JPS5932174B2 - Impact treatment method and device for condensed substances - Google Patents

Impact treatment method and device for condensed substances

Info

Publication number
JPS5932174B2
JPS5932174B2 JP20425881A JP20425881A JPS5932174B2 JP S5932174 B2 JPS5932174 B2 JP S5932174B2 JP 20425881 A JP20425881 A JP 20425881A JP 20425881 A JP20425881 A JP 20425881A JP S5932174 B2 JPS5932174 B2 JP S5932174B2
Authority
JP
Japan
Prior art keywords
impact
explosive layer
container
explosive
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20425881A
Other languages
Japanese (ja)
Other versions
JPS58104629A (en
Inventor
修三 藤原
正夫 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20425881A priority Critical patent/JPS5932174B2/en
Publication of JPS58104629A publication Critical patent/JPS58104629A/en
Publication of JPS5932174B2 publication Critical patent/JPS5932174B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances

Description

【発明の詳細な説明】 本発明は固体又は液体状の凝縮系物質の衝撃処理方法及
び装置に関するものであり、より詳しくは、火薬類の爆
発を利用した凝縮系物質の改良された衝撃処理方法及び
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for impact treatment of solid or liquid condensed substances, and more particularly, to an improved impact treatment method of condensed substances using explosion of explosives. and devices.

従来、火薬類又は爆薬類の爆発衝撃を利用して凝縮系物
質を圧縮処理する方法として、例えば米国特許第323
8019号記載のダイヤモンドの製造方法、特公昭36
−1952号記載の粉体の緻密化方法、特公昭47−3
4597号記載の固体材料の処理方法、特公昭46−3
378号記載のもろい結晶粉の製造方法等が知られてお
り、我が国においても金属の圧着成型加工等工業的に実
用化されているものもある。
Conventionally, as a method for compressing condensed substances using explosives or explosion impact of explosives, for example, US Pat. No. 323
Diamond manufacturing method described in No. 8019, Special Publication No. 1973
- Powder densification method described in No. 1952, Japanese Patent Publication No. 47-3
Processing method for solid materials described in No. 4597, Japanese Patent Publication No. 46-3
The method for producing brittle crystal powder described in No. 378 is known, and some of these methods have also been put into practical use industrially in Japan, such as in metal compression molding.

このような従来の凝縮系物質の衝撃処理方法においては
、種々の未解決の問題点が残されているのが現状である
At present, various unresolved problems remain in such conventional impact treatment methods for condensed substances.

その一つとして、衝撃圧縮に伴う試料の温度上昇の問題
がある。
One of them is the problem of the temperature increase of the sample due to impact compression.

即ち、一般に、衝撃圧縮のエネルギー(内部エネルギー
)は試料を構成する物質の粒子間距離を短縮化させるポ
テンシャルエネルギーと、粒子を不規則運動させる熱エ
ネルギーとに大別することができて、前者は物質を圧縮
し、後者は加熱し、温度を上昇させる。
That is, in general, the energy of impact compression (internal energy) can be roughly divided into potential energy that shortens the distance between particles of the material that makes up the sample, and thermal energy that causes particles to move irregularly. Compressing the substance, the latter heats up and increases its temperature.

物質が塑性変形を開始する程度の低い衝撃圧力下では熱
エネルギーの占める割合はほとんど無視でき、したがっ
て温度上昇も無視できるが、圧力が高くなると、熱エネ
ルギーの割合、つまり温度も指数的に増大する、また衝
撃圧縮は非可逆的な圧縮であるため、エントロピー増大
が伴う分だけ、試料の圧力が解放され大気圧に戻された
後も衝撃エネルギーの一部は熱エネルギーとして試料に
残存する。
Under low impact pressures, at which the material begins to undergo plastic deformation, the proportion of thermal energy is almost negligible, and therefore the rise in temperature can be ignored, but as the pressure increases, the proportion of thermal energy, and hence the temperature, increases exponentially. Also, since impact compression is irreversible compression, a portion of the impact energy remains in the sample as thermal energy even after the pressure of the sample is released and returned to atmospheric pressure to the extent that entropy increases.

このため試料は熱い状態で残り、この時の残存試料の温
度を残留温度と呼び、前述の衝撃圧下の温度、つまり衝
撃温度と区別される。
For this reason, the sample remains in a hot state, and the temperature of the remaining sample at this time is called the residual temperature, which is distinguished from the temperature under shock pressure, that is, the shock temperature mentioned above.

一般に、衝撃温度より残留温度は低いが残留温度も衝撃
圧力の増大とともに指数的に増大する。
Generally, the residual temperature is lower than the impact temperature, but the residual temperature also increases exponentially as the impact pressure increases.

物質の衝撃圧縮による温度上昇(衝撃温度・残留温度)
は物質の衝撃特性が既知ならば例えば、エル・ヴイー、
アルチュラー氏のソビエトブイジクス・ウスペキヒ誌第
8巻(1965年)第4号、52頁〜128頁記載の方
法、あるいは、アールジー・マクィーン氏他のジャーナ
ルオブアプライドフイジクス誌第31巻(1960年)
第7号1253頁〜1269頁記載の方法により、計算
で求めることができる。
Temperature rise due to shock compression of substances (shock temperature/residual temperature)
For example, if the impact properties of the material are known,
The method described by Mr. Altschler's Journal of Applied Physics Vol. Year)
It can be calculated by the method described in No. 7, pages 1253 to 1269.

たとえば真密度の鉛の場合、アルチュラー氏によれば、
1メガバールの衝撃圧縮下における熱エネルギーの全衝
撃エネルギーに占める割合は約50%であり、マクィー
ン氏によれば同条件において、衝撃温度、残留温度は各
々9218°に、1813°に1また、圧縮による密度
増加は1615倍と計算されている。
For example, in the case of true density lead, according to Altschuler,
The proportion of thermal energy to the total impact energy under 1 megabar impact compression is approximately 50%, and according to Mr. McQueen, under the same conditions, the impact temperature and residual temperature are 9218° and 1813°, respectively. The density increase is calculated to be 1615 times.

鉛は密度が大ぎく圧縮しに(い物質つまり、衝撃イン・
ピーダンスの大きな物質の一つである。
Lead is a highly dense material that cannot be compressed (i.e., impact-in
It is one of the substances with high pedance.

衝撃インピーダンスの小さい物質の場合、たとえば、真
密度(2,16′?/cut )の塩化ナトリウム(単
結晶)を同一圧縮度つまり、1.615倍の密度に圧縮
するには、ロスアラモスミコックウゴニオテ−タ集(ニ
ス・ピー・マーシュ著、カリフォルニア大学出版)によ
ると、約350キロバールの衝撃圧を必要とし、またバ
ツアノフ氏(ビハビアーオブデンスメディア アンダー
バイダイナミックプレッシャー書、ゴートンアンドブ
リーチ社・1968年刊374頁参照)によれば同一条
件で衝撃温度と残留温度は各々1200〜2100℃、
500〜750℃と報告されている。
In the case of a material with low impact impedance, for example, to compress sodium chloride (single crystal) with a true density (2,16'?/cut) to the same degree of compression, that is, 1.615 times the density, Los Alamos Mikokugo According to Nioteta Collection (written by Niss P. Marsh, University of California Press), it requires an impact pressure of about 350 kilobars, and also by Mr. Batsuanov (Behavior of Density Media Under Bidynamic Pressure, Gorton and Breech, 1968). According to the annual publication, p. 374), under the same conditions, the impact temperature and residual temperature were 1200 to 2100°C, respectively.
It is reported to be 500-750°C.

マクィーン氏によれば同一圧力(350キロバール)に
鉛を圧縮すると、衝撃温度残留温度は各々、1070〜
1587℃、327〜429℃と計算されている。
According to Mr. McQueen, when lead is compressed to the same pressure (350 kbar), the shock temperature and residual temperature are respectively 1070 ~
It is calculated to be 1587°C and 327-429°C.

バツアノフ氏らは、また、ポーラスな塩化ナトリウム、
つまり真密度の77%、66%の試料に衝撃圧縮を行い
、第1表に示すような結果を得ている。
Batsuanov et al. also found that porous sodium chloride,
That is, impact compression was performed on samples with 77% and 66% of the true density, and the results shown in Table 1 were obtained.

第1表の温度は平均温度を示すもので、不均一なポーラ
ス状物質の場合、粒子間の接触点、等部分的に平均温度
をはるかに越える高温部ができることを留意しておかね
ばならない。
It must be kept in mind that the temperatures in Table 1 indicate average temperatures, and that in the case of non-uniform porous materials, high temperature areas that far exceed the average temperature may occur at contact points between particles.

以上、例をとり、説明したように、衝撃圧縮には必ず試
料の温度上昇を伴い、衝撃インピーダンスの小さな物質
とか、ポーラス状物質は温度上昇が顕著となる。
As explained above using examples, impact compression is always accompanied by an increase in the temperature of the sample, and the temperature increase is significant for materials with low impact impedance or porous materials.

衝撃温度あるいは残留温度下で試料が融解気化あるいは
熱分解する可能性があり、このため所定の圧力以上に衝
撃処理が行えないという不都合が生じる。
There is a possibility that the sample melts, vaporizes, or thermally decomposes under the impact temperature or residual temperature, which causes the inconvenience that impact treatment cannot be performed above a predetermined pressure.

特に残留温度は、衝撃温度の持続時間が略10−5〜1
0−6秒の程度であるのに対し、周囲条件により差異は
あるが、留10−1〜1秒程度と長いため高温の場合試
料の反応はもちろん、試料容器と反応したり、これを融
解させたり、また、試料の気化あるいは分解生成ガスの
ため、試料容器の内圧が高くなり、容器を破損させる等
多くの問題を生じる。
In particular, for residual temperature, the duration of shock temperature is approximately 10-5 to 1
Although it varies depending on the ambient conditions, the distillation time is about 10-1 to 1 second, so at high temperatures, it may not only react with the sample but also react with the sample container or melt it. In addition, the internal pressure of the sample container increases due to vaporization or decomposition gas of the sample, causing many problems such as damage to the container.

温度上昇を抑制する従来方法のうち、最も簡単な方法は
、試料の初期密度をなるべく高くする方法である。
Among conventional methods for suppressing temperature rise, the simplest method is to increase the initial density of the sample as much as possible.

その他の方法として衝撃インピーダンス不整合と呼ばれ
る方法で、粉状、または薄板状の試料と試料より十分衝
撃インピーダンスの大きな物質を、粉状の場合は混合し
、プレス成型し、板状の場合サンドインチ状に層状に重
ね合わせ、複合体をつくり、これに衝撃加圧する方法が
ある。
Another method is called impact impedance mismatching, in which a powder or thin plate sample is mixed with a substance whose impact impedance is sufficiently higher than the sample, and the powder is mixed and press-molded, and the plate is sandwiched. There is a method of stacking layers on top of each other to create a composite, and applying impact pressure to this.

その一例として特公昭54−10558の合成ダイヤモ
ンドの製造方法に記載されている方法があり、これは試
料つまりグラファイト粉とこれよりはるかに衝撃インピ
ーダンスの大きい銅、あるいは鉄粉とを混合プレス成型
し、複合体を得て、これに衝撃をかげ、温度抑制し、ダ
イヤモンド化収率を高めようとするものである。
An example of this is the method described in Japanese Patent Publication No. 54-10558 (1986), a method for producing synthetic diamonds, in which a sample, that is, graphite powder, is mixed and press-molded with copper or iron powder, which has a much higher impact impedance. The idea is to obtain a composite, apply shock to it, suppress the temperature, and increase the yield of diamond formation.

衝撃インピーダンス不整合体において、圧力は各相とも
平衡になるゆえ、容易に高圧が得られるが、温度は各相
、異り高インピーダンス相が低温度ゆえに、圧力解放過
程で低インピーダンス相の冷却効果が生じるという特徴
を有す。
In an impact impedance mismatched body, the pressure is in equilibrium for each phase, so high pressure can be easily obtained, but the temperature is different for each phase, and the high impedance phase is at a low temperature, so the cooling effect of the low impedance phase occurs during the pressure release process. It is characterized by the occurrence of

このような試料の初期密度をなるべ(高くする方法の場
合、試料が、アルミニウム、鉛、のように、融点が低く
、鋳造の容易な金属あるいは低融点の有機・無機物、も
しくは液体の場合、容易に真密度、あるいはこれに近い
ものが得られるが酸化アルミニウム等金属酸化物、炭化
物、チッ素化物、ホー素化物、ケイ素化物、フェライト
、チタン酸塩、あるいはモリブデン、タングステン、べ
IJ IJウム、炭素、等高融点物質は概して、真密度
、もしくはこれに近い所定の形状を有した試料を得るこ
とは困難である。
In the case of this method of increasing the initial density of the sample, if the sample is a metal with a low melting point and easy to cast, such as aluminum or lead, or an organic or inorganic substance with a low melting point, or a liquid, The true density or something close to it can be easily obtained with metal oxides such as aluminum oxide, carbides, nitrides, borides, silicides, ferrites, titanates, or molybdenum, tungsten, aluminum, Generally speaking, it is difficult to obtain a sample of carbon and other substances with high melting points having a true density or a predetermined shape close to the true density.

このため単体あるいはこれにバインダーとして小量の添
加物を混ぜプレス成型したり、焼結加工により、真密度
に近いものを得る方法が行なわれているが、試料作成工
程が煩雑でかつ高価なものとなるばかりか、添加物が衝
撃処理上、不純物として悪影響を及ぼしたり、またその
まま試料中に残存するため問題となる場合が多い。
For this reason, methods to obtain materials close to true density have been used, such as press-molding the single material or mixing a small amount of additives as a binder, or sintering, but these methods require a complicated sample preparation process and are expensive. Not only this, but the additives often have a negative effect on the impact treatment as impurities, or remain in the sample as they are, causing problems.

またインピーダンス不整合方法の場合においても高イン
ピーダンス媒体が試料中の不純物となりやすいばかりか
概して好ましくない場合が多い。
Furthermore, even in the case of the impedance mismatching method, a high impedance medium not only tends to become an impurity in the sample but is generally undesirable in many cases.

たとえば、前述のダイヤモンド合成において、銅粉を衝
撃処理した試料から除去するには多大の経費と時間を必
要とする。
For example, in the diamond synthesis described above, it requires a great deal of expense and time to remove copper powder from an impact-treated sample.

本発明は、衝撃圧縮に伴って生起する試料の温度上昇を
抑制することを主な目的とするものであり、この目的を
達成すべ(、本発明により、軸方向に延びる凝縮系物質
に隣接して設けた爆薬層を該軸方向に爆発点が連続的妊
移動するように爆発させて該物質を衝撃圧縮させるとと
もに別の爆発ガスで駆動された飛翔体を該物質に対し該
軸方向に衝突点が連続的に移動するように衝突させて該
物質を衝撃圧縮させるに際し、該爆薬層の爆発による衝
撃圧縮を該飛翔体の衝突による衝撃圧縮より先行せしめ
るようにしたことを特徴とする凝縮系物質の高圧衝撃圧
縮処理方法が提供される。
The main purpose of the present invention is to suppress the temperature rise of the sample that occurs due to impact compression. A layer of explosives provided in the axial direction is detonated so that the detonation point continuously moves in the axial direction to shock-compress the material, and a projectile driven by another explosive gas collides with the material in the axial direction. A condensed system characterized in that, when the substance is impact-compressed by colliding so that points move continuously, the impact compression due to the explosion of the explosive layer is made to precede the impact compression due to the impact of the projectile. A method for high pressure impact compaction processing of materials is provided.

また、本発明の第二の発明によれば、上記した方法を実
施するための装置が提供される。
Further, according to a second aspect of the present invention, an apparatus for implementing the above method is provided.

本発明を次に図面により詳細に説明する。The invention will now be explained in more detail with reference to the drawings.

第1図は本発明による衝撃圧縮処理装置の一実施例を立
面断面で示した説明図であって、図中、1は圧縮処理す
べき、液体又は固体の凝縮系物質の試料であって、円筒
状の金属容器2内に収容されている。
FIG. 1 is an explanatory diagram showing an embodiment of the impact compression treatment apparatus according to the present invention in an elevational cross section, and in the figure, 1 is a sample of a liquid or solid condensed substance to be subjected to compression treatment. , is housed in a cylindrical metal container 2.

符号3,4で示すのは容器2の栓である。容器2と同心
的に円筒状の飛翔部材5が空隙6をもって設置されてい
る。
Reference numerals 3 and 4 indicate the stoppers of the container 2. A cylindrical flying member 5 is installed concentrically with the container 2 with a gap 6 therebetween.

飛翔部材5の外周面には主爆薬層9が設けられており、
この爆発力により飛翔部材5は容器に向って高速で飛翔
、衝突し、内部の試料1を衝撃圧縮させる。
A main explosive layer 9 is provided on the outer peripheral surface of the flying member 5,
Due to this explosive force, the flying member 5 flies toward the container at high speed and collides with it, causing impact compression of the sample 1 inside.

この主爆薬層9は、上端部に設けた。This main explosive layer 9 was provided at the upper end.

雷管11及び9の起爆薬層10からなる起爆部により起
爆し、上端(起爆薬側の端部)から下端に向って連続的
に爆発する。
The detonator is detonated by the detonator consisting of the detonator layer 10 of the detonators 11 and 9, and the explosion occurs continuously from the upper end (the end on the detonator side) toward the lower end.

32は容器2の外周面に設けられた副爆薬層で、飛翔部
材5の衝突により上端部(起爆側の端部)から起爆され
下端部に向って連続的に爆発する。
Reference numeral 32 denotes a sub-explosive layer provided on the outer circumferential surface of the container 2, which is detonated from the upper end (end on the detonation side) by collision with the flying member 5 and explodes continuously toward the lower end.

起爆薬層10の爆発により副爆薬層32が直接誘爆され
るのを防ぐために、副爆薬層32と起爆薬層10との間
には木板などの隔離板29が挿設されている。
In order to prevent the secondary explosive layer 32 from being directly detonated by the explosion of the primary explosive layer 10, a separating plate 29 such as a wooden board is inserted between the secondary explosive layer 32 and the primary explosive layer 10.

21〜26は容器2の両端部に設けた容器破損防止手段
であり、その作用は後述する。
Reference numerals 21 to 26 are means for preventing damage to the container provided at both ends of the container 2, and their functions will be described later.

なお、この破損防止手段は省略することもできる。Note that this damage prevention means can also be omitted.

第2図は、第1図の装置による衝撃処理進行中の概念図
であって、この図により、本発明による作用を説明する
FIG. 2 is a conceptual diagram of the impact treatment in progress by the apparatus of FIG. 1, and the operation of the present invention will be explained with reference to this diagram.

前記したように、起爆薬層10により主爆薬9の上端面
が起爆され、その爆轟波は下端に向って進行し、この時
飛翔部材5は空隙6内に駆動収縮し、管状の副爆薬層3
2の上部に衝突する結果これを起爆させ、その爆発は下
方へ進行し、容器2を収縮させ内部の試料1を衝撃圧縮
させる。
As described above, the upper end surface of the main explosive 9 is detonated by the detonator layer 10, and the detonation wave advances toward the lower end, and at this time, the flying member 5 is driven and contracted into the cavity 6, and the tubular sub-explosive layer 3
As a result of colliding with the upper part of the container 2, it is detonated, and the explosion proceeds downward, contracting the container 2 and impact-compressing the sample 1 inside.

この場合、飛翔部材5が副爆薬層32に衝突する衝突点
の下方向への移動速度vpが副爆薬層32の爆速D2
より小さい場合、副爆薬層32の爆発による衝撃圧縮が
常に飛翔部材5の衝突による衝撃圧縮に先行する。
In this case, the downward moving speed vp of the collision point at which the flying member 5 collides with the sub-explosive layer 32 is the explosive speed D2 of the sub-explosive layer 32.
If it is smaller, the impact compression due to the explosion of the sub-explosive layer 32 always precedes the impact compression due to the impact of the flying member 5.

従って飛翔部材5が副爆薬層32に最初に衝突した以後
は、飛翔部材5は副爆薬層32による爆発ガスに衝突し
、このとき爆発ガスの膨張エネルギーより飛翔部材5の
運動エネルギーが十分大きげれば、飛翔部材5は内部の
試料を十分圧縮することができ、試料は2段階に衝撃圧
縮される。
Therefore, after the flying member 5 collides with the sub-explosive layer 32 for the first time, the flying member 5 collides with the explosive gas produced by the sub-explosive layer 32, and at this time, the kinetic energy of the flying member 5 is sufficiently larger than the expansion energy of the explosive gas. If so, the flying member 5 can sufficiently compress the sample inside, and the sample is subjected to impact compression in two stages.

第2図はこのような2段階圧縮工程を示す概念図であっ
て、Q及びZはそれぞれ主爆薬層9及び副爆薬層32の
爆轟波面を示し、Y及びPはそれぞれ副爆薬層32の爆
発に起因した試料内の衝撃波面及び飛翔部材5の衝突に
起因した衝撃波面を示す。
FIG. 2 is a conceptual diagram showing such a two-stage compression process, where Q and Z indicate the detonation wavefront of the main explosive layer 9 and the sub-explosive layer 32, respectively, and Y and P indicate the detonation wavefront of the sub-explosive layer 32, respectively. The shock wave front in the sample caused by the explosion and the shock wave front caused by the collision of the flying member 5 are shown.

定常な場合、衝撃・波面Yと下方向への進行速度は副爆
薬層32の爆速D2に等しく、一方衝撃波面Pの下方向
進行速度は前記した飛翔部材5の容器への衝突点の移動
速度vpに等しく、またこれは主爆薬層9の爆速D1
にも等しくなる。
In a steady state, the downward traveling speed of the shock wave front Y is equal to the detonation speed D2 of the sub-explosive layer 32, while the downward traveling speed of the shock wave front P is the moving speed of the impact point of the flying member 5 on the container. vp, and this is the explosion speed D1 of the main explosive layer 9
is also equal to

試料1は副爆薬32による衝撃波により先ず弱く圧縮さ
れ、次に飛翔部材5による衝撃波により強く圧縮される
The sample 1 is first compressed weakly by the shock wave caused by the secondary explosive 32, and then strongly compressed by the shock wave caused by the flying member 5.

たとえば粉末試料の場合、第1段階で真密度近くまで圧
縮され、第2段階で高圧衝撃圧縮される。
For example, in the case of a powder sample, it is compressed to near true density in the first stage and high-pressure impact compacted in the second stage.

このように第]段階で低圧圧縮を行った後第2段階の高
圧圧縮を行うことにより、試料の温度上昇を最少限に抑
えることができる。
By performing the low-pressure compression in the second stage and then the high-pressure compression in the second stage, the temperature rise of the sample can be minimized.

これは理論的には以下のように説明される。This can be explained theoretically as follows.

すなわち、見掛の密度がρ。In other words, the apparent density is ρ.

0の物質をほぼ真密度に担当するρ1までPlの衝撃圧
力で圧縮し、その後、P2の衝撃圧力(P2)Pl)で
密度ρ2まで二段階に圧縮するさいの物質の単位質量あ
たりの内部エネルギーの増加量を△E2 とし、一段圧
縮でρooからρ2までP2の衝撃圧力で圧縮するさい
の内部エネルギー増加量を△E1 とすると、衝撃圧
縮におけるエネルギー保存式より、式(1)が成立する
Internal energy per unit mass of a substance when compressing a substance with an impact pressure of Pl to ρ1, which corresponds to almost the true density, and then compressing it in two steps to a density ρ2 with an impact pressure of P2 (P2)Pl) If the amount of increase in is ΔE2, and the amount of increase in internal energy when compressing from ρoo to ρ2 with an impact pressure of P2 in one stage compression is ΔE1, equation (1) holds true from the energy conservation equation in impact compression.

式(1)において(P2−Pl)の値に比較して(ρ2
−ρ])の値は小さいから近似的にρ2−ρ1とすると
力2)が成立する。
In equation (1), (ρ2
-ρ]) is small, so if it is approximated by ρ2-ρ1, force 2) is established.

内部エネルギー変化はほぼ物質の温度変化に比例し、ま
た、通常、P2はPlより一桁以上大きいゆえ、式(2
)より二段圧縮方法が一段圧縮に比較して、はるかに温
度上昇が/J’tさいことが理論的に証される。
The internal energy change is approximately proportional to the temperature change of the substance, and since P2 is usually more than an order of magnitude larger than Pl, the formula (2
), it is theoretically proven that the temperature rise is much smaller in the two-stage compression method than in the single-stage compression method.

全試料に対し軸方向に均一な圧縮処理を施す上で、衝撃
波面P及びYの間の距離を衝撃圧縮の進行中一定に保つ
ことが好ましい。
In order to apply a uniform compression process to the entire sample in the axial direction, it is preferable to keep the distance between the shock wave fronts P and Y constant during the progress of the shock compression.

これは副爆薬層32としてV、即ち主爆薬層9の爆速D
1 と等しいものを使用し、即ち、D1=D2とし、
且つ試料への衝撃波の入射する位相をずらすことにより
可能となる。
This is V as the sub-explosive layer 32, that is, the detonation velocity D of the main explosive layer 9.
1, i.e., D1=D2,
This is also possible by shifting the phase of the shock wave incident on the sample.

具体的には、第1図において、副爆薬層32をその上部
側、好ましくは栓4の位置までをV、(即ちvl)より
も大きい爆速をもつ爆薬で形成し、それよりも下側、好
ましくは栓4の位置より下の部分をVp(即ちVl)と
同じ爆速を有する爆薬で構成することにより、試料内を
一定距離だけ離れた定常な衝撃波が伝播することになる
Specifically, in FIG. 1, the upper side of the sub-explosive layer 32, preferably up to the position of the stopper 4, is formed of an explosive having a detonation velocity greater than V, (i.e., vl), and the lower side, Preferably, by configuring the portion below the stopper 4 with an explosive having the same detonation velocity as Vp (ie, Vl), a steady shock wave propagates within the sample at a fixed distance.

この衝撃波間の距離は、副爆薬層32における上部の高
爆速部の長さをし、爆速をり。
The distance between these shock waves is the length of the upper high detonation velocity part of the sub-explosive layer 32, and is equal to the detonation velocity.

とすれば略々L×(1−D1/Do)で与えられるが、
この値が試料径の約0.5〜2倍となるように設計すれ
ば実用上十分である。
If so, it is approximately given by L x (1-D1/Do),
It is practically sufficient to design this value to be about 0.5 to 2 times the sample diameter.

本発明の圧縮処理装置を構成する各部分について次に説
明する。
Each part constituting the compression processing apparatus of the present invention will be explained next.

第一段圧縮用の副爆薬層32としては起爆性、伝爆性と
もに良好で、かつ、爆発伝播限界層厚のなるべく小さな
爆薬が望ましい。
As the sub-explosive layer 32 for first-stage compression, it is desirable to use an explosive that has good detonation properties and good propagation properties, and has as small a layer thickness as possible to limit explosion propagation.

このような爆薬として、ペントリット、ヘキソーゲン、
テトリル等の高性能爆薬単体、あるいはこれらの混合物
、またはこれら高性能爆薬粉体を、シリコンゴム、ブタ
ジェンゴム、ウレタン等で混合成型処理したもの、ある
いは硝酸とこれに可溶な可燃性液体、固体の溶液、等の
液体爆薬が使用できるがペントリットをシリコンゴム等
の樹脂で混合成形処理した爆薬が起爆性伝爆性に秀れ、
また爆速をコントロールしやすいという利点がある。
Such explosives include pentolith, hexogen,
Single high-performance explosives such as tetryl, mixtures of these high-performance explosives, or mixtures of these high-performance explosive powders molded with silicone rubber, butadiene rubber, urethane, etc., or nitric acid and flammable liquids and solids soluble in it. Although liquid explosives such as solutions can be used, explosives made by mixing and molding pentolith with resin such as silicone rubber have excellent detonation and explosive conductivity.
It also has the advantage of being easy to control the explosive speed.

また副爆薬層32の横方向の層厚は少くとも試料径のり
一程度で、かつ爆発伝播限界層厚以上で使0 用する。
Further, the lateral thickness of the sub-explosive layer 32 is at least about the same as the diameter of the sample, and is greater than the explosion propagation limit layer thickness.

起爆薬層10の爆薬としては、円板状のものが通常使用
され、その種類には特に制限は無いが、なるべく爆発伝
播限界層厚の小さいものの使用が薬量を少くすることが
できるため好ましい3主爆薬層9に関しては、特に薬種
の制限は無いが、爆速か副爆薬層32よりも大きくなる
と前述した2段階衝撃圧縮処理が困難となるので望まし
くない。
A disk-shaped explosive is usually used as the explosive in the priming layer 10, and there are no particular restrictions on its type, but it is preferable to use one with as small an explosion propagation limit layer thickness as possible because the amount of explosive can be reduced. Regarding the third main explosive layer 9, there is no particular restriction on the type of charge, but if the detonation velocity is greater than that of the sub-explosive layer 32, the two-stage impact compression treatment described above becomes difficult, which is not desirable.

処理目的に応じ、適宜の薬種を選定することは当業者に
とって容易であろう。
It will be easy for those skilled in the art to select an appropriate type of drug depending on the purpose of treatment.

主爆薬層9の横方向の層厚は、飛翔部材5を副爆薬層3
2の爆発ガスに逆って、収縮せしめる必要から、主爆薬
層9の爆発エネルギーが飛翔部材への運動エネルギーと
して転換される効率を略20%とし、主爆薬及び副爆薬
層の単位体積あたりの発生する爆発エネルギーを同じと
すると、少(とも、副爆薬層32の横方向層厚の5倍以
上とするのが好ましい。
The horizontal layer thickness of the main explosive layer 9 is such that the flying member 5 is
Since it is necessary to deflate the explosive gas in step 2, the efficiency with which the explosion energy of the main explosive layer 9 is converted into kinetic energy to the flying member is approximately 20%, and the ratio per unit volume of the main explosive layer and the sub-explosive layer is Assuming that the generated explosive energy is the same, it is preferably at least five times the lateral layer thickness of the sub-explosive layer 32.

主爆薬層9の層厚が10mvt以上の場合、起爆部とし
て第1図のような同心円的な線起爆方式を用いると爆轟
波が球状となり、一様に飛翔管を加速することが困難で
ある。
When the thickness of the main explosive layer 9 is 10 mvt or more, if a concentric line detonation method as shown in Fig. 1 is used as the detonator, the detonation wave will be spherical and it will be difficult to uniformly accelerate the flight tube. be.

そのような場合、第3図に示すように、起爆部として平
面爆轟波発生装置30を用い、主爆薬層9の軸に直交す
る上端面を全面同時に起爆させるのが良い。
In such a case, as shown in FIG. 3, it is preferable to use a planar detonation wave generator 30 as the detonator and detonate the entire upper end face perpendicular to the axis of the main explosive layer 9 at the same time.

また、第4図に示すように、主爆薬層9の側面をより高
爆速の薄肉状爆薬層28で囲み、主爆薬層9をこの高爆
速爆薬層28により起爆せしめることにより、第5図に
示すように主爆薬層9による爆轟波面Qを飛翔部材5に
対しθの角(θ〈90°)をもつようにすることができ
る。
In addition, as shown in FIG. 4, the side surface of the main explosive layer 9 is surrounded by a thin explosive layer 28 with a higher detonation velocity, and the main explosive layer 9 is detonated by this high detonation velocity explosive layer 28, as shown in FIG. As shown, the detonation wavefront Q due to the main explosive layer 9 can be made to have an angle of θ (θ<90°) with respect to the flying member 5.

(主爆薬9及び高爆速爆薬28の爆速をそれぞれD2.
Dlとするとθ−5in ’ (D2/D1)で表
わされる。
(The detonation speeds of the main explosive 9 and the high detonation velocity explosive 28 are each D2.
If Dl, it is expressed as θ-5in' (D2/D1).

)一般に、爆轟波面とこれにより加速される物体とが構
成する角度が小さいほど加速の効率は良くなり、より高
速の飛翔体を得ることができる。
) In general, the smaller the angle formed by the detonation wave front and the object accelerated thereby, the better the efficiency of acceleration becomes, and it is possible to obtain a flying object at higher speed.

従って、主爆薬層として高性能爆薬を用いなくても、高
爆速爆薬層28を設けることにより超高圧の圧縮処理が
可能となる。
Therefore, even without using a high-performance explosive as the main explosive layer, by providing the high-explosive-velocity explosive layer 28, ultra-high pressure compression processing becomes possible.

なお、第4図の方式では、実用されている爆薬固有の問
題から、θを約13°以下にすることは困難である。
Note that in the method shown in FIG. 4, it is difficult to reduce θ to about 13° or less due to problems specific to explosives in practical use.

第6図のように、第4図の主爆薬層9を上端から下端に
向けて一様に層厚を縮小して形成せしめることにより、
θを13゜より小さく、場合によっては0にすることが
できる。
As shown in FIG. 6, by forming the main explosive layer 9 in FIG. 4 by uniformly reducing the layer thickness from the upper end to the lower end,
θ can be less than 13°, and in some cases 0.

この場合θは、θ=δ−cos ’ (D2/D1
)で表わされる。
In this case, θ is θ=δ−cos′ (D2/D1
).

ただしDl、D2は前記のとうりでδは高爆速爆薬層2
8及び主爆薬層9の爆速を示す。
However, Dl and D2 are as described above, and δ is the high-velocity explosive layer 2.
8 and the detonation speed of the main explosive layer 9 are shown.

高爆速爆薬層28の層厚は通常10朋以下とするのが良
く、その薬種としては、爆速かs hm/m/上で、爆
発伝播限界層厚の小さいものを用いることが好ましい。
The layer thickness of the high detonation velocity explosive layer 28 is usually preferably 10 m or less, and it is preferable to use a type of explosive having a detonation velocity of s hm/m/ or more and a small explosion propagation limit layer thickness.

このようなものの例としては、ペントリット又はヘキソ
ーゲン等のような高性能爆薬の微粉末をシリコンゴム、
ウレタンゴムのようなプラスチック、樹脂類に混合、成
型したものを挙げることができる。
Examples of such things include silicone rubber, fine powder of high explosives such as pentolith or hexogen, etc.
Examples include those mixed and molded with plastics and resins such as urethane rubber.

また、液状爆薬の使用も可能である。It is also possible to use liquid explosives.

以上第1.3.4及び6図の各実施例で用いた隔離部材
29としては木材の他、プラスチック、せつこう、砂、
紙等を適用することができる。
In addition to wood, the isolation member 29 used in the embodiments shown in Figures 1.3.4 and 6 may include plastic, plaster, sand, etc.
Paper etc. can be applied.

飛翔部材5の材質は特に制限はないが、経済性及び加工
性からみて、スチール又は真鍮が好ましい。
The material of the flying member 5 is not particularly limited, but steel or brass is preferable from the viewpoint of economy and workability.

また飛翔部材5の肉厚は爆発による飛翔部材5の飛翔速
度を決定する要因であって、実用上は、少なくとも0.
5朋以上とするのが好ましい。
Further, the wall thickness of the flying member 5 is a factor that determines the flying speed of the flying member 5 due to an explosion, and in practical terms, it is at least 0.
It is preferable that the number is 5 or more.

試料容器2及びその栓3,4はなるべ(強度の大きい金
属で構成されることが好ましく、実用上、ステンレス等
の高張力鋼材が望ましい。
The sample container 2 and its stoppers 3 and 4 are preferably constructed of a metal with high strength, and in practice, high-tensile steel such as stainless steel is desirable.

容器2の肉厚は破損防止の点からは厚い方が好ましいが
、容器の変形に消費される衝撃エネルギーが多くなり、
それだけ試料の処理効果が減じられるので、この点から
は薄いのが好ましいが、本発明においてはステンレス容
器の場合、1〜101n7rL程度の肉厚があれば十分
である。
It is preferable that the wall thickness of the container 2 is thicker from the viewpoint of preventing breakage, but this increases the impact energy consumed in deforming the container.
From this point of view, it is preferable that the container be thin, since the sample processing effect will be reduced accordingly, but in the case of a stainless steel container in the present invention, a wall thickness of about 1 to 101n7rL is sufficient.

金属栓は、形状が試料に対して、平滑なものよりか、第
1図に示すように凸型、あるいは凹型の形状をもたせた
方が、容器の破断防止に効果的であり、また容器本体と
接する部分がなるべく多(なるようなねじこみ式構造と
するのが好ましい。
It is more effective to prevent the container from breaking if the metal stopper has a convex or concave shape, as shown in Figure 1, rather than a flat one, as shown in Figure 1. It is preferable to use a screw-in structure in which as many parts as possible are in contact with the

飛翔部材5と容器2間の空隙6は、横方向(試料の軸方
向に直交する方向)の巾として主爆薬9の横方向厚みの
少なくとも115以上とするのが良い。
The width of the gap 6 between the flying member 5 and the container 2 in the lateral direction (direction perpendicular to the axial direction of the sample) is preferably at least 115 times larger than the lateral thickness of the main explosive 9.

第1.3,4及び6図において、符号21〜26で示す
のは、容器20両端に設けた容器破断防止手段である。
In FIGS. 1.3, 4 and 6, reference numerals 21 to 26 indicate container breakage prevention means provided at both ends of the container 20.

すなわち、爆発により飛翔体を試料に対して衝突させて
圧縮処理を行う場合、この飛翔体の衝突により容器2の
上部は上方向へ、その他は全体として下方向へと移動し
ようとし、その結果容器の上及び下部、特に試料1と栓
3゜4が接する近傍で容器の破断が生じ易(、試料が散
逸損失するという問題がある。
In other words, when a compression process is performed by colliding a flying object with a sample due to an explosion, the upper part of the container 2 tends to move upward due to the impact of the projectile, and the rest of the container 2 as a whole tries to move downward, and as a result, the container 2 There is a problem that the container is likely to break (and the sample will be lost due to dissipation) at the upper and lower parts of the container, especially in the vicinity where the sample 1 and the stopper 3 and 4 come into contact.

本発明の如く、超高圧な衝撃圧縮を行う場合にはこの容
器の破断に対処することが特に望まれるが、この破断防
止は、容器20両端部に飛翔部材の衝突により爆発する
減速用爆薬層を設け、該飛翔部材の衝突による該容器の
該他端部側方向への移動速度を減じるようにしたことに
より達成できる。
When carrying out ultra-high-pressure impact compression as in the present invention, it is particularly desirable to take measures against this breakage of the container. This can be achieved by reducing the moving speed of the container toward the other end side due to the collision of the flying member.

21.22は容器破損防止用の減速用爆薬層であり、図
示のように、衝撃波減衰板23,24及び25.26に
それぞれサンドイッチ状にはさんで使用するのが好まし
い。
Denoted at 21 and 22 are deceleration explosive layers for preventing damage to the container, which are preferably sandwiched between shock wave damping plates 23, 24 and 25 and 26, respectively, as shown in the figure.

爆薬層21,22に用いる爆薬の薬種に関しては特に制
限はないが、低速爆轟性のもの、元圧現象を呈しやすい
もの、あるいは、衝撃浮性が急速に変化しやすいものの
使用はなるべ(避は起爆性が良好かつ爆発伝播限界層厚
のなるべく小さなものが好ましく、このようなものとし
て、ペントリット、ヘキソ−ゲンチトリル等の高性能爆
薬単体、これらの混合物、又はこれらの高性能爆薬の粉
体をシリコンゴムやブタジェンゴム等で成型処理したも
ののほか、ニトロメタン、硝酸及びこれらに可溶な可燃
性物質からなる溶液などの液体爆薬を例挙することがで
きる。
There are no particular restrictions on the type of explosive used in the explosive layers 21 and 22, but it is best to avoid using explosives that detonate at low speed, tend to exhibit a source pressure phenomenon, or whose impact buoyancy tends to change rapidly ( It is preferable that the evaporator has good detonation properties and the thickness of the critical layer for explosion propagation is as small as possible, such as single high-performance explosives such as pentolith, hexo-gentytrile, mixtures thereof, or powders of these high-performance explosives. In addition to those molded with silicone rubber, butadiene rubber, etc., liquid explosives such as nitromethane, nitric acid, and solutions made of flammable substances soluble in these can be cited.

液状の減速用爆薬の場合は、薄肉の容器に入れて使用す
るが、固体状の場合も裸薬でなく、側面を塩化ビニル管
等で囲って使用しても良い。
In the case of a liquid moderator explosive, it is used in a thin-walled container, but in the case of a solid one, it may also be used by surrounding the sides with a vinyl chloride pipe or the like instead of using a naked charge.

爆薬層21.22の形状は、通常、板状とするのが良く
、試料容器2と概略同一な平面形状とするのが好ましい
The shape of the explosive layers 21 and 22 is usually plate-like, and preferably has a planar shape that is approximately the same as the sample container 2.

層厚は爆発限界層厚以上として使用する。衝撃波減衰板
23,24,25,26として番良その衝撃インピーダ
ンスが減速用爆薬となるべく類似したものの使用が好ま
しく、例えば、メタクリル等のプラスチック類、或は水
、無機もしくは有機塩類の水溶液等が使用される。
The layer thickness should be at least the explosive limit layer thickness. As the shock wave attenuating plates 23, 24, 25, and 26, it is preferable to use materials whose impact impedance is as similar to that of deceleration explosives as possible; for example, plastics such as methacrylic, or water, an aqueous solution of inorganic or organic salts, etc. are used. be done.

液体状物質を衝撃波減衰用に適用する場合には、薄肉の
容器に封入して使用する。
When a liquid substance is used for shock wave attenuation, it is used by sealing it in a thin-walled container.

衝撃波減衰板23,24゜25.26の形状は、挾持す
る爆薬層21,22と略々同一平面形状を有し且つ同一
厚とするのが好ましい。
It is preferable that the shock wave damping plates 23, 24, 25, 26 have substantially the same planar shape and the same thickness as the explosive layers 21, 22 held therebetween.

次に本発明による減速爆薬層21,220作用について
説明する。
Next, the operation of the moderating explosive layers 21 and 220 according to the present invention will be explained.

いま減速用爆薬層21.22が無いとすると、減衰板2
3 、24 、25 、26及び試料容器2への飛翔体
5の衝突により、容器の上部は上方向へそれ以外は下方
向へ全体として移動しようとする。
Now, if there is no deceleration explosive layer 21, 22, the damping plate 2
3, 24, 25, 26 and the sample container 2, the upper part of the container tends to move upwards and the rest of the container moves downwards as a whole.

特に容器2の最下部は減衰板の下をプラスチック円板2
7とし、更にその下部を自由空間とした場合、自由面か
ら上方へ稀薄波が発生し容器全体の下方への移動速度を
さらに増加させる。
In particular, at the bottom of the container 2, there is a plastic disc 2 under the damping plate.
7, and if the lower part is made into a free space, dilution waves are generated upward from the free surface, further increasing the downward movement speed of the entire container.

また試料は一般妊容器2及び金属栓3゜4より、かなり
衝撃抵抗が小さいため試料との界面で二次的な稀薄波が
発生しやすく、稀薄波間の複雑な相互干渉により、この
近傍で強い引張力が発生し、容器を破断しやすい。
In addition, since the sample has much lower impact resistance than the general container 2 and metal stopper 3゜4, secondary dilution waves are likely to occur at the interface with the sample, and due to complex mutual interference between the dilution waves, strong Tensile force is generated and the container is likely to break.

容器の上部に関しても概略同様な効果が生じ、試料と容
器枠の界面近傍で破断しやすい。
Roughly the same effect occurs in the upper part of the container, which tends to break near the interface between the sample and the container frame.

一方、爆薬層2L22を設け、これに対して飛翔体5を
衝突させて側面より起爆させた場合、その爆発力によっ
て上記した容器の上部及び下部方向への移動速度は減ぜ
られる。
On the other hand, when the explosive layer 2L22 is provided and the flying object 5 collides with it to detonate it from the side, the above-mentioned moving speed of the container in the upper and lower directions is reduced by the explosive force.

従って容器の破断が防止できる。尚、起爆薬層10の薬
量が十分多い場合には、上部に設けた減速用爆薬層22
は省くことができる。
Therefore, breakage of the container can be prevented. In addition, when the amount of the explosive layer 10 is sufficiently large, the deceleration explosive layer 22 provided on the upper part
can be omitted.

以上の本発明の実施例においては、圧縮処理すべき試料
の平断面が円形なものについて説明したが、本発明はこ
れに限らず、角柱状、平板状などのように軸方向に延び
る形状の試料の処理にも適用でき、その場合、試料容器
、飛翔部材などの形状は試料の形状に対応して適宜変化
させることは当業者にとって当然のことと理解されよう
In the above embodiments of the present invention, the sample to be compressed has a circular planar cross section, but the present invention is not limited to this. It will be understood by those skilled in the art that the present invention can also be applied to sample processing, and in that case, the shapes of the sample container, flying member, etc. should be changed as appropriate in accordance with the shape of the sample.

第1図は本発明を、左右軸方向に延びる平板状の試料に
対し片面から平板状飛翔体を衝突させて圧縮処理する場
合に適用した例を示す概略図であり、図中、第1図と同
一符号は同一部材、要素を示す。
FIG. 1 is a schematic diagram showing an example in which the present invention is applied to a case where a flat sample extending in the left-right axis direction is subjected to compression treatment by colliding a flat flying object from one side. The same reference numerals indicate the same members and elements.

雷管11により平面爆轟波発生装置30が起爆されると
、主爆薬層9は軸に直交する右方端面が全面同時起爆さ
れ右方端部(起爆側の端部)から左方端部へ向って連続
的に爆発する。
When the planar detonation wave generator 30 is detonated by the detonator 11, the entire right end face perpendicular to the axis of the main explosive layer 9 is simultaneously detonated, from the right end (the end on the detonation side) to the left end. It explodes continuously.

固定側板33により試料1と平行且つ空隙6をもって配
置された飛翔部材5は、主爆薬9の爆発により右端から
左端に向って連続的に下方へ飛・翔する。
The flying member 5, which is arranged parallel to the sample 1 and with a gap 6 by the fixed side plate 33, flies continuously downward from the right end toward the left end due to the explosion of the main explosive 9.

飛翔部材5が副爆薬層32に衝突すると副爆薬が起爆し
、これも右端(起爆側の端部)から左端に向って連続的
に爆発する。
When the flying member 5 collides with the sub-explosive layer 32, the sub-explosive is detonated, and this also explodes continuously from the right end (the end on the detonation side) toward the left end.

以下、第1図で説明した原理に従って容器35内の試料
は二段階の圧縮処理を受ける。
Thereafter, the sample in the container 35 is subjected to a two-stage compression process according to the principle explained in FIG.

34は金属製のふたである。尚、主爆薬層9の薬理が薄
い場合は平面爆轟波発生装置に替えて、線状同時起爆装
置(ラインウェーブジェネレーター)を用いてもよい。
34 is a metal lid. Note that if the main explosive layer 9 has a thin pharmacology, a linear simultaneous detonator (line wave generator) may be used instead of the plane detonation wave generator.

本発明は、グラファイトからダイヤモンドの転化反応の
ような衝撃を利用する物質合成や、タングステン、炭化
ケイ素等の粒状の高融点物質を緻密に衝撃固化する場合
、又は鋼のような金属材料を衝撃硬化せしめる場合、更
には炭化ケイ素等のセラミック粉を微粉化しかつ歪を与
えて活性化する場合等、固体や液体の凝縮系物質を種々
な目的で衝撃処理する場合に適用される。
The present invention is applicable to material synthesis using impact such as the conversion reaction of graphite to diamond, to dense impact solidification of granular high melting point substances such as tungsten and silicon carbide, or to impact hardening of metal materials such as steel. It is applied to impact treatment of solid or liquid condensed substances for various purposes, such as when pulverizing ceramic powder such as silicon carbide and activating it by applying strain.

本発明は、特に、多孔質物質の衝撃圧縮処理や異成分の
混入が好ましくない場合の衝撃圧縮処理に有利に適用さ
れる。
The present invention is particularly advantageously applied to impact compression treatment of porous materials and impact compression treatment where mixing of foreign components is undesirable.

本発明を次に実施例により更に詳細に説明する。The present invention will now be explained in more detail with reference to Examples.

実施例 第4図に示す方法において試料1として平均粒径265
ミクロンの緑色炭化ケイ素粉末を容器2へ真密度の約6
0%に充填する。
Example In the method shown in Fig. 4, the average particle size was 265 as sample 1.
Micron green silicon carbide powder is put into container 2 with a true density of about 6
Fill to 0%.

容器2、はステンレス製(SUS−304)で内径30
mm、肉厚2mm、長さ140朋で容器の栓、3,4は
凸形状で凸面半径が15mm、ねじ、ふた部分の長さが
各5xmのスチール製(SS−41)のものを使用する
Container 2 is made of stainless steel (SUS-304) and has an inner diameter of 30 mm.
Use a container stopper made of steel (SS-41) with a wall thickness of 2 mm, a length of 140 mm, 3 and 4 having a convex shape with a convex radius of 15 mm, and a screw and lid part length of 5 x m each. .

飛翔部材5は内径70mm、肉厚3顛、長さ1901+
1の真鍮管を使用し、空隙6、は横方向約18龍とし、
主爆薬9はアンホ爆薬、約2.3kg(爆速・約3kW
l/秒)を使用する。
The flying member 5 has an inner diameter of 70 mm, a wall thickness of 3 mm, and a length of 1901+.
1 brass tube is used, the gap 6 is about 18 mm in the horizontal direction,
Main explosive 9 is anho explosive, approximately 2.3 kg (explosive speed, approximately 3 kW)
l/sec).

高爆速爆薬層28には平均粒径が0.5 in以下のペ
ントリット粉末70重量部を硬化前のシリコン樹脂(信
越化学KE−10) 30部を混合攪拌し、板状に成形
硬化することにより得られるもので(以下これをPET
N/SEG =70/30と記す)肉厚311111L
のものを前記真鍮管と同心円状に置かれた内径154m
、肉厚5.5 myi、長さ190朋の硬質塩ビ管に上
部のみ約30m上下方向に内張すしたものを使用するが
このものの爆速は毎秒約6.7 kmである。
The high-explosive explosive layer 28 is prepared by mixing and stirring 70 parts by weight of pentolith powder with an average particle size of 0.5 inches or less with 30 parts of silicone resin (Shin-Etsu Chemical KE-10) before hardening, and forming and hardening it into a plate shape. With what you can get (hereinafter referred to as PET)
N/SEG = 70/30) Wall thickness: 311111L
with an inner diameter of 154 m placed concentrically with the brass tube.
A hard PVC pipe with a wall thickness of 5.5 myi and a length of 190 m is lined with a vertical line of about 30 m only at the top, and the explosion speed of this pipe is about 6.7 km per second.

起爆薬層爆薬9は前記と同じ方法でペントリット、シリ
ンゴムが50150の重量比で作られ肉厚5mm、直径
155mmの円板状のものを用いる。
The initiator layer explosive 9 is made in the same manner as described above, with a weight ratio of 50,150 pentolith and syringom, and is in the form of a disc with a wall thickness of 5 mm and a diameter of 155 mm.

雷管11は6号電気雷管を使用し減速爆薬21゜22は
、PETN/5EG=70/30で、肉厚5朋、径約3
0朋のものを、また、衝撃波減衰板は同径・同厚のメタ
クリル板を使用する。
Detonator 11 uses a No. 6 electric detonator, and moderator explosive 21゜22 is PETN/5EG = 70/30, wall thickness 5 mm, diameter approximately 3
For the shock wave attenuation plate, use a methacrylic plate with the same diameter and thickness.

隔離板29は直径142朋、肉厚20朋のベニヤ板を、
また、底部のプラスチック板27は5mm厚のメタクリ
ル板を使用する。
The separator plate 29 is a plywood board with a diameter of 142 mm and a wall thickness of 20 mm.
Further, as the plastic plate 27 at the bottom, a methacrylic plate with a thickness of 5 mm is used.

副爆薬層33はPETN/SEG =70/30のもの
で肉厚が3mmのものを使用する。
The sub-explosive layer 33 is made of PETN/SEG=70/30 and has a wall thickness of 3 mm.

本実施例の装置を大型爆発室の中央部におき、雷管を起
爆させ、爆発後、試料容器を回収した。
The device of this example was placed in the center of a large explosion chamber, the detonator was detonated, and after the explosion, the sample container was recovered.

回収試料容器は軸方向へ変形していたが破損はみられず
試料回収率は100%であった。
Although the collected sample container was deformed in the axial direction, no damage was observed and the sample recovery rate was 100%.

試料容器を横方向(半径方向)に切断し、試料の切断面
を観察すると、炭化ケイ素は緑色のままで、固くしまっ
ており、かさ比重を測定すると2.80で真比重の87
.2%であった。
When the sample container was cut in the transverse direction (radial direction) and the cut surface of the sample was observed, the silicon carbide remained green and hardened, and when the bulk specific gravity was measured, it was 2.80, which is 87, which is the true specific gravity.
.. It was 2%.

また、試料を容器より取り出しこれを軽くたたいて粉砕
すると平均粒径95ミクロンの粉体が得られ、さらにこ
れを、スチールポット、スチールボールを用いて、振動
ミルで5〜30分間粉砕したとき、粉砕時間に対する、
44ミクロン以下の粒子が発生する割合を調べた結果を
第8図、aの折線として示す。
When the sample was removed from the container and crushed by tapping, a powder with an average particle size of 95 microns was obtained, and this was further crushed for 5 to 30 minutes in a vibrating mill using a steel pot and a steel ball. , for the grinding time,
The results of examining the rate of generation of particles of 44 microns or less are shown as the broken line a in FIG. 8.

同様に未衝撃試料に対しての結果を第8図、Cの折線と
して示す。
Similarly, the results for the unimpacted sample are shown as the broken line C in FIG.

次に、本実施例で、回収した試料の化学成分分析を行な
った結果遊離炭素、ケイ素、酸化ケイ素等の主として熱
分解生成物が未衝撃試料に対し約0,5%増加していた
Next, in this example, chemical component analysis of the recovered sample revealed that thermal decomposition products such as free carbon, silicon, and silicon oxide had increased by about 0.5% compared to the unimpacted sample.

比較例 実施例における副爆薬層を使用しないで、かわりに、試
料容器2を内径34.1 mm、肉厚3.7朋、長さ1
50朋のスチール管(SS−41)で保護し、その他は
実施例と同様条件で爆発処理した試料容器を回収した。
Comparative Example The sub-explosive layer in the example was not used, and instead, the sample container 2 was made with an inner diameter of 34.1 mm, a wall thickness of 3.7 mm, and a length of 1 mm.
A sample container protected by a 50 mm steel tube (SS-41) and exploded under the same conditions as in the example was recovered.

容器は下部が一部縦方向に裂けており、試料回収率を約
85%と推定した。
The lower part of the container was partially torn vertically, and the sample recovery rate was estimated to be approximately 85%.

容器を半径方向に切断し、試料の切断面を観察すると炭
化ケイ素は細く固くしまっており、発生した熱のため、
黒色に変色しており、そのかさ比重は2.91で真比重
の90.6%であった。
When the container was cut in the radial direction and the cut surface of the sample was observed, the silicon carbide was thin and hard, and due to the heat generated,
It had changed color to black, and its bulk specific gravity was 2.91, which was 90.6% of the true specific gravity.

容器より取り出した試料を軽(たたいて粉砕すると平均
粒径が500μもあり、これは高温のため粒子の凝集が
起きたことによる。
When the sample taken out from the container was pulverized by pounding, the average particle size was 500 μm, which was due to agglomeration of particles due to the high temperature.

実施例と同様な方法で粉砕した結果を第8図、Cの状態
として示す。
The result of pulverization in the same manner as in the example is shown as state C in FIG.

また、回収試料の化学成分分析を行なった結果が熱分解
性不純物が約1%増加していた。
Additionally, chemical component analysis of the recovered samples revealed that thermally decomposable impurities had increased by about 1%.

以上実施例、比較例の結果が示すとおり、本発明の衝撃
処理方法、装置による、衝撃温度上昇抑制効果は顕著で
あり、かつ、炭化ケイ素微粉末を得るための衝撃処理効
果も良好である。
As shown by the results of the above Examples and Comparative Examples, the effect of suppressing the rise in impact temperature by the impact treatment method and apparatus of the present invention is remarkable, and the impact treatment effect for obtaining fine silicon carbide powder is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による圧縮処理装置の一実施例を示す立
断面図、第2図は第1図の装置における圧縮処理進行中
の状態を示す説明図、第3,4゜6及び7図は本発明の
他の実施例を示す立断面及び第5図は第4図の装置にお
ける爆轟波を示す説明図である。 第8図は衝撃処理後及び未衝撃の試料の振動ミルによる
粉砕効果を表わす図であり、折線a ”’−cはそれぞ
れ実施例、比較例、未衝撃試料についてのグラフである
。 図中、1・・・・・・試料、2・・・・・・容器、3,
4・・・・・・栓、5・°。 ・・・飛翔部材、6・・・・・・空隙、9・・・・・・
主爆薬層、10・・・・・・起爆薬層、11・・・・・
・雷管、21,22・・・・・・減速爆薬層、23 、
24 、25 、26・・・・・・衝撃波減衰板、27
・・・・・・プラスチック板、28・・・・・・高爆速
爆薬層、29・・・・・・隔離板、30・・・・・・平
面爆轟波発生装置、32・・・・・・副爆薬層、33・
・・・・・固定側板、34・・・・・・金属ふた、35
・・・・・・容器、P・・・・・・衝撃波面、Q・・・
・・・爆轟波面、Y・・・・・・衝撃波面、Z・・・・
・・爆轟波面。
FIG. 1 is an elevational sectional view showing an embodiment of the compression processing apparatus according to the present invention, FIG. 2 is an explanatory diagram showing the state in which the compression processing is in progress in the apparatus of FIG. 1, and FIGS. 3, 4, 6 and 7. 5 is an elevational section showing another embodiment of the present invention, and FIG. 5 is an explanatory diagram showing detonation waves in the apparatus of FIG. 4. FIG. 8 is a diagram showing the crushing effect of the vibration mill on the sample after impact treatment and the unimpacted sample, and the broken lines a''-c are graphs for the example, the comparative example, and the unimpacted sample, respectively. In the figure, 1...sample, 2...container, 3,
4... Stopper, 5°. ...Flying member, 6...Gap, 9...
Main explosive layer, 10... Explosive layer, 11...
・Detonator, 21, 22... Moderation explosive layer, 23,
24, 25, 26... Shock wave attenuation plate, 27
...Plastic plate, 28 ... High detonation velocity explosive layer, 29 ... Separation plate, 30 ... Planar detonation wave generator, 32 ... ... Sub-explosive layer, 33.
... Fixed side plate, 34 ... Metal lid, 35
... Container, P ... Shock wave front, Q ...
...Detonation wave front, Y... Shock wave front, Z...
...detonation wavefront.

Claims (1)

【特許請求の範囲】 1 軸方向に延びる凝縮系物質に隣接して設けた爆薬層
を該軸方向に爆発点が連続的に移動するように爆発させ
て該物質を衝撃圧縮させるとともに別の爆発ガスで駆動
された飛翔体を該物質に対し該軸方向に衝突点が連続的
に移動するように衝突させて該物質を衝撃圧縮させるに
際し、該爆薬層の爆発による衝撃圧縮を該飛翔体の衝突
による衝撃圧縮より先行せしめるようたしたことを特徴
とする凝縮系物質の高圧衝撃圧縮処理方法。 2 該爆薬層の起爆を該飛翔体の衝突により生起せしめ
るようにした特許請求の範囲第1項の方法。 3 軸方向に延びる凝縮系物質を装填した容器に隣接し
て設けた副爆薬層と、該容器と平行に且つ該副爆薬層に
対し間隙をもって設置された飛翔部材と、該飛翔部材の
外面に設けた主爆薬層と、該主爆薬層用起爆部とから成
り、該主爆薬層は該起爆部により起爆側の端から他端へ
向けて連続的に爆発するものであって、その結果該飛翔
部材は該容器に対し衝突点が該軸方向に連続的に移動す
るように衝突して容器内物質を衝撃圧縮し、一方該副爆
薬層は該飛翔部材の衝突により起爆側の端から他端に該
軸方向に連続的に爆発するものであって、その結果容器
内物質は衝撃圧縮され、この際該副爆薬層の少なくとも
該起爆側の端部を該主爆薬層よりも爆速を大きく構成し
て、該副爆薬層の爆発による衝撃圧縮を該飛翔体の衝突
による衝撃圧縮より先行せしめるようにした凝縮系物質
の衝撃圧縮処理装置。
[Claims] 1. An explosive layer provided adjacent to a condensed material extending in the axial direction is detonated so that the detonation point continuously moves in the axial direction to shock-compress the material and cause another explosion. When a gas-driven projectile collides with the material so that the point of impact moves continuously in the axial direction to cause impact compression of the material, the impact compression caused by the explosion of the explosive layer is caused by the impact compression of the projectile. A method for high-pressure impact compression treatment of condensed substances, characterized in that the impact compression is preceded by impact compression due to collision. 2. The method according to claim 1, wherein the explosive layer is detonated by the collision of the projectile. 3. A sub-explosive layer provided adjacent to a container loaded with a condensed substance extending in the axial direction, a flying member installed parallel to the container and with a gap to the sub-explosive layer, and an outer surface of the flying member. It consists of a main explosive layer provided and a detonating part for the main explosive layer, and the main explosive layer is detonated continuously from one end of the detonation side to the other end by the detonating part. The flying member collides with the container so that the point of impact moves continuously in the axial direction, impacting and compressing the substance inside the container, while the sub-explosive layer is caused to explode from the end on the detonation side due to the collision of the flying member. The explosion occurs continuously in the axial direction at the end, and as a result, the substance inside the container is compressed by impact, and at this time, at least the end of the sub-explosive layer on the detonation side is detonated at a higher detonation velocity than the main explosive layer. An impact compression processing apparatus for condensed substances, wherein the impact compression caused by the explosion of the sub-explosive layer is made to precede the impact compression caused by the impact of the projectile.
JP20425881A 1981-12-17 1981-12-17 Impact treatment method and device for condensed substances Expired JPS5932174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20425881A JPS5932174B2 (en) 1981-12-17 1981-12-17 Impact treatment method and device for condensed substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20425881A JPS5932174B2 (en) 1981-12-17 1981-12-17 Impact treatment method and device for condensed substances

Publications (2)

Publication Number Publication Date
JPS58104629A JPS58104629A (en) 1983-06-22
JPS5932174B2 true JPS5932174B2 (en) 1984-08-07

Family

ID=16487476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20425881A Expired JPS5932174B2 (en) 1981-12-17 1981-12-17 Impact treatment method and device for condensed substances

Country Status (1)

Country Link
JP (1) JPS5932174B2 (en)

Also Published As

Publication number Publication date
JPS58104629A (en) 1983-06-22

Similar Documents

Publication Publication Date Title
US3608014A (en) Method of explosively shocking solid materials
US2605703A (en) Liner for hollow charges
US3401019A (en) Process for synthesizing diamond
Winter et al. The role of localized plastic flow in the impact initiation of explosives
Nesterenko et al. Controlled high‐rate localized shear in porous reactive media
US3220103A (en) Method of explosively compacting powders to form a dense body
Nesterenko et al. Shear localization in high-strain-rate deformation of granular alumina
US5087435A (en) Polycrystalline diamond and method for forming same
Grebe et al. Combustion synthesis and subsequent
JP2023175710A (en) Double-tube connection structure for detonation synthesis, detonation synthesis device, application of double-tube connection structure for detonation synthesis or detonation synthesis device, and production method of high-strength composite tube or high-strength pressure vessel
Nesterenko et al. Dynamic behavior of particulate/porous energetic materials
Chen et al. Shear localization and chemical reaction in high-strain, high-strain-rate deformation of Ti–Si powder mixtures
CN101234428B (en) Flat plate exploder capable of improving velocity of flyer
JPS5932174B2 (en) Impact treatment method and device for condensed substances
CN107052331B (en) Device and method for explosion sintering of nano aluminum bar capable of releasing pressure
JPS61502A (en) Molding method of powdery body
JPS5922648A (en) Method and device for impact compression of condensable material
JPS6248529B2 (en)
US3851027A (en) Shock-bonding of hard particles
JPH02253838A (en) Method and device for shock compression of solid material
Gustavsen et al. Low pressure shock initiation of porous HMX for two grain size distributions and two densities
Chakravarty et al. Factors affecting shock sensitivity of energetic materials
US3568248A (en) Plug closure in a container for subjecting sample to shock wave
Yang et al. Reaction mechanism of aluminum nanoparticles in explosives under high temperature and high pressure by shock loading
CN112222404B (en) Bidirectional pressure relief device and method for preparing metal nano aluminum bar based on explosive sintering process