JPS6096703A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPS6096703A
JPS6096703A JP20189283A JP20189283A JPS6096703A JP S6096703 A JPS6096703 A JP S6096703A JP 20189283 A JP20189283 A JP 20189283A JP 20189283 A JP20189283 A JP 20189283A JP S6096703 A JPS6096703 A JP S6096703A
Authority
JP
Japan
Prior art keywords
furnace
zinc
blast furnace
alkali
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20189283A
Other languages
Japanese (ja)
Other versions
JPS6143403B2 (en
Inventor
Koichi Mukai
弘一 向井
Nobuo Ishioka
石岡 信雄
Mitsuo Yagi
八木 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20189283A priority Critical patent/JPS6096703A/en
Publication of JPS6096703A publication Critical patent/JPS6096703A/en
Publication of JPS6143403B2 publication Critical patent/JPS6143403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To restrain the occurrence and increment of adhesive matters on the furnace wall by removing the zinc and alkali group from a blast furnace by a method that when zinc and alkali contents in gas and ash of the furnace increase, the charge level is lowered and the admixture of CaCl2-NH4Cl is charged. CONSTITUTION:When analytical values of zinc and alkali group in the gas and ash of a blast furnace collected from inside the furnace increases, the furnace operation is carried out with decreased charge level, and, at the same time, CaCl2-NH4Cl admixture is charged. When chloride is charged, zinc and alkali group which are circulating inside the furnace are discharged from the furnace system as ZnCl, NaCl, KCl. By this method, zinc and alkali can be efficiently removed in a short time, deterioration of coke in the lower part of the furnace caused by the increase of alkali content circulating in the furnace can be prevented, the occurrence and increment of adhesive matters can be restrained, and existing adhesive matters become brittle, fall and can be removed. Consequently, the blast furnace operation can be stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉操業法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a blast furnace operating method.

(従来技術及びその問題点) 高炉内において、Zn、アルカリはそのがス相。(Prior art and its problems) In the blast furnace, Zn and alkali are in their gas phase.

′ 凝縮相温度領域において循環するか、または炉壁付
着物中成分として蓄積されておシ、前者は循環の過程で
徐々に濃縮し、コークス、鉱石の熱間性状劣化等を誘発
するに伴い、炉内通気性を悪化させ操業の不安定化を招
き、高f燃料比の上昇、銑中Siのバラツキ増加の原因
となる。
' It either circulates in the condensed phase temperature region or accumulates as a component in the furnace wall deposits. This deteriorates the air permeability inside the furnace, leading to unstable operation, and causes an increase in the high-f fuel ratio and an increase in the variation in Si in the pig iron.

父後者はZn、アルカリが比紋的τ′品度の低い領域に
凝縮し、これが装入原料の結合物の役割を果たし、強固
な炉壁付着物を発生、成長せしめ、原料装入物の懸帯、
及び荷下り不順を誘発し、これに伴い高炉本来の機能が
発揮できなくなり、高炉燃料比上昇の原因となる。
In the latter case, Zn and alkali condense in the region with low relative τ′ quality, which acts as a binder of the charging material, generates and grows strong deposits on the furnace wall, and causes the Suspension belt,
This causes irregularities in unloading, making it impossible for the blast furnace to perform its original functions, and causing an increase in the blast furnace fuel ratio.

即ち、従来から炉壁付着物の発生メカニズムは、特公昭
42−26377号公報(特許煮518010)によっ
て知られていた。すなわち炉壁付着物は鉱石によって入
ってきた亜鉛、アルカリ類が温度の高い炉内下部で蒸発
し、シャフトや炉腹と称される比較的温度の低い部分に
凝縮し、これが結合物となって装入された鉱石やコーク
スを固め、強固な付着物となる。この付着物が炉壁に発
生し、生長すると、それが要因となって混合層が発生し
、還元ガスの偏流を誘発し、融着帯の円周方向でのバラ
ンスを乱し炉内ガス還元効率ηe。
That is, the mechanism of occurrence of furnace wall deposits has been known from Japanese Patent Publication No. 42-26377 (Patent No. 518010). In other words, the deposits on the furnace wall are caused by zinc and alkalis introduced by ore that evaporate in the lower part of the furnace where the temperature is high, condense in the relatively low temperature parts called the shaft and the furnace belly, and this becomes a bond. It solidifies the charged ore and coke and forms a strong deposit. When this deposit occurs on the furnace wall and grows, it causes a mixed layer, which induces a drifting flow of the reducing gas and disturbs the balance of the cohesive zone in the circumferential direction, reducing the gas inside the furnace. Efficiency ηe.

炉頂がス中のC02(@ <rra。=7□□万、。、齢榊。。。2禰X100)
の低下を起し、銑中[8i〕のバラツキを大きくする。
C02 where the top of the furnace is in the air (@<rra.=7□□10,000,., Agesakaki...2 禰X100)
This causes a decrease in the temperature and increases the dispersion in the pig iron [8i].

また、付着物が発生、生長したまま無理に操業すると、
炉頂から出るガス灰が多くなシ、原料装入物の懸帯を誘
発したり、荷下り不順を誘発したシ、高炉本来の機能を
充分に発揮できなくなり高炉燃料比は大巾に上昇する。
In addition, if you force the operation with deposits forming and growing,
A large amount of gas ash comes out from the top of the furnace, which causes the raw material charges to become stuck and unloading irregularly, and the blast furnace cannot perform its original functions to its full potential, resulting in a significant increase in the blast furnace fuel ratio. .

このため従来、亜鉛、アルカリ類を炉外へ除去するもの
として、当業者は次のような提案を行なっている。
For this reason, those skilled in the art have conventionally proposed the following methods for removing zinc and alkalis from the furnace.

ア、 特公昭54−14562号公報(製鉄原料の塩化
揮発法)イ、 特公昭42−26377号公報(溶鉱炉
の壁付除去法)つ、 特開昭55−115905号公報
(高炉操業法)即ち、上記アの方法は、zn等の非鉄金
座が高炉内へ入るのを防ぐためペレット製造時に予じめ
除去するものである。具体的にはAs及びCu 、Pb
 、Zn等の非鉄金座を製鉄原料゛に塩化剤を加えて混
練磨砕後、造粒し、乾燥後ロータリーキルン中で焼成し
、これ等、非鉄金属等を揮発除去するに当ってCILC
t2とNH2Clよりなる混合塩化剤を使用し、All
およびCu 、Pb 、亜鉛等の非鉄金属を同時に塩化
揮発する方法である。従って該方法は、ペレットにする
過程で製鉄原料から非鉄金属を塩化揮発させ、且つ高温
焼成し、脱Sを行ないペレットを強化することを意図し
ている。
A. Japanese Patent Publication No. 54-14562 (method for chloride volatilization of raw materials for iron making) b. Japanese Patent Publication No. 42-26377 (method for removing walls of blast furnaces) In method A above, non-ferrous metal washers such as ZN are removed in advance during pellet production to prevent them from entering the blast furnace. Specifically, As, Cu, Pb
, Zn, and other non-ferrous metals are added to ironmaking raw materials, kneaded and ground, granulated, dried, and fired in a rotary kiln.
Using a mixed chlorinating agent consisting of t2 and NH2Cl, All
This is a method in which nonferrous metals such as Cu, Pb, and zinc are simultaneously chlorinated and volatilized. Therefore, this method is intended to strengthen the pellets by chlorinating and volatilizing non-ferrous metals from the iron-making raw materials and performing high-temperature firing to remove S during the process of making pellets.

然るにペレットに非鉄金属が含有するのを管理(抑制)
するのは今日の鉱物資源状況からみて管理限界がある。
However, the content of non-ferrous metals in pellets is controlled (suppressed).
There is a management limit to doing so considering the current status of mineral resources.

従って原料中の亜鉛等を除去し、高炉内へ入るのを防止
するには限界がある。
Therefore, there is a limit to how much zinc etc. can be removed from the raw material and prevented from entering the blast furnace.

(発明の目的) 本発明の目的とするところは、炉壁付着物の発生要因と
なる炉内を循環する亜鉛9.アルカリ類を高炉系外へ排
出1回収し炉壁付着物の発生、生長を抑制し、また発生
した付着物を除去し、長期に亘って高炉燃料比の低下、
銑中[S、i]のバラツキ減少などを図る高炉操業法を
這供せんとするものである。
(Objective of the Invention) The object of the present invention is to reduce the amount of zinc circulating in the furnace, which is a factor in the generation of deposits on the furnace wall. The alkalis are discharged out of the blast furnace system and recovered to suppress the generation and growth of deposits on the furnace walls, and the generated deposits are removed, reducing the blast furnace fuel ratio over a long period of time.
The aim is to provide a blast furnace operating method that reduces the variation in pig iron [S, i].

(発明の構成・作用) 本発明は前記の難点を解決する目的で、高炉操業に於て
、高炉ガス灰中の亜鉛、アルカリ類の分析値が高くなっ
たとき、高炉装入物レベルを減尺し、且つCaCA2−
NH4Ct混合物を高炉内へ装入して、炉内より亜鉛、
アルカリ類を味去することを特徴とする高炉操業法であ
る。
(Structure and operation of the invention) In order to solve the above-mentioned difficulties, the present invention reduces the level of blast furnace charge when the analysis values of zinc and alkalis in blast furnace gas ash become high during blast furnace operation. Measured, and CaCA2-
The NH4Ct mixture is charged into the blast furnace, and zinc,
This is a blast furnace operating method characterized by removing alkalis.

これにより本発明では、炉壁付着物の発生要因となる炉
内を循環する亜鉛、アルカIJ dを高炉系外へ排出、
回収し、炉壁付着物の発生、生長を抑制し、また発生し
た付着物を除去し、長期に亘って高炉燃料比の低下、銑
中[Si]のバラツキ減少などを図る高炉操業法を提供
せんとするものである。
As a result, in the present invention, the zinc and alkali IJ d circulating in the furnace, which are the cause of the generation of furnace wall deposits, are discharged to the outside of the blast furnace system.
We provide a blast furnace operating method that reduces the blast furnace fuel ratio and the variation in pig iron [Si] by recovering and suppressing the generation and growth of deposits on the furnace wall, and removing the deposits that have occurred. This is what I am trying to do.

ところで本発明と上記公知例とは、次の点で区別される
By the way, the present invention and the above-mentioned known examples are distinguished from each other in the following points.

すなわち本発明も、アの従来技術も、亜鉛等の除去のた
めにCact2−NH4C1,によシ塩化揮発する考え
は同じであるが、このCaCl2 NH2Clを添加す
る条件が本発明は、高炉装入物を減尺し、且つ高炉内へ
装入することにおいて前述の従沫法と区別される。即ち
本発明における上記、 CaC22−NH2Clは固体
(塊)として炉頂装入装置を通して高炉内へ装入される
ので、前述の従来法の如く、原料のペレット段階でCI
’Cl2−NH2Clを添加するよりは、反応性がよく
、不発明の目的を十分速成することができる。すなわち
、高炉内において亜鉛は、主にダストと共に炉頂を通っ
て炉外に排出される。逆にアルカリは大部分、スラグ中
に含まれて炉外に排出される。塩化反応によシ生成した
Z nCL2は、沸点が730℃であるからZn (沸
点907℃)、ZnO(融点1800℃)に比べ気化し
烏くなり、炉外への排出が促進される。又、NaCLも
融点が800℃と低く、揮発性が著しいため、炉外排出
量が増加する。KClも同様に融点が768℃と低く、
排出し易くなる。
That is, both the present invention and the prior art (a) have the same concept of volatilizing Cact2-NH4C1 and dichloride to remove zinc, etc., but the present invention has the same conditions for adding this CaCl2 NH2Cl. This method is distinguished from the conventional method described above in that the material is reduced in size and charged into the blast furnace. That is, in the present invention, the above-mentioned CaC22-NH2Cl is charged into the blast furnace as a solid (lump) through the furnace top charging device.
'It has better reactivity than adding Cl2-NH2Cl, and the purpose of the invention can be achieved quickly. That is, inside the blast furnace, zinc is mainly discharged to the outside of the furnace together with dust through the furnace top. On the contrary, most of the alkali is contained in the slag and is discharged outside the furnace. Since ZnCL2 produced by the chlorination reaction has a boiling point of 730°C, it vaporizes and becomes cloudy compared to Zn (boiling point 907°C) and ZnO (melting point 1800°C), and its discharge to the outside of the furnace is promoted. Furthermore, NaCL also has a low melting point of 800° C. and is highly volatile, so the amount of NaCL discharged from the furnace increases. Similarly, KCl has a low melting point of 768°C.
Easier to drain.

次に本発明の1浪定理由を述べる。Next, the reason for the 1st grade of the present invention will be described.

1)塩化剤としてCaCl2−NH4CL混合物を用い
たのは下記3つの理由による。
1) The reason why a CaCl2-NH4CL mixture was used as a chlorinating agent was for the following three reasons.

1)−(1) CaC22、NI(4Ct共に常Y晶〜
数百℃の領域で固体として存在し、保存、連撮が容易で
あること。
1)-(1) CaC22, NI (4Ct both ordinary Y crystal ~
It exists as a solid at temperatures of several hundred degrees Celsius, making it easy to store and photograph continuously.

1)−(2) NH2Clは335℃で昇華し、CaC
A2は774℃で溶融する。従って塩化揮発の早いもの
(NH4C2)と比較的遅いもの(CaCA2)の組み
合わせとなシ、塩化揮発除去応召性、除去効率が擾れて
いること。
1)-(2) NH2Cl sublimates at 335°C and becomes CaC
A2 melts at 774°C. Therefore, if a combination of a substance that volatilizes chloride quickly (NH4C2) and a substance that evaporates relatively slowly (CaCA2), the responsiveness and removal efficiency for chloride volatilization will deteriorate.

第1図はA高炉(1730+y+’)におけるCaC4
2とN114Ctの混合比と脱亜鉛、脱アルカリ効率の
関係をボすものである。脱亜鉛、アルカリ量は、減尺繰
喚前後3日間の平均値を示す。NH4Clの混合比が2
0〜60係で脱亜鉛、脱アルカリ効率が最大になってい
る事がわかる。
Figure 1 shows CaC4 in A blast furnace (1730+y+')
2 and N114Ct and the dezincification and dealkalization efficiency. The dezincing and alkali amounts are the average values for 3 days before and after repeated scale reduction. The mixing ratio of NH4Cl is 2
It can be seen that dezincification and dealkalization efficiency is maximum in the ratio 0 to 60.

1)−(:3)塩素以外の成分は高炉ガス、あるいはス
ラグとして炉外に排出され、炉内に悪形・身を及?fさ
ないこと。
1) - (:3) Are components other than chlorine discharged outside the furnace as blast furnace gas or slag, causing harmful effects and physical damage inside the furnace? Don't f.

NI(4CtI″i昇華してNI3とct2に分離され
、NH5は尚炉ガスと共に、炉外に排出される。又、C
ILC42は以下の如く:高温で酸化反応を起こし、C
aOとct2に分離される CaC2z +1/202−+ CaO+ C12↑生
成したCaOuスラグ中に入るためスラグと共に排出さ
れる、と共に塩基度が上昇し、銑中Stを低下する鋤き
をする。
NI (4CtI''i sublimes and is separated into NI3 and ct2, and NH5 is discharged outside the furnace together with the furnace gas.
ILC42 undergoes an oxidation reaction at high temperature, and C
CaC2z +1/202-+ CaO+ C12↑ which is separated into aO and ct2 enters the generated CaOu slag and is discharged together with the slag, and at the same time, the basicity increases and plowing is performed to lower the St in the pig iron.

2)高炉装入物を減尺する理由 減尺操業の実施理由は以下の様に考えている。2) Reasons for reducing the size of blast furnace charge The reason for implementing the reduced scale operation is considered as follows.

2)−(1)、減尺の過程で、一部の亜鉛、アルカリが
蒸発し、ガス灰中で回収される。
2)-(1) During the process of scale reduction, some zinc and alkali are evaporated and recovered in the gas ash.

2)−(2):減尺と共に原料装入物表面近傍の温度が
上昇し、装入物中高さ方向の温度勾配も増大し、それに
伴い従来の高炉解体結果から推定されている亜鉛、アル
カリの濃縮する温度(800〜1300℃)にある炉内
領域を通常操業に比べ極めて小さい範囲に抑えることが
出来る。濃縮範囲を狭める事により、塩化除去反応が効
率よく進行する様になる。
2)-(2): With the reduction in size, the temperature near the surface of the raw material charge rises, and the temperature gradient in the height direction inside the charge increases, and accordingly, zinc and alkali, which are estimated from conventional blast furnace dismantling results, The area inside the furnace, which is at the concentration temperature (800 to 1300°C), can be kept to an extremely small range compared to normal operation. By narrowing the concentration range, the chloride removal reaction can proceed efficiently.

2)−(3):減尺する事により亜鉛、アルカリ塩化物
が装入物と接触、反応して住じる再酸化。
2)-(3): Reoxidation in which zinc and alkali chloride come into contact with the charge and react with it by reducing the size.

凝縮によるトラップが抑制できる。Traps caused by condensation can be suppressed.

上述した三つの要因、す愈わち温度の上昇、亜鉛、アル
カリ濃縮領域の縮少、及び装入物による再酸化、凝縮の
抑制によシ、減尺した状態で塩化物を装入すると、亜鉛
、アルカリの除去効果、塩化剤の歩留シは大きく向上す
る娘が認められた。
Due to the three factors mentioned above, namely the increase in temperature, the reduction of the zinc and alkali enrichment area, and the suppression of re-oxidation and condensation by the charge, charging chloride in a reduced size will It was observed that the removal effect of zinc and alkali and the yield of chlorinating agent were significantly improved.

第1図に、減尺レベルを増す事により、亜鉛、アルカリ
除去の効果が向上した結果を示す。
FIG. 1 shows that the effect of zinc and alkali removal was improved by increasing the scale reduction level.

3)塩化物の装入開始、終了のタイミングCaCA2−
NH4Clは高炉ガス灰中の亜鉛の分析値が上昇する時
該入を開始する。B高炉(1150m3)における塩化
物投入とダスト中の亜鉛、アルカリ濃度の推移実績を第
2図に示す。
3) Timing of start and end of chloride charging CaCA2-
NH4Cl starts to be added when the analysis value of zinc in the blast furnace gas ash increases. Figure 2 shows the changes in chloride input and the zinc and alkali concentrations in the dust in the B blast furnace (1150 m3).

亜鉛濃度の上昇時(A)に第1回目のCaC6−NH4
CL投入を行なった結果、亜鉛、アルカリ濃度の上昇が
あり、しばらくして低下したため、再びCaCl2−N
H4CA投入を行なった。この繰り返しを数回行なった
後、CaC22−NH4Clを投入しても最早亜鉛、ア
ルカリ濃度が上昇しなくなる時機(B)が現れた。
When the zinc concentration increases (A), the first CaC6-NH4
As a result of CL injection, zinc and alkali concentrations increased, and after a while they decreased, so CaCl2-N
H4CA was added. After repeating this several times, a time (B) appeared where the zinc and alkali concentrations no longer increased even if CaC22-NH4Cl was added.

このタイミング、すなわち、CaCL2−NH4Ctを
投入してもダスト中の亜鉛、アルカIJ 14度が上昇
しなくなる時点をもってCaC22−NH4CLの装入
を終了している。
The charging of CaC22-NH4CL is completed at this timing, that is, when the zinc in the dust and the alkali IJ 14 degrees no longer increase even if CaCL2-NH4Ct is charged.

次に本発明の実施例を貌明する。Next, embodiments of the present invention will be explained.

1730 m3の炉容を有するA高炉で炉内残留アルカ
リ総量が急上昇し、原因不明の荷下り不順が頻繁に発生
する様になってきた。シャフト中段から下段にかけて炉
内から採取しfc装入)初生の亜鉛。
In the A blast furnace, which has a furnace capacity of 1,730 m3, the total amount of residual alkali in the furnace has increased rapidly, and irregularities in unloading for unknown reasons have begun to occur frequently. Initial zinc was collected from the furnace from the middle to the bottom of the shaft and charged to fc.

アルカIJ itも増加が認められた。このため、減尺
操業を行ない、かつCaCl2−NH4CLを投入し、
亜鉛。
An increase in Alka IJit was also observed. For this reason, we conducted a reduced scale operation and added CaCl2-NH4CL,
zinc.

アルカリ除去を行なった。その結果、炉内残留アルカリ
総量は従来レベルまで減少し、シャフト中段から下段の
間の亜鉛、アルカリ量も著しく下りSシ、原因不明の荷
下り不順(スリップ)も収まってきたため、燃料比も直
近3ケ月平均に比べ3.5t’J/l、p低減する事が
出来た・ (発明の効果) 以上の様に本発明は、 ■ 通常操業時における亜鉛、アルカリの定期的排出が
できる ■ 減尺操業を利用し、短時間で効率の高い亜鉛、アル
カリ排出が可能である ■ 炉内循環アルカリ量増大による炉下部でのコークス
劣化を防止できる ■ 付着物の生成、生長抑制、並びに既存付着物の脆化
、脱落除去が可能である ■ 高炉操業の安定化に伴う、炉内がス還元効率の向上
、銑中Stのバラツキ低減、並びに高炉燃料比の低減が
できる。
Alkali removal was performed. As a result, the total amount of residual alkali in the furnace has decreased to the previous level, the amount of zinc and alkali between the middle and lower shafts has decreased significantly, and the unexplained unloading irregularities (slips) have subsided, so the fuel ratio has also been adjusted to the latest level. It was possible to reduce p by 3.5 t'J/l compared to the 3-month average. (Effects of the invention) As described above, the present invention can: ■ Regularly discharge zinc and alkali during normal operation ■ Reduction Utilizing shaku operation, it is possible to discharge zinc and alkali efficiently in a short time ■ It is possible to prevent coke deterioration in the lower part of the furnace due to an increase in the amount of alkali circulating in the furnace ■ It is possible to prevent the formation and growth of deposits, and to remove existing deposits. It is possible to remove embrittlement and falling off. ■ With the stabilization of blast furnace operation, it is possible to improve the sulfur reduction efficiency in the furnace, reduce the variation in St in the pig iron, and reduce the blast furnace fuel ratio.

本発明は以上の如き効果を奏するので、工業的に稗益す
るところが大きい高炉操業法である。
Since the present invention has the above-mentioned effects, it is a blast furnace operating method that has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCaCl2とNH4C1混合比、及び減尺レベ
ルと脱亜鉛、脱アルカリ量の関係を示すグラフ、第2図
は塩化物投入とダスト中の亜鉛、アルカリ量の関係を示
すグラフ、第3図は炉内残留アルカリ量と荷下シネ順回
数、及び燃料比の関係を示すグラフ、第4図は減尺操業
と操業諸元の関係を示すグラフである。 特許出願人 新日本製鐵株式會社 扇 7 口 第2図 爵刻 (絣奈) 第3図 岸4図 〃枳尺贋ド台後李P凸更斗@(Hθ
Figure 1 is a graph showing the relationship between CaCl2 and NH4C1 mixing ratio, scale reduction level and amount of dezincification and dealkalization. Figure 2 is a graph showing the relationship between chloride input and amount of zinc and alkali in dust. The figure is a graph showing the relationship between the amount of alkali remaining in the furnace, the number of unloading cine sequences, and the fuel ratio, and FIG. 4 is a graph showing the relationship between scale reduction operation and operating specifications. Patent Applicant: Nippon Steel Corporation Fan 7 Mouth 2nd Illustration Engraved (Kasuna) 3rd Illustration 4 Illustration

Claims (1)

【特許請求の範囲】[Claims] 高炉操業にあたり、高炉ガス灰中の亜鉛、アルカリ類の
分析値が高く々っだとき、高炉装入物レベルを減尺し、
且つCaCl2−NH4CL混合物を高炉内へ装入して
、高炉内よシ亜鉛、アルカリ類を除去することを特徴と
する高炉操業法。
During blast furnace operation, when the analysis values of zinc and alkalis in blast furnace gas ash were too high, the level of blast furnace charge was reduced.
A blast furnace operating method characterized in that a CaCl2-NH4CL mixture is charged into a blast furnace to remove zinc and alkalis from inside the blast furnace.
JP20189283A 1983-10-29 1983-10-29 Operation of blast furnace Granted JPS6096703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20189283A JPS6096703A (en) 1983-10-29 1983-10-29 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20189283A JPS6096703A (en) 1983-10-29 1983-10-29 Operation of blast furnace

Publications (2)

Publication Number Publication Date
JPS6096703A true JPS6096703A (en) 1985-05-30
JPS6143403B2 JPS6143403B2 (en) 1986-09-27

Family

ID=16448554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20189283A Granted JPS6096703A (en) 1983-10-29 1983-10-29 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPS6096703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265140A (en) * 2018-02-07 2018-07-10 德龙钢铁有限公司 A kind of blast furnace efficiently arranges zinc method
CN112280915A (en) * 2020-10-09 2021-01-29 新疆八一钢铁股份有限公司 Iron-making method by using high-zinc magnetite ore blending
CN114807467A (en) * 2022-03-25 2022-07-29 红河钢铁有限公司 Zinc discharging method for blast furnace daily production under high zinc load condition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265140A (en) * 2018-02-07 2018-07-10 德龙钢铁有限公司 A kind of blast furnace efficiently arranges zinc method
CN112280915A (en) * 2020-10-09 2021-01-29 新疆八一钢铁股份有限公司 Iron-making method by using high-zinc magnetite ore blending
CN114807467A (en) * 2022-03-25 2022-07-29 红河钢铁有限公司 Zinc discharging method for blast furnace daily production under high zinc load condition
CN114807467B (en) * 2022-03-25 2023-12-08 红河钢铁有限公司 Zinc discharging method for daily production of blast furnace under high zinc load condition

Also Published As

Publication number Publication date
JPS6143403B2 (en) 1986-09-27

Similar Documents

Publication Publication Date Title
US5496392A (en) Method of recycling industrial waste
US8101153B2 (en) Method for the valorisation of zinc-and sulphate-rich residue
Doronin et al. Commercial methods of recycling dust from steelmaking
US3262771A (en) Recovery of steel and zinc from waste materials
JP4580256B2 (en) Method for recovering zinc from zinc-containing dust
EA013690B1 (en) Separation of metal values in zinc leaching residues
CA2237874A1 (en) Method of processing finely divided material incorporating metal based constituents
JPS6096703A (en) Operation of blast furnace
JP2010007180A (en) Method for producing pig iron by using iron ore with high content of zinc
JP5742360B2 (en) Operation method of rotary kiln for steel dust reduction roasting
JP7151404B2 (en) Method for producing zinc oxide ore
US3547623A (en) Method of recovering iron oxide from fume containing zinc and/or lead and sulfur and iron oxide particles
US3482964A (en) Process of obtaining a granular charge for the blast furnace from a pyrite cinder and iron manufacture dust or powdered iron ore
JPS60128228A (en) Reduction roasting method of iron and steel dust
JP2003147450A (en) Method of producing rude zinc oxide powder
Higley et al. Electric Furnace Steelmaking Dusts, a Zinc Raw Material
JP2016191120A (en) Non-ferrous smelting slag treatment method
SU789619A1 (en) Method of processing zinc-containing dust in blast furnace and steel smelting production
RU2130501C1 (en) Method of processing lead-zinc wastes containing tin and copper
RU2114200C1 (en) Method for processing lead wastes containing antimony, tin and copper
RU2154682C1 (en) Method of recovery of non-ferrous metals from copper-and-lead wastes containing tin and antimony
Moosavi-Khoonsari et al. Technology selection for slag zinc fuming process
JP2008261005A (en) Method for reduction-burning steel dust
US1517232A (en) Smelting ores or the like
SU1293237A1 (en) Method of treating waste of metallurgical production