JPS6097230A - Pressure converter - Google Patents

Pressure converter

Info

Publication number
JPS6097230A
JPS6097230A JP58205234A JP20523483A JPS6097230A JP S6097230 A JPS6097230 A JP S6097230A JP 58205234 A JP58205234 A JP 58205234A JP 20523483 A JP20523483 A JP 20523483A JP S6097230 A JPS6097230 A JP S6097230A
Authority
JP
Japan
Prior art keywords
resistors
temperature
resistor
amplifier circuit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205234A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishihara
力 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58205234A priority Critical patent/JPS6097230A/en
Publication of JPS6097230A publication Critical patent/JPS6097230A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To make it possible to compensate for sensitivity and temperature without impairing various performances, by constituting the sixth and seventh resistors by using heat sensitive diffusing resistors, which have the positive resistance temperature coefficient larger than that of the fourth and fifth resistors. CONSTITUTION:A bridge circuit 100 comprising pressure sensitive elements 1, 2, 3, and 4 is driven by driving terminals 27 and 28 at a constant voltage. In a differential amplifier circuit 300, the following basic operations are performed. Amplification of the unbalanced bridge voltage and impedance conversion are performed by a front stage amplifier circuit 301 using two operation amplifiers 30a and 30b. Differential single end conversion is accomplished by an output stage amplifier circuit 302 using an operation amplifier 30c. Of resistor element 34-37, the elements 35 and 37 are constituted by heat sensitive diffusing resistors, which have the positive temperature coefficient larger than that of the resistors 34 and 36.

Description

【発明の詳細な説明】 本発明は圧力変換器に関し、特に半導体感圧素子を用い
た圧力変換器の温度特性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure transducer, and more particularly to improving the temperature characteristics of a pressure transducer using a semiconductor pressure-sensitive element.

従来、この種の半導体圧力変換器では、半導体ダイアフ
ラム上に形成された感圧素子を用いてホイートストンブ
リッジ回路(以下、単にブリッジ変化を、該ブリッジ回
路を定電圧あるいは定電流源で駆動することによって該
ブリッジ回路の不平衡電圧として検出し、該不平衡電圧
を差動増幅回路でさらに増幅することにより印加圧力ζ
こ比例した出力信号を取り出していた。第1図に該圧力
変換器の具体的な構成例を示す。図において、−リーシ
は感圧素子1.2.3.4で構成されるブリッジ回路、
5は該ブリッジ回路に定電圧を印加するための駆動端子
、6及び7は該ブリッジ回路の不平衡電圧検出端子をそ
れぞれ示す。感圧素子1〜4としては例えば半導体ダイ
アフラム上に選択拡散、イオン注入等により形成された
不純物拡散領域が用いられ、感圧素子1.3と感圧素子
2.4は、それぞれ同一印加圧力に対し互いに逆方向の
抵抗値変化を示すよう、その長手及び横手方向の結晶軸
が選択されて配列されている。この結果、印加圧力に対
して例えば感圧素子2.4の抵抗値が増大すると、感圧
素子1.3の抵抗値は逆に減少し、この結果、ブリッジ
回路100の不平衡電圧検出端子6.7間には印加圧力
に比例した不平衡電圧△Eが得られる。該不平衡電圧△
Eは、3個の演算増幅器8.9.10と抵抗11.12
.13.14.15.16.17とで構成される増幅回
路、姐頂こよって増幅・シングルエンド化される。該増
幅回路200において、抵抗11.12.13及び演算
増幅器8.9から成る前段増幅回路(201)は、イン
ピーダンス変換(高入力抵抗−低出力抵抗)を達成する
と同時にブリッジ回路1」の不平衡電、圧△E(該前段
増幅回路にとっては差動入力)を増幅する。すなわち、
圧力が印加されない状態でのブリッジ回路上の端子6及
び7の電圧をともにVcm、印加圧力によって生じる端
子6及び7の対称な電圧変化分をそれぞれvz(=△E
/2)及びvl(=−△E/2)、抵抗11.12及び
13の抵抗値をそれぞれR,、Rs及びR8とすると、
演算増幅器8及び9の出力端子18及び19に得られる
電圧V。1及如はそれぞ撤式で与えられる。
Conventionally, this type of semiconductor pressure transducer uses a pressure sensitive element formed on a semiconductor diaphragm to perform a Wheatstone bridge circuit (hereinafter simply referred to as bridge change) by driving the bridge circuit with a constant voltage or constant current source. The applied pressure ζ is detected as an unbalanced voltage of the bridge circuit, and the unbalanced voltage is further amplified by a differential amplifier circuit.
An output signal proportional to this was extracted. FIG. 1 shows a specific example of the configuration of the pressure transducer. In the figure, -Rishi is a bridge circuit composed of pressure sensitive elements 1.2.3.4;
Reference numeral 5 indicates a drive terminal for applying a constant voltage to the bridge circuit, and 6 and 7 indicate unbalanced voltage detection terminals of the bridge circuit, respectively. For example, impurity diffusion regions formed on a semiconductor diaphragm by selective diffusion, ion implantation, etc. are used as the pressure-sensitive elements 1 to 4, and the pressure-sensitive elements 1.3 and 2.4 are each subjected to the same applied pressure. On the other hand, the crystal axes in the longitudinal and transverse directions are selected and arranged so that the resistance changes in opposite directions. As a result, when the resistance value of the pressure sensitive element 2.4 increases with respect to the applied pressure, the resistance value of the pressure sensitive element 1.3 decreases, and as a result, the unbalanced voltage detection terminal 6 of the bridge circuit 100 .7, an unbalanced voltage ΔE proportional to the applied pressure is obtained. The unbalanced voltage△
E is the three operational amplifiers 8.9.10 and resistors 11.12
.. An amplifier circuit consisting of 13, 14, 15, 16, and 17 is amplified and made single-ended. In the amplifier circuit 200, a preamplifier circuit (201) consisting of resistors 11, 12, 13 and an operational amplifier 8.9 achieves impedance conversion (high input resistance - low output resistance) and at the same time reduces the unbalance of the bridge circuit 1. The voltage and voltage ΔE (differential input for the front-stage amplifier circuit) are amplified. That is,
The voltages at terminals 6 and 7 on the bridge circuit in a state where no pressure is applied are both Vcm, and the symmetrical voltage changes at terminals 6 and 7 caused by the applied pressure are respectively vz (=△E
/2) and vl (=-△E/2), and the resistance values of resistor 11.12 and 13 are respectively R,, Rs and R8,
The voltage V available at the output terminals 18 and 19 of the operational amplifiers 8 and 9. 1st place will be awarded at the withdrawal ceremony.

一方、抵抗14〜17及び演算増幅器10から感゛る出
力段増幅回路(202)は差動入力をシングル・エンド
出力に変換する。いま、抵抗14.15,16及び17
の抵抗値をR4、Rs、R6及びR7とすると、演算増
幅器10の出力端子20に得られる出力電圧V。は次式
で与えられる。
On the other hand, the output stage amplifier circuit (202) derived from the resistors 14 to 17 and the operational amplifier 10 converts the differential input into a single-ended output. Now resistors 14, 15, 16 and 17
Assuming that the resistance values of are R4, Rs, R6, and R7, the output voltage V obtained at the output terminal 20 of the operational amplifier 10. is given by the following equation.

ここでvu 、Vll及びV、。は該出力段増幅回路(
202)に対する入力電圧の差動成分及び同相成分で、
前段増幅回路(201)の出力電圧v6I及びVo2と
の関係は、それぞれV4z−C%2 V。1)/2=V
ll。
where vu, Vll and V,. is the output stage amplifier circuit (
202), the differential and common mode components of the input voltage are
The relationship between the output voltages v6I and Vo2 of the front stage amplifier circuit (201) is V4z-C%2V, respectively. 1)/2=V
ll.

vlc =(vat + VO2)/2で定義される。It is defined as vlc = (vat + VO2)/2.

そこでいま、前段増幅回路(201’)における抵$1
2と13の抵抗値が等しく選定されていると(& =R
s )、V+□11.及びviaはそれぞれ次のように
なる。
Therefore, the resistor $1 in the front stage amplifier circuit (201')
If the resistance values of 2 and 13 are selected equally (& = R
s), V+□11. and via are as follows.

ViI、=vcIrL(’、゛V、 = −V2 ) 
(5)したがって、出力段増幅回路(202)における
抵抗14.15.16及び17の抵抗値R4、Rs 、
 R6及びR7をRs / R4= R7/ R4(R
4R)= & R8)に選定すれば、(3)式は となり、同相電圧成分VcrrLは除去され、プリソジ
不平衡電圧△E(= vz Vl ) が増幅、シング
ルエンド化された出力電圧■。が出力端子20に得られ
る。
ViI,=vcIrL(',゛V,=-V2)
(5) Therefore, the resistance values R4, Rs of the resistors 14, 15, 16 and 17 in the output stage amplifier circuit (202),
R6 and R7 are Rs/R4=R7/R4(R
4R) = &R8), the equation (3) becomes, the common-mode voltage component VcrrL is removed, and the presoji unbalanced voltage △E (= vz Vl) is amplified, resulting in a single-ended output voltage ■. is obtained at the output terminal 20.

しかしながら、定電、圧で駆動される上記圧力変換器で
は、ピエゾ抵抗係数の負の温度係数により温度の上昇と
ともに圧力感度が低下する欠点があった。
However, the above-mentioned pressure transducer driven by constant voltage and pressure has a drawback that the pressure sensitivity decreases as the temperature rises due to the negative temperature coefficient of the piezoresistance coefficient.

この感度の温度変動を補償するため、従来、出力段増幅
回路(202)を構成する演算増幅器10のフィードバ
ック回路を正の温度係数をもつ拡散抵抗で構成すること
により増幅度に正の温度係数を与える第2図に示すよう
な構成の圧力変換器(特開昭56−145327 )が
提案されている。図において、21は感圧素子1〜4と
同一半導体基板上の 。
In order to compensate for temperature fluctuations in sensitivity, conventionally, the feedback circuit of the operational amplifier 10 constituting the output stage amplifier circuit (202) is configured with a diffused resistor having a positive temperature coefficient, thereby giving a positive temperature coefficient to the degree of amplification. A pressure transducer having a structure as shown in FIG. In the figure, 21 is on the same semiconductor substrate as the pressure sensitive elements 1 to 4.

圧力不感部に設けられた拡散抵抗、22は半導体基板外
の抵抗で、これらが並列接続されて演算増幅器10のフ
ィードバンク回路(出力端子−反転入力端子間)が構成
されている。なお、同図において抵抗23及び24は、
駆動端子5及び26に供給される駆動電圧を分圧し、端
子27に得られる該分圧電圧vbを抵抗17ヲ介して演
算増幅器10の非反転端子に導びくことにより出力端子
20の直流レベルを調整するゼロ点調整回路を構成して
いる。拡散抵抗21 と並列接続された抵抗22とから
成るフィードバック回路の抵抗値をR,とすると、該圧
力変換器の出力電圧V。は、次式で与えられる。
The diffused resistor 22 provided in the pressure-insensitive portion is a resistor outside the semiconductor substrate, and these are connected in parallel to form a feed bank circuit (between the output terminal and the inverting input terminal) of the operational amplifier 10. In addition, in the same figure, the resistors 23 and 24 are
The DC level of the output terminal 20 is adjusted by dividing the drive voltages supplied to the drive terminals 5 and 26 and guiding the divided voltage vb obtained at the terminal 27 to the non-inverting terminal of the operational amplifier 10 via the resistor 17. It constitutes a zero point adjustment circuit. If the resistance value of the feedback circuit consisting of the diffused resistor 21 and the resistor 22 connected in parallel is R, then the output voltage of the pressure transducer is V. is given by the following equation.

上式において、同相電圧成分(第3項)を零とし、差M
Kh電圧成分(V1* Vl+ )にのみ比例した出力
型、圧v0を得るためにはR4R7−R,R,= Oな
る関係が恒等的に成立しなければならない。しかしなが
ら、上記構成の圧力変換器では、R8のみが正の温度係
数を示し、R4、R6及びR7は温度依存性をもたない
(またはR,に比び温度係数が極めて小さい)ので、上
記関係式を成立させることができるのは成る一点の温度
のみとなる。この結果、同相利得が温度とともに変化す
るので、印加圧力とは無関係な温度と同相電圧成分Vi
eに依存したオフセット電圧が発生し、これが温度とと
もに変動する欠点があった。また、(力式の第4項から
明らかなように、ゼロ点調整電圧■bに対する利得が温
度依存性をもつことになるので温度変化によりゼロバラ
ンスが崩れる欠点もあった。
In the above equation, the common mode voltage component (third term) is set to zero, and the difference M
In order to obtain an output type, voltage v0, which is proportional only to the Kh voltage component (V1*Vl+), the relationship R4R7-R,R,=O must be established uniformly. However, in the pressure transducer with the above configuration, only R8 shows a positive temperature coefficient, and R4, R6, and R7 have no temperature dependence (or have extremely small temperature coefficients compared to R), so the above relationship is The equation can only be established at a temperature of one point. As a result, the common mode gain changes with temperature, so the temperature and common mode voltage component Vi, which is independent of the applied pressure,
There was a drawback that an offset voltage depending on e was generated and this varied with temperature. Furthermore, as is clear from the fourth term of the force equation, the gain for the zero point adjustment voltage (b) has temperature dependence, so there is also the drawback that the zero balance is disrupted due to temperature changes.

以上、詳しく説明したように、従来の圧力変換器では、
感度の温度補償に伴ない、温度変動による同相利得の増
大(同相除去比の減少)ならびにゼロバランスの変動が
発生する欠点があった。
As explained in detail above, in conventional pressure transducers,
Temperature compensation for sensitivity has the drawbacks of increased common-mode gain (decreased common-mode rejection ratio) and zero balance fluctuations due to temperature fluctuations.

本発明は上記従来の圧力変換器の欠点を解消するために
なされたもので、その目的は圧力変換器が備えるべき諸
性能を損なうことなく感度の温度補償が可能な優れた性
能の圧力変換器を提供することにある。
The present invention has been made in order to eliminate the drawbacks of the conventional pressure transducers described above, and its purpose is to provide a pressure transducer with excellent performance that allows temperature compensation for sensitivity without impairing the various performances that a pressure transducer should have. Our goal is to provide the following.

本発明によれば、すくなくとも−辺に半導体タイアノラ
ム上に形成された不純物拡散領域からなる感圧素子を含
むホイートストンブリッジ回路と、非反転入力端子がそ
れぞれ前記ブリッジ回路の不平′#電圧検出端子に導び
かれるとともに反転入力端子が第1の抵抗を介して相互
に接続された第1及び第2の演算増幅器と、該第1及び
第2の演算増幅器の反転入力端子と出力端子の間にそれ
ぞれ接続された第2及び第3の抵抗と、反転及び非反転
入力端子がそれぞれ第4及び第5の抵抗を介してiII
記第1及び第2の演算増幅器の出力端子と接続された第
3の演算増幅器と、該第3の演算増幅器の反転入力端子
と出力端子の間に接続された第6の抵抗と、該第3の演
算増幅器の非反転入力端子とバイアス端子との間に接続
された第7の抵抗から成る圧力変換器において、すくな
くとも前記第6及び第7の抵抗が、前記第4及び第5の
抵抗よりも大きな正の抵抗温度係数を有する感温拡散抵
抗を用いて構成されたことを特徴とする圧力変換器が得
られる。
According to the present invention, there is provided a Wheatstone bridge circuit including a pressure sensitive element formed of an impurity diffusion region formed on a semiconductor titanorum on at least the - side, and a non-inverting input terminal each connected to a voltage detection terminal of the bridge circuit. first and second operational amplifiers whose inverting input terminals are connected to each other via a first resistor; and a connection between the inverting input terminal and the output terminal of the first and second operational amplifiers, respectively. The second and third resistors and the inverting and non-inverting input terminals are connected to iii through the fourth and fifth resistors, respectively.
a third operational amplifier connected to the output terminals of the first and second operational amplifiers; a sixth resistor connected between the inverting input terminal and the output terminal of the third operational amplifier; In the pressure transducer comprising a seventh resistor connected between the non-inverting input terminal and the bias terminal of the operational amplifier of No. 3, at least the sixth and seventh resistors are lower than the fourth and fifth resistors. A pressure transducer is obtained, characterized in that it is constructed using a temperature-sensitive diffused resistor having a large positive temperature coefficient of resistance.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第3図は、本発明に従う圧力変換器の一実施例を示す構
成図である。図において、1匹−は第1図及び第2図に
示したと同じく感圧素子1.2.3.4で構成されるブ
リッジ回路、27及び28は該ブリッジ回路1世定電圧
駆動するための駆動端子をそれぞれ示し、廷旦は、演算
増幅器aoa、 3ob。
FIG. 3 is a block diagram showing one embodiment of a pressure transducer according to the present invention. In the figure, 1 is a bridge circuit composed of pressure-sensitive elements 1, 2, 3, and 4 as shown in Figs. The drive terminals are shown respectively, and the operational amplifiers AOA and 3OB are shown.

30cと抵抗31.32.33.34.36及び抵抗3
4.36よりも大きな正の抵抗温度係数を有する感温拡
散抵抗35.37からなる差動増幅回路を示す。本実施
例における差動増幅回路aOOは、基本的には、2個の
演算増幅器30a、 30b を用いた前段増幅回路(
301)でブリッジ不平衡雷、圧の増幅とインピーダン
ス変換を行ない、演算増幅器30cを用(・た出力段増
幅回路(302)で差動−シングル・エンド変換を達成
する構成となっている。そして、本実施例の特徴とする
ところは、出力段増幅回路(302)の演算増幅器30
cに接続された各抵抗要素34〜37において、35及
び37が抵抗34及び36よりも大きな正の温度係数を
有する感温拡散抵抗を用いて構成されている点にある。
30c and resistor 31.32.33.34.36 and resistor 3
A differential amplifier circuit consisting of a temperature sensitive diffused resistor 35.37 having a positive temperature coefficient of resistance greater than 4.36 is shown. The differential amplifier circuit aOO in this embodiment is basically a front-stage amplifier circuit (
301) performs bridge unbalanced lightning, pressure amplification and impedance conversion, and an output stage amplifier circuit (302) using an operational amplifier 30c achieves differential-to-single-ended conversion. The feature of this embodiment is that the operational amplifier 30 of the output stage amplifier circuit (302)
In each of the resistive elements 34 to 37 connected to c, 35 and 37 are constructed using temperature-sensitive diffused resistors having a larger positive temperature coefficient than resistors 34 and 36.

本実施例における抵抗34及び36としては、抵抗31
.32.33とともに、実用上固定抵抗と見なし得る程
度に温度係数の小さな、例えば金属皮膜抵抗等を用いる
ことができる。また、感温拡散抵抗35及び37として
は、例えば感圧素子1〜4と同一半導体基板上の圧力不
感部に形成された不純物拡散領域からなる拡散抵抗を用
いることができる。
As the resistors 34 and 36 in this embodiment, the resistor 31
.. In addition to 32 and 33, a metal film resistor or the like having a small temperature coefficient that can be considered as a fixed resistor in practical use can be used. Furthermore, as the temperature-sensitive diffused resistors 35 and 37, for example, diffused resistors made of impurity diffusion regions formed in pressure-insensitive parts on the same semiconductor substrate as the pressure-sensitive elements 1 to 4 can be used.

以下、第3図を参照しつつ本実施例の効果を説明するが
、ここでは便宜上、第1図、第2図の説明と同様、圧力
が印加されない状態でのブリッジ回路100〜の端子6
及び7の電圧をともにV眞(したがって不平衡電圧△E
=O)、印加圧力によって生じる端子6及び7の電圧の
変化をそれぞれv2及びvl(△E = v2 Vl 
)とし、 v2−△E/2及びvl=−△E/2なる対
称な市、圧変化が得られるものとする。また、抵抗31
.32.33.34.36の抵抗値は第1図の11.1
2.13.14.16と同じ< R,、R2R5、R4
、R6を用いて表わし、感温拡散抵抗35及び37はR
,I+(1+久t)及びR0フ(1+dt)で表わすこ
ととする。ここで、Ro、及びR07は基準温度におけ
る感温拡散抵抗35及び37の抵抗値、σは該感温拡散
抵抗35及び37の抵抗温度係数、tは前記基準温度か
らの温度の変化を示しており、感温拡散抵抗35及び3
7がそれぞれ同一半導体基板上に同一工程で製造された
同一表面不純物濃度を有する拡散抵抗で構成されるなら
ば、両者についてのべ及びtはともに等しい値となる。
Hereinafter, the effects of this embodiment will be explained with reference to FIG. 3, but here, for convenience, we will explain the terminals 6 of the bridge circuit 100 in a state where no pressure is applied, similar to the explanation of FIGS. 1 and 2.
and 7 are both Vshin (therefore, unbalanced voltage △E
= O), and the changes in voltage at terminals 6 and 7 caused by the applied pressure are expressed as v2 and vl, respectively (△E = v2 Vl
), and it is assumed that a symmetrical pressure change of v2-ΔE/2 and vl=-ΔE/2 can be obtained. Also, resistor 31
.. The resistance value of 32, 33, 34, 36 is 11.1 in Figure 1.
Same as 2.13.14.16 < R,, R2R5, R4
, R6, and the temperature-sensitive diffused resistors 35 and 37 are R
, I+(1+kt) and R0f(1+dt). Here, Ro and R07 are the resistance values of the temperature-sensitive diffused resistors 35 and 37 at the reference temperature, σ is the resistance temperature coefficient of the temperature-sensitive diffused resistors 35 and 37, and t is the change in temperature from the reference temperature. temperature-sensitive diffused resistors 35 and 3
If each of the resistors 7 and 7 is made up of diffused resistors having the same surface impurity concentration and manufactured on the same semiconductor substrate in the same process, the sum and t for both will be the same value.

以上を前提にすると、本実施例の前段増幅回路(301
)における演算増幅器30a及び30bの出力端子38
及び39に得られる電圧Vel及びVatは、第1図と
同じ<(1)及び(2)式で与えられ、抵抗32と抵抗
33の抵抗値が等しく選定されていれば(&=R8)、
出力増幅回路(302)に対する入力電圧の差動成分v
Us vll及び同相成分Vlcはそれぞれ(4)及び
(5)式で与えられる。
Based on the above, the front stage amplifier circuit (301
) of the operational amplifiers 30a and 30b.
The voltages Vel and Vat obtained at and 39 are given by the same formulas as in FIG.
Differential component v of the input voltage to the output amplifier circuit (302)
Us vll and in-phase component Vlc are given by equations (4) and (5), respectively.

一方、出力段増幅回路(302)における演算増幅器3
0cの出力端子40に得られる出カ雷圧v6は、(3)
式におけるR5及びR,が、本実施例ではそれぞれRa
5 (1+αt)及びu、t (1+訊t)となるよう
構成が修正されているので、端子29に印加されるゼp
点調整電圧をvb−0とすると次式で与えられる。
On the other hand, the operational amplifier 3 in the output stage amplifier circuit (302)
The output lightning pressure v6 obtained at the output terminal 40 of 0c is (3)
R5 and R in the formula are each Ra in this example.
5 (1+αt) and u,t (1+αt), so the zep applied to the terminal 29
Letting the point adjustment voltage be vb-0, it is given by the following equation.

(8) したがって、出力段増幅回路(302)における抵抗3
4.36の抵抗値R4、Rs及び感温拡散抵抗35.3
7の基準温度における抵抗値Ra8 、 Re? の間
の関係をR,s /R4= R,t / Rs (R4
・R,y Ras −Rs ) に選定すれば、(4)
、(5)式より上式は ・。=〜逆聾す・(1+k)・(v2− vl )R4
R+ (9) となり、同相電圧成分VOWが完全に除去され、ブリッ
ジ回路100の不平衡電圧△E (= vt V+)の
みが増幅、温度補償されたシングルエンド出力が該圧力
変換器の出力端子40に取り出される。すなわち、(9
)式から明らかなように、本実施例では、差動増幅回路
4蜆の増幅度に感温拡散抵抗35及び37の正の温度係
数べに基づく正の温度係数を付与することができるので
、ピエゾ抵抗係数の負の温度係数に基づく圧力感度の負
の温度係数を効果的に補償することが可能である。しか
も、本実施例の出力段増幅回路(302)では、第2図
に示した従来構成の如き温度変化に伴なう各抵抗間のア
ンバランスを生じない。したがって、温度変化による同
相利得の増大は抑止され、上記従来構成の欠点であった
温度と同相電圧成分V(1mに依存して発生する余分な
オフセット電圧を完全に除去することができる。′また
同じ理由から、端子29にゼp点調整を圧V、が印加さ
れても、該電圧■、に対する保たれるので、従来構成の
欠点であったゼロバランスの温度変動も抑止される。
(8) Therefore, the resistor 3 in the output stage amplifier circuit (302)
Resistance value R4, Rs of 4.36 and temperature-sensitive diffused resistance 35.3
Resistance value Ra8 at reference temperature of 7, Re? The relationship between R,s/R4= R,t/Rs (R4
・R,y Ras −Rs ), (4)
, from equation (5), the above equation is. =~Reverse deafening・(1+k)・(v2−vl)R4
R+ (9), the common-mode voltage component VOW is completely removed, only the unbalanced voltage ΔE (=vt V+) of the bridge circuit 100 is amplified, and the temperature-compensated single-ended output is sent to the output terminal 40 of the pressure converter. It is taken out. That is, (9
) As is clear from the equation, in this embodiment, a positive temperature coefficient based on the positive temperature coefficients of the temperature-sensitive diffused resistors 35 and 37 can be given to the amplification degree of the differential amplifier circuit 4. It is possible to effectively compensate for the negative temperature coefficient of the pressure sensitivity due to the negative temperature coefficient of the piezoresistive coefficient. Furthermore, the output stage amplifier circuit (302) of this embodiment does not cause unbalance between the respective resistors due to temperature changes, unlike the conventional configuration shown in FIG. Therefore, the increase in the common mode gain due to temperature changes is suppressed, and it is possible to completely eliminate the extra offset voltage that occurs depending on the temperature and the common mode voltage component V (1 m), which was a drawback of the conventional configuration. For the same reason, even if voltage V is applied to the terminal 29 to adjust the zero point, the voltage V is maintained, so that temperature fluctuations in the zero balance, which are a drawback of the conventional configuration, are also suppressed.

したがって、本実施例によれは、従来構成の欠点であっ
た温度変化による増幅回路の同相利得の増大ならびにゼ
ロバランスの変動が解消された感度の温度補償が達成さ
れ、高性能の圧力変換器が得られる。
Therefore, this embodiment achieves sensitivity temperature compensation that eliminates the increase in the common mode gain of the amplifier circuit due to temperature changes and zero balance fluctuations, which were drawbacks of the conventional configuration, and provides a high-performance pressure transducer. can get.

上記本実施例において、圧力感度の温度係数を零にする
ためには、増幅回路3 (l Oの増幅度の温度係数、
すなわち感温拡散抵抗35.37の抵抗温度係数(正の
値)を、ブリッジ回路1匹を構成する感圧素子1〜4の
ピエゾ抵抗係数の温度係数(負の値)の絶対値と等しく
選べばよい。これは、一般には、感圧素子1〜4と感温
拡散抵抗35.37を構成する不純物拡散領域の不純物
濃度をそれぞれ適宜制御することにより達成される。
In this embodiment, in order to make the temperature coefficient of pressure sensitivity zero, the temperature coefficient of the amplification degree of the amplifier circuit 3 (l O,
In other words, the temperature coefficient of resistance (positive value) of the temperature-sensitive diffused resistor 35. Bye. Generally, this is achieved by appropriately controlling the impurity concentrations of the impurity diffusion regions that constitute the pressure sensitive elements 1 to 4 and the temperature sensitive diffused resistors 35 and 37, respectively.

なお、n形シリコン基板に形成されたp形不純物領域か
らなる拡散抵抗の場合、表面不純物濃度が10”cm−
”及び10%−”の2点において、抵抗温度係数(正の
値)とピエゾ抵抗係数温度係数(負の値)の絶体値が等
しくなる。したがって、表面不純物濃度を上記条件に選
べば、感度温度補償のだめの感温拡散抵抗35,37を
感圧素子1〜4と同一工程で製造することが可能となり
、きわめて効果的で、かつ製造の容易な感度温度補償が
達成できる。
Note that in the case of a diffused resistor consisting of a p-type impurity region formed on an n-type silicon substrate, the surface impurity concentration is 10"cm-
At the two points "and 10%-", the absolute values of the resistance temperature coefficient (positive value) and the piezoresistance coefficient temperature coefficient (negative value) become equal. Therefore, if the surface impurity concentration is selected under the above conditions, the temperature-sensitive diffused resistors 35 and 37 for sensitivity temperature compensation can be manufactured in the same process as the pressure-sensitive elements 1 to 4, which is extremely effective and easy to manufacture. Easy sensitivity temperature compensation can be achieved.

上記実施例においては、増幅回路300の前段増幅回路
(301)を構成する抵抗31.32.33を、抵抗3
4.36とともに実用上固定抵抗と見なし得る程度に温
度係数の小さな、例えば金属皮膜抵抗等としたが、これ
らはかならずしも温度係数の小さな抵抗である必要はな
く温度依存性をもつ抵抗であってもよい。すなわち、抵
抗31.32.33の間の温度係数さえ等しく選定され
ていれば、これらの温度係数は互いにキャンセルされ、
前段増幅回路(301)の増幅度は温度依存性をもたな
くなるので、抵抗31,32.33を例えば感温拡散抵
抗35.37と同一工程で形成された拡散抵抗等として
も上記実施例と全く同様な効果が得られる。この場合、
感圧素子1〜4、感温拡散抵抗35.37及び拡散抵抗
31.32.33をすべて同一工程で製造できるので、
容易にIC化し得る演算増幅器も含め、抵抗34.36
を除く上記実施例の構成要素が同一半導体基板上にオン
チップ可能となる。この結果、外付部品数が大幅に削減
され、組立・調整工数の大幅な削減がはかれる。
In the above embodiment, the resistors 31, 32, and 33 constituting the front stage amplifier circuit (301) of the amplifier circuit 300 are replaced by the resistors 3
4.36, we used resistors with small temperature coefficients such as metal film resistors that can be considered as fixed resistors for practical purposes, but these do not necessarily have to be resistors with small temperature coefficients and may be temperature-dependent resistors. good. That is, if the temperature coefficients between resistors 31, 32, and 33 are selected to be equal, these temperature coefficients will cancel each other out,
Since the amplification degree of the front-stage amplifier circuit (301) no longer has temperature dependence, the resistors 31, 32, and 33 can be replaced with, for example, diffused resistors formed in the same process as the temperature-sensitive diffused resistors 35, 37, etc. in the above embodiment. Exactly the same effect can be obtained. in this case,
Since the pressure sensitive elements 1 to 4, the temperature sensitive diffused resistors 35, 37, and the diffused resistors 31, 32, and 33 can all be manufactured in the same process,
Resistors 34.36 including operational amplifiers that can be easily integrated into ICs.
The components of the above embodiments except for can be mounted on-chip on the same semiconductor substrate. As a result, the number of external parts is significantly reduced, and the number of assembly and adjustment man-hours is significantly reduced.

まだ、上記実施例では、抵抗34,36を金属皮膜抵抗
等の温度係数の小さな外付抵抗とし、抵抗35.37を
半導体基板上の拡散抵抗とすることにより増幅度に正の
温度係数を与えたが、抵抗34.36を感温拡散抵抗3
5及び37と同一基板上に形成された比較的温度係数の
小さな拡散抵抗で構成することによっても同様に増幅度
に正の温度係数を与えることが可能である。これは、例
えば、抵抗34.36と抵抗35.37を構成する不純
物拡散領域の不純物濃度をそれぞれ異なる値に設定する
等の方法により達成され、全IC化圧力変換器の提供を
可能にする。
However, in the above embodiment, the resistors 34 and 36 are external resistors with small temperature coefficients such as metal film resistors, and the resistors 35 and 37 are diffused resistors on the semiconductor substrate, thereby giving a positive temperature coefficient to the amplification degree. However, the resistor 34.36 was replaced by a temperature-sensitive diffused resistor 3
It is also possible to similarly give a positive temperature coefficient to the degree of amplification by configuring it with a diffused resistor having a relatively small temperature coefficient and formed on the same substrate as 5 and 37. This can be achieved, for example, by setting the impurity concentrations of the impurity diffusion regions constituting the resistors 34.36 and 35.37 to different values, thereby making it possible to provide an all-IC pressure transducer.

さらに、上記実施例では、説明の便宜上、抵抗31〜3
3.34.36及び35.37がそれぞれ、いずれも単
一の抵抗体で構成されていたが、本発明に従う圧力変換
器では、これらが種々の抵抗値あるいは抵抗温度係数を
有する複数個の抵抗体による■直列接続■並列接続■直
並列接続で構成されたものであっても何らさしつかえな
い。
Furthermore, in the above embodiment, for convenience of explanation, the resistors 31 to 3
3.34.36 and 35.37 were each composed of a single resistor, but in the pressure transducer according to the present invention, these are composed of a plurality of resistors having various resistance values or resistance temperature coefficients. There is no problem even if the structure is configured by ■ series connection ■ parallel connection ■ series parallel connection.

以上、詳しく説明したように、本発明によれば従来技術
の欠点が解消され、圧力変換器が備えるべき諸性能を損
なうことなく感度温度補償が可能な高性能圧力変換器が
実現される。
As described in detail above, according to the present invention, the drawbacks of the prior art are overcome, and a high-performance pressure transducer capable of sensitivity temperature compensation is realized without impairing various performances that a pressure transducer should have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧力変換器の典凰的な構成を示す図、第
2図は感度温度補償を施した圧力変換器の従来例を示す
図、第3図は本発明の一実施例を示す図である。 ■−ブリッジ回路、1.2.3.4・・・感圧素子、5
.25.26.27.28・・・ブリッジ駆動端子、2
00・・・差動増111iA回路、(201)・・・前
段増幅回路、(202)・・・出力段増幅回路、8.9
.10・・・演算増幅器11.12.13.14.15
.16.17・・・抵抗20・・・出力端子、21・・
・拡散抵抗、22・・・抵抗、300・・・差動増幅回
路、(301)・・・前段増幅回路、(302)・・・
出力段増幅回路、 30a、 30b、 30cm演算増幅器、31.32
.33.34.36・・・抵抗、35.37・・・感温
拡散抵抗、 29・・・ゼp点調整電圧印加端子、
Fig. 1 is a diagram showing a typical configuration of a conventional pressure transducer, Fig. 2 is a diagram showing a conventional example of a pressure transducer with sensitivity temperature compensation, and Fig. 3 is a diagram showing an example of an embodiment of the present invention. FIG. ■-Bridge circuit, 1.2.3.4...Pressure sensitive element, 5
.. 25.26.27.28... Bridge drive terminal, 2
00...Differential amplifier 111iA circuit, (201)...Pre-stage amplifier circuit, (202)...Output stage amplifier circuit, 8.9
.. 10...Operation amplifier 11.12.13.14.15
.. 16.17...Resistor 20...Output terminal, 21...
- Diffused resistor, 22... Resistor, 300... Differential amplifier circuit, (301)... Pre-stage amplifier circuit, (302)...
Output stage amplifier circuit, 30a, 30b, 30cm operational amplifier, 31.32
.. 33.34.36...Resistance, 35.37...Temperature-sensitive diffused resistor, 29...Ze p point adjustment voltage application terminal,

Claims (1)

【特許請求の範囲】[Claims] すくなくとも−辺に半導体ダイアクラム上に形成された
不純物拡散領域からなる感圧素子を含むホイートストン
ブリッジ回路と、非反転入力端子がそれぞれ前記ブリッ
ジ回路の不平衡電圧検出端子に導びかれるとともに反転
入力端子が第1の抵抗を介して相互に接続された第1及
び第2の演算増幅器と、該第1及び第2の演算増幅器の
反転入力端子と出力端子の間にそれぞれ接続された第2
及び第3の抵抗と、反転及び非反転入力端子がそれぞれ
第4及び第5の抵抗を介して前記第1及び第2の演算増
幅器の出力端子と接続された第3の演算増幅器と、該第
3の演算増幅器の反転入力端子と出力端子の間に接続さ
れた第6の抵抗と、該第3の演算増幅器の非反転入力端
子とバイアス端子との間に接続された第7の抵抗から成
る圧力変換器において、すくなくとも前記第6及び第7
の抵抗が、前記第4及び第5の抵抗よりも大きな正の抵
抗温度係数を有する感温拡散抵抗を用いて構成されたこ
とを特徴とする圧力変換器。
a Wheatstone bridge circuit including a pressure sensitive element formed on at least one side of an impurity diffusion region formed on a semiconductor diagonal; a non-inverting input terminal is led to an unbalanced voltage detection terminal of the bridge circuit, and an inverting input terminal is connected to the bridge circuit; first and second operational amplifiers connected to each other via a first resistor; and a second operational amplifier connected between the inverting input terminal and the output terminal of the first and second operational amplifiers, respectively.
and a third operational amplifier whose inverting and non-inverting input terminals are connected to the output terminals of the first and second operational amplifiers via fourth and fifth resistors, respectively; a sixth resistor connected between the inverting input terminal and the output terminal of the third operational amplifier; and a seventh resistor connected between the non-inverting input terminal and the bias terminal of the third operational amplifier. In the pressure transducer, at least the sixth and seventh
A pressure transducer characterized in that the resistor is configured using a temperature-sensitive diffused resistor having a positive temperature coefficient of resistance larger than the fourth and fifth resistors.
JP58205234A 1983-11-01 1983-11-01 Pressure converter Pending JPS6097230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205234A JPS6097230A (en) 1983-11-01 1983-11-01 Pressure converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205234A JPS6097230A (en) 1983-11-01 1983-11-01 Pressure converter

Publications (1)

Publication Number Publication Date
JPS6097230A true JPS6097230A (en) 1985-05-31

Family

ID=16503623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205234A Pending JPS6097230A (en) 1983-11-01 1983-11-01 Pressure converter

Country Status (1)

Country Link
JP (1) JPS6097230A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649933A (en) * 1979-10-01 1981-05-06 Toshiba Corp Semiconductor pressure detector
JPS5663227A (en) * 1979-10-30 1981-05-29 Toshiba Corp Pressure detecting device
JPS56118374A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Semiconductor strain gauge
JPS56145327A (en) * 1980-04-15 1981-11-12 Fuji Electric Co Ltd Pressure transducer
JPS5845532A (en) * 1981-09-11 1983-03-16 Fuji Electric Corp Res & Dev Ltd Pressure transducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649933A (en) * 1979-10-01 1981-05-06 Toshiba Corp Semiconductor pressure detector
JPS5663227A (en) * 1979-10-30 1981-05-29 Toshiba Corp Pressure detecting device
JPS56118374A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Semiconductor strain gauge
JPS56145327A (en) * 1980-04-15 1981-11-12 Fuji Electric Co Ltd Pressure transducer
JPS5845532A (en) * 1981-09-11 1983-03-16 Fuji Electric Corp Res & Dev Ltd Pressure transducer

Similar Documents

Publication Publication Date Title
JP3071202B2 (en) Semiconductor pressure sensor amplification compensation circuit
EP0086462B1 (en) Pressure sensor employing semiconductor strain gauge
JPS59217375A (en) Semiconductor mechanic-electric conversion device
JPS6144242B2 (en)
EP0543056B1 (en) Temperature dependent current generator
JP2002116105A (en) Physical quantity detecting device
JPH0159525B2 (en)
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JPS6097230A (en) Pressure converter
JPS60152913A (en) Pressure converter
JPH08226862A (en) Sensor and method for performing temperature compensation for measuring-range fluctuation in sensor thereof
JPS6097231A (en) Pressure converter
JPH0682844B2 (en) Semiconductor strain converter
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPH05281254A (en) Semiconductor acceleration sensor
JPS59188567A (en) Signal converting circuit
JPH10339680A (en) Semiconductor pressure sensor
JPS59196416A (en) Signal conversion circuit
JPS59188516A (en) Signal converting circuit
JPH06148015A (en) Bridge type sensor
JPS60152912A (en) Temperature compensating circuit
JPS6044822A (en) Pressure sensor circuit
JPH0545130B2 (en)
JPH11304617A (en) Semiconductor sensor
JPH02311728A (en) Pressure-sensor driving circuit