschaft Method of manufacturing plastic articles
US6218867B1 (en) 1997-12-26 2001-04-17 Sharp Kabushiki Kaisha Pass transistor circuit
JP2018523859A (en) * 2015-08-21 2018-08-23 コーニング オプティカル コミュニケイションズ リミテッド ライアビリティ カンパニー Fiber optic connector subassembly and related methods

Also Published As

Publication number Publication date
JPH022404B2 (en) 1990-01-18

Similar Documents

Publication Publication Date Title
EP1317650B1 (en) Sintered tungsten liners for shaped charges
US3781170A (en) Lightweight metal composite material and process for producing same
US3608014A (en) Method of explosively shocking solid materials
Thadhani Shock compression processing of powders
JPS6097813A (en) Manufacture of high polymeric formed body
US3165826A (en) Method of explosively forming fibers
RU2003117584A (en) DENSE SELF-LUBRICATING MATERIAL, METHOD OF ITS PRODUCTION AND MECHANICAL PRODUCT FROM THIS MATERIAL
JPS61502A (en) Molding method of powdery body
CN107052331B (en) Device and method for explosion sintering of nano aluminum bar capable of releasing pressure
US3879504A (en) Method for injection molding of explosive and pyrotechnic material
Yu et al. Chemical reaction mechanism and mechanical response of PTFE/Al/TiH2 reactive composites
US3081498A (en) Explosive method of powder compaction
JPH0471693B2 (en)
US7438883B2 (en) High-pressure phase silicon nitride having a cubic spinel structure and the manufacturing method
JP2951349B2 (en) Manufacturing method of powder pressed body using underwater shock wave
US4201757A (en) Large boron nitride abrasive particles
JPH0521727B2 (en)
JP2006102656A (en) Method for synthesizing diamond
RU2147551C1 (en) Oxygen generator manufacture method
RU2037379C1 (en) Explosive powder pressing method
RU185845U1 (en) DEVICE FOR PRODUCING DIAMONDS AND DIAMOND-LIKE MATERIALS
Roman et al. Fundamentals of explosive compaction of powders
US4231980A (en) Large boron nitride abrasive particles
JPS5932174B2 (en) Impact treatment method and device for condensed substances
Abousree Hegazy et al. Mechanical properties of implosively compacted suspension homopolymer S 57/116 PVC powder