JP2008261005A - Method for reduction-burning steel dust - Google Patents

Method for reduction-burning steel dust Download PDF

Info

Publication number
JP2008261005A
JP2008261005A JP2007104453A JP2007104453A JP2008261005A JP 2008261005 A JP2008261005 A JP 2008261005A JP 2007104453 A JP2007104453 A JP 2007104453A JP 2007104453 A JP2007104453 A JP 2007104453A JP 2008261005 A JP2008261005 A JP 2008261005A
Authority
JP
Japan
Prior art keywords
steel dust
lead
iron
zinc
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104453A
Other languages
Japanese (ja)
Inventor
Akihiro Tanabe
秋宏 田邊
Katsuhiko Nagai
克彦 永井
Yasuhiro Matsumoto
康弘 松本
Tetsuya Etsuno
哲也 越野
Katsuhiko Ikeda
勝彦 池田
Shuji Endo
修司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007104453A priority Critical patent/JP2008261005A/en
Publication of JP2008261005A publication Critical patent/JP2008261005A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for enhancing a volatilization rate of lead in steel dust without making the burning temperature higher than a normal burning temperature, even if the steel dust is a difficult material to be treated, when reduction-burning the steel dust in a rotary kiln. <P>SOLUTION: In a process of reduction-burning the steel dust of the difficult material to be treated containing zinc and lead, by adding a carbonaceous reducing agent to the steel dust to evaporate and recover zinc and lead, and further recovering iron as the residue, this reduction-burning method includes the steps of: adding iron oxide containing chlorine to the steel dust; mixing them and granulating the mixture to produce a pellet which has a chlorine grade of 3.5 to 4.5 wt.% and the iron grade of 20 to 30 wt.%; adding a carbonaceous reducing agent to the obtained pellet; and reduction-burning them. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄スクラップなどを電気炉などの製鋼炉で処理する際に発生する鉄鋼ダストを、炭素質還元剤によって還元焙焼することにより、亜鉛及び鉛を揮発回収し、鉄を還元焙焼残渣として回収する方法に関する。   The present invention recovers zinc dust and lead by volatilizing and recovering iron and iron by reducing and roasting steel dust generated when steel scrap and the like are processed in a steel making furnace such as an electric furnace, and reducing and roasting iron. The present invention relates to a method for recovering as a residue.

電気炉などの製鋼炉から発生する鉄鋼ダストは、鉄分以外に多量の亜鉛及びその他少量の有価金属を含有している。そのため、資源リサイクルの対象として、鉄鋼ダストから主に亜鉛を回収すると共に、鉄を還元焙焼残渣として回収することが行われている。   Steel dust generated from a steelmaking furnace such as an electric furnace contains a large amount of zinc and a small amount of other valuable metals in addition to iron. Therefore, as an object of resource recycling, zinc is mainly recovered from steel dust and iron is recovered as a reduced roasting residue.

この鉄鋼ダストの還元焙焼方法としては、ロータリーキルンによる還元焙焼法を採用するのが一般的である。この還元焙焼法においては、鉄鋼ダストは必要に応じて予め大きさ5〜10mm程度のペレットに成形され、石炭またはコークス等の炭素質還元剤とともにロータリーキルンに連続的に装入される。   In general, a reduction roasting method using a rotary kiln is adopted as a reduction roasting method of the steel dust. In this reduction roasting method, steel dust is formed into pellets having a size of about 5 to 10 mm in advance as required, and continuously charged in a rotary kiln together with a carbonaceous reducing agent such as coal or coke.

キルン内は重油の燃焼と装入した炭素質還元剤の燃焼により、最高温度が1100〜1200℃程度にコントロールされている。このキルン内で鉄鋼ダストは還元焙焼され、揮発した金属亜鉛はキルン内で再酸化されて粉状の酸化亜鉛となる。鉄鋼ダスト中に少量含まれる鉛についても、同様に還元焙焼され、揮発した金属鉛はキルン内で再酸化されて粉状の酸化鉛となる。   In the kiln, the maximum temperature is controlled to about 1100 to 1200 ° C. by combustion of heavy oil and combustion of the charged carbonaceous reducing agent. Steel dust is reduced and roasted in the kiln, and the volatilized metallic zinc is re-oxidized in the kiln to become powdered zinc oxide. Similarly, a small amount of lead contained in steel dust is reduced and roasted, and the volatilized metal lead is reoxidized in the kiln to become powdered lead oxide.

粉状の酸化亜鉛及び酸化鉛は、ロータリーキルンからの排出ガスとともに集塵機に導入され、捕捉されて粗酸化亜鉛と称する製品として回収される。回収された粗酸化亜鉛は、鉛・亜鉛製錬所に送られて亜鉛地金と鉛地金となる。一方、揮発せずにキルン中に残った還元焙焼残渣は、還元された鉄分が多く含有されるため、還元鉄ペレットと称する製品としてキルン排出端より回収され、鉄鋼メーカーに鉄原料として払いだされる。   Powdered zinc oxide and lead oxide are introduced into the dust collector together with the exhaust gas from the rotary kiln, captured, and recovered as a product called crude zinc oxide. The recovered crude zinc oxide is sent to a lead / zinc smelter to become zinc bullion and lead bullion. On the other hand, the reduced roasting residue that remains in the kiln without volatilization is recovered from the kiln discharge end as a product called reduced iron pellets because it contains a large amount of reduced iron, and paid to the steel manufacturer as an iron raw material Is done.

このような還元焙焼法における亜鉛及び鉛の揮発率は、通常の実操業では90%以上、ラボテストにおいても80%以上である。しかし、難処理原料と称する亜鉛及び鉛の揮発率が低い鉄鋼ダストの場合は、実操業において亜鉛揮発率が50%程度、鉛揮発率が40%程度のものがあり、亜鉛及び鉛の回収率が悪いため操業効率が低下するうえ、還元鉄ペレット中には不純物としての亜鉛及び鉛が残留するため製品品質が悪化し、鉄鋼ダストを資源リサイクルするうえで好ましくない。   In such a reduction roasting method, the volatilization rates of zinc and lead are 90% or more in a normal actual operation and 80% or more in a laboratory test. However, in the case of steel dust with low volatility of zinc and lead, which is called a difficult-to-process raw material, there are zinc volatility of about 50% and lead volatility of about 40% in actual operation, and the recovery rate of zinc and lead Therefore, the operation efficiency is lowered and zinc and lead as impurities remain in the reduced iron pellet, so that the product quality is deteriorated, which is not preferable for recycling steel dust.

このような難処理原料の鉄鋼ダストについて、還元焙焼法による亜鉛の揮発率を向上させる方法として、還元焙焼温度を高くして還元度を上げる方法がある。しかし、還元焙焼温度を例えば1300℃程度まで高くすると、還元焙焼による反応生成物が軟化・溶融してロータリーキルン内壁に付着し、付着物が操業時間の経過に伴って成長増大し、鉄鋼ダストなどの原料がキルン内を移動する際の障害物となり、遂には操業の停止を招くという欠点がある。   As a method for improving the volatilization rate of zinc by the reduction roasting method for such difficult-to-process steel dust, there is a method of increasing the reduction roasting temperature to increase the degree of reduction. However, when the reduction roasting temperature is increased to, for example, about 1300 ° C., the reaction product from the reduction roasting is softened and melted and adheres to the inner wall of the rotary kiln, and the deposits grow and increase with the lapse of operation time. Such a raw material becomes an obstacle when moving in the kiln, and there is a drawback that it eventually causes the operation to stop.

また、還元焙焼法による亜鉛の揮発率を向上させる方法として、鉄鋼ダストに還元剤であるコークスを混合造粒してペレット化することにより、操業中の還元度を上げることも行われている。しかしながら、この還元剤であるコークスを内装させてペレット化する方法は、亜鉛の揮発率向上には効果があるものの、金属亜鉛より蒸気圧が低い金属鉛には効果が少ないという問題があった。   In addition, as a method for improving the volatility of zinc by the reduction roasting method, coke as a reducing agent is mixed and granulated into pellets of steel dust to increase the degree of reduction during operation. . However, the method of incorporating coke as a reducing agent into pellets is effective for improving the volatility of zinc, but has a problem that it is less effective for metallic lead having a lower vapor pressure than metallic zinc.

また、鉛の揮発率を向上させる一般的な方法として、鉛を塩化物にすることにより、蒸気圧を大きくして揮発させる方法、即ち塩化精錬方法が知られている。しかし、この塩化精錬方法における焙焼雰囲気は、鉛の塩化物の反応が進む雰囲気、即ち酸化雰囲気とする必要がある。   Further, as a general method for improving the volatilization rate of lead, there is known a method of volatilizing lead by increasing the vapor pressure by converting lead to chloride, that is, a chlorination refining method. However, the roasting atmosphere in this chloride refining method needs to be an atmosphere in which the reaction of lead chloride proceeds, that is, an oxidizing atmosphere.

従って、還元焙焼法の操業における還元雰囲気では、酸化鉛が還元されて金属鉛となるため、塩化物との反応が進み難い。また、金属鉛よりも金属亜鉛が優先的に塩化物と反応するため、鉛を塩化物にするには大量の塩素を添加する必要が生じる。更に、塩素を大量に添加すると、塩素による排ガス設備の腐食が進行する問題や、塩素を除去するために新たに塩素除去の設備が必要となるなどの問題がある。   Therefore, in the reducing atmosphere in the operation of the reduction roasting method, lead oxide is reduced to become metallic lead, so that the reaction with chloride is difficult to proceed. Moreover, since metal zinc reacts preferentially with chloride over metal lead, it is necessary to add a large amount of chlorine to convert lead to chloride. Furthermore, when a large amount of chlorine is added, there is a problem that the exhaust gas equipment is corroded by chlorine and a new equipment for removing chlorine is required to remove chlorine.

また、特開2003−342648号公報には、鉄鋼ダスト中の亜鉛に対して鉄酸化物を0.5以上の質量比となるように添加することにより、亜鉛の揮発率を向上させる方法が記載されているが、鉛の揮発率を向上させることについては言及されていない。
特開2003−342648号公報
Japanese Patent Application Laid-Open No. 2003-342648 describes a method for improving the volatility of zinc by adding iron oxide so as to have a mass ratio of 0.5 or more with respect to zinc in steel dust. However, there is no mention of improving lead volatility.
JP 2003-342648 A

本発明は、上記した従来の事情に鑑みて、鉄鋼ダストをロータリーキルンで還元焙焼する際に、焙焼温度を通常の温度以上に高くすることなく、鉄鋼ダスト中の亜鉛や鉛の揮発率、特に鉛の揮発率を向上させることが可能な方法を提供することを目的とする。   In the present invention, in view of the above-described conventional circumstances, when reducing and roasting steel dust in a rotary kiln, the volatilization rate of zinc and lead in the steel dust without increasing the roasting temperature to be higher than the normal temperature, In particular, an object is to provide a method capable of improving the volatility of lead.

上記目的を達成するため、本発明が提供する鉄鋼ダストの還元焙焼方法は、亜鉛及び鉛を含有する鉄鋼ダストに炭素質還元剤を添加して還元焙焼することにより、亜鉛及び鉛を揮発させて回収し且つ鉄を残渣として回収する方法において、鉄鋼ダストに塩素を含む鉄酸化物を添加して混合造粒し、塩素品位が3.5〜4.5重量%及び鉄品位が20〜30重量%のペレットとした後、得られたペレットに炭素質還元剤を添加して還元焙焼することを特徴とする。   In order to achieve the above object, the method of reducing and roasting steel dust provided by the present invention volatilizes zinc and lead by adding a carbonaceous reducing agent to the iron and steel dust containing zinc and lead and then reducing and roasting. In the method of recovering and recovering iron as a residue, iron oxide containing chlorine is added to steel dust and mixed and granulated, and the chlorine quality is 3.5 to 4.5% by weight and the iron quality is 20 to 20%. After forming 30 wt% pellets, a carbonaceous reducing agent is added to the obtained pellets for reduction roasting.

本発明によれば、鉄鋼ダストの還元焙焼において、難処理原料であっても亜鉛及び鉛の揮発率、特に鉛の揮発率を向上させることができる。従って、亜鉛及び鉛の回収効率を高めると共に、還元焙焼残渣中に残る亜鉛及び鉛が低減され、回収される還元鉄ペレットの品質向上を図ることができる。   According to the present invention, in the reduction roasting of steel dust, even if it is a difficult-to-process raw material, the volatility of zinc and lead, particularly the volatility of lead can be improved. Therefore, the recovery efficiency of zinc and lead can be increased, and the zinc and lead remaining in the reduction roasting residue can be reduced to improve the quality of recovered reduced iron pellets.

しかも、本発明による鉄鋼ダストの還元焙焼方法は、大量の塩化物を添加する必要がないため、排ガス設備が腐食する危険がない。また、通常のロータリーキルンでの鉄鋼ダストの還元焙焼操業における焙焼温度で実施できるため、反応生成物が軟化・溶融してキルン内壁に付着することを防止することができる。   In addition, the method for reducing and roasting steel dust according to the present invention does not require the addition of a large amount of chloride, so there is no risk of corrosion of the exhaust gas equipment. Moreover, since it can implement at the roasting temperature in the reduction roasting operation of the steel dust in a normal rotary kiln, it can prevent that a reaction product softens and fuse | melts and adheres to an inner wall of a kiln.

本発明による鉄鋼ダストの還元焙焼方法では、まず、鉄鋼ダストに塩素を含む鉄酸化物を添加したものを混合造粒して、大きさ5〜10mm程度のペレットにする。次に、このペレットを、通常操業時に使用する一般的な鉄鋼ダストと同様に使用して、コークスなどの炭素質還元剤と共にロータリーキルンに連続的に装入し、最高温度1100〜1200℃の通常の焙焼温度で還元焙焼する。   In the method for reducing and roasting steel dust according to the present invention, first, steel dust added with iron oxide containing chlorine is mixed and granulated into pellets having a size of about 5 to 10 mm. Next, the pellets are used in the same manner as general steel dust used during normal operation, and are continuously charged in a rotary kiln together with a carbonaceous reducing agent such as coke. Reduce roasting at the roasting temperature.

その際、上記ペレットの組成は、塩素品位が3.5〜4.5重量%及び鉄品位が20〜30重量%の範囲とする。この範囲のペレット組成とすることによって、鉄鋼ダストが難処理原料であっても、実操業における鉛の揮発率を、従来の30〜40%から80〜90%程度にまで向上させることができる。難処理原料中の鉛の揮発率が向上するのは、鉄酸化物中の塩素が鉛の塩化揮発を促進させるためであると考えられる。尚、塩素品位を30重量%より増加させても、難処理原料の処理量は増加せず、原料の処理コストが増加するだけであり好ましくない。   At that time, the composition of the pellets is set such that the chlorine quality is in the range of 3.5 to 4.5% by weight and the iron quality is in the range of 20 to 30% by weight. By setting it as the pellet composition of this range, even if steel dust is a difficult-to-process raw material, the volatilization rate of lead in actual operation can be improved from the conventional 30 to 40% to about 80 to 90%. The reason why the volatilization rate of lead in the difficult-to-process raw material is improved is that chlorine in the iron oxide promotes volatilization of lead by chlorination. Even if the chlorine quality is increased from 30% by weight, the amount of difficult-to-process raw material is not increased, and only the processing cost of the raw material is increased.

原料となる鉄鋼ダストは、特に制限はなく、難処理原料と称する亜鉛及び鉛の揮発率が低い鉄鋼ダストであってもよい。難処理原料の一般的な組成は、亜鉛品位が25〜45重量%、鉛品位が1〜3重量%、鉄品位が5〜15重量%程度である。このような難処理原料であっても、一般的な鉄鋼ダストの場合と同様に還元焙焼して、亜鉛及び鉛を高い揮発率で揮発させて回収することができる。   The steel dust used as a raw material is not particularly limited, and may be steel dust having a low volatility of zinc and lead, which is called a difficult-to-process raw material. The general composition of difficult-to-process raw materials is about 25 to 45% by weight of zinc, 1 to 3% by weight of lead, and about 5 to 15% by weight of iron. Even such difficult-to-process raw materials can be recovered by roasting and reducing zinc and lead at a high volatility as in the case of general steel dust.

また、塩素を含む鉄酸化物としては、難処理原料など原料とする鉄鋼ダストの組成に応じて、上記したペレットの組成に調製し得るものであれば特に制限はない。一般的に上記ペレット組成を調製するうえで、塩素を含む鉄酸化物は、塩素5〜10重量%及び鉄45〜50重量%を含むものが好ましい。このような塩素を含む鉄酸化物は、鉄鋼ダストの品位に合わせて酸化鉄や塩化物などの試薬から調製しても良いが、塩素品位6%程度、鉄品位45%程度を含有するニッケル精製工程で発生する鉄澱物などを用いることも可能である。   Further, the iron oxide containing chlorine is not particularly limited as long as it can be prepared to the above-described pellet composition according to the composition of steel dust used as a raw material such as a difficult-to-process raw material. In general, in preparing the pellet composition, the iron oxide containing chlorine preferably contains 5 to 10% by weight of chlorine and 45 to 50% by weight of iron. Such iron oxides containing chlorine may be prepared from reagents such as iron oxide and chloride according to the quality of steel dust, but nickel refinement containing about 6% chlorine quality and about 45% iron quality. It is also possible to use iron starch generated in the process.

上記混合造粒の作業には、一般的に用いられるペレタイジング装置を使用することができる。例えば、回転式のパン型ペレタイザーを用いて、難処理原料などの鉄鋼ダストと塩素を含む鉄酸化物とを所定のペレット組成となるように連続的に供給し、ミスト状の水分を添加しながらペレタイジングする。ペレットのサイズとしては5〜10mm程度が好ましく、含水率としては10〜20重量%程度となることが好ましい。   A generally used pelletizing apparatus can be used for the mixing granulation operation. For example, using a rotating pan-type pelletizer, continuously supplying steel dust such as difficult-to-process raw materials and iron oxide containing chlorine to a predetermined pellet composition, while adding mist-like moisture Pelletizing. The pellet size is preferably about 5 to 10 mm, and the water content is preferably about 10 to 20% by weight.

このようにして調整したペレットを、炭素質還元剤と共にロータリーキルン内に装入して、通常の鉄鋼ダストの還元焙焼操業条件に従って、ロータリーキルンでの操業を実施する。炭素質還元剤としては、石炭やコークスを用いることができる。また、焙焼温度は、従来と同様であってよく、具体的には最高温度が1100〜1200℃となるようにコントロールする。   The pellets thus adjusted are charged into the rotary kiln together with the carbonaceous reducing agent, and the operation in the rotary kiln is carried out according to the normal roasting and operating conditions of steel dust. Coal and coke can be used as the carbonaceous reducing agent. The roasting temperature may be the same as that of the prior art, and is specifically controlled so that the maximum temperature is 1100 to 1200 ° C.

上記本発明の方法によれば、鉄鋼ダストが難処理原料であっても、亜鉛の揮発率を従来と同程度に維持しながら、鉛の揮発率を80%以上に向上させることができる。また、これに伴って、還元焙焼残渣中に残る鉛量が従来の1/3〜1/10程度にまで低減されるので、鉄原料として回収する還元鉄ペレットの品質向上を図ることが可能となる。   According to the method of the present invention, even if steel dust is a difficult-to-process raw material, the volatility of lead can be improved to 80% or more while maintaining the volatility of zinc at the same level as before. Along with this, the amount of lead remaining in the reduced roasting residue is reduced to about 1/3 to 1/10 of the conventional amount, so it is possible to improve the quality of reduced iron pellets recovered as iron raw materials. It becomes.

難処理原料について、以下の条件でラボレベルの還元焙焼試験を実施した。ロータリーキルンでの焙焼を再現可能な装置として、図1に示す水平式回転焙焼炉を使用した。この水平式回転焙焼炉は、発熱体2を備えた炉体1内に、SUS310S製の炉心管3(長さ200mm×直径125mm)が回転軸4により回転可能に設置されている。尚、炉心管3の温度は、熱電対5により制御するようになっている。   The difficult-to-process raw material was subjected to a laboratory roasting reduction roasting test under the following conditions. A horizontal rotary roasting furnace shown in FIG. 1 was used as an apparatus capable of reproducing roasting in a rotary kiln. In this horizontal rotary roasting furnace, a furnace core tube 3 (length: 200 mm × diameter: 125 mm) made of SUS310S is installed in a furnace body 1 having a heating element 2 so as to be rotatable by a rotary shaft 4. Note that the temperature of the core tube 3 is controlled by a thermocouple 5.

試験に供した難処理原料の組成は、Zn:42.18重量%、Pb:2.60重量%、Fe:7.26重量%、Cd:0.14重量%、Cr:1.27重量%である。また、塩素を含む鉄酸化物(添加物1)を、組成がZn:0.51重量%、Pb:0.05重量%、Fe:46.2重量%、C:0.13重量%、Cl:6.9重量%となるように、試薬のZnO、PbO、Fe、CaCl及び粒度1.0〜2.0mmのコークス塊を用いて調製した。また、比較のために、添加物2としてCaClを用いた。 The composition of the difficult-to-process raw material used for the test was: Zn: 42.18% by weight, Pb: 2.60% by weight, Fe: 7.26% by weight, Cd: 0.14% by weight, Cr: 1.27% by weight It is. In addition, an iron oxide containing chlorine (additive 1) has a composition of Zn: 0.51% by weight, Pb: 0.05% by weight, Fe: 46.2% by weight, C: 0.13% by weight, Cl : 6.9% by weight was prepared using the reagent ZnO, PbO, Fe 2 O 3 , CaCl 2 and a coke lump having a particle size of 1.0 to 2.0 mm. For comparison, CaCl 2 was used as additive 2.

上記難処理原料に、上記添加物1又は添加物2を添加して混合造粒し、粒径が5.4〜9.6mmのペレットをそれぞれ作製した。作製した試料1〜6の各ペレットについて、難処理原料100重量部に対して添加した添加物1(塩素を含む鉄酸化物)又は添加物2(CaCl)の重量部を、試料ごとに下記表1に示す。尚、比較例の試料1は、添加物なしの上記難処理原料のみからなるペレットである。 The additive 1 or additive 2 was added to the difficult-to-process raw material and mixed and granulated to produce pellets having a particle size of 5.4 to 9.6 mm. For each of the produced pellets of Samples 1 to 6, the parts by weight of additive 1 (iron oxide containing chlorine) or additive 2 (CaCl 2 ) added to 100 parts by weight of the difficult-to-process raw material are as follows. Table 1 shows. In addition, the sample 1 of a comparative example is a pellet which consists only of the said difficult-to-process raw material without an additive.

Figure 2008261005
Figure 2008261005

得られた試料1〜6の各ペレットを、炭素質還元剤と共に、図1に示す水平式回転焙焼炉の炉心管1内に装入し、回転軸4から雰囲気ガスを流しながら還元焙焼した。炭素質還元剤としては、粒度1.0〜2.0mmのコークス塊を使用し、その装入量は各試料のペレット300gに対して60gとした。還元焙焼の条件は、実機の操業温度分布と滞留時間から、通常の操業条件と同様となるように推定して、室温から1050℃まで1時間掛けて昇温し、1050℃で1時間保持するという温度条件を選定した。また、雰囲気ガスは、実機の重油燃焼雰囲気を想定してCO:N=1:5とし、その気流速度を2リットル/分とした。 The obtained pellets of samples 1 to 6 are charged together with the carbonaceous reducing agent into the core tube 1 of the horizontal rotary roasting furnace shown in FIG. did. As the carbonaceous reducing agent, a coke lump having a particle size of 1.0 to 2.0 mm was used, and the charging amount was 60 g with respect to 300 g of pellets of each sample. The conditions for reduction roasting are estimated from the operating temperature distribution and residence time of the actual machine to be the same as the normal operating conditions, and the temperature is raised from room temperature to 1050 ° C. over 1 hour and held at 1050 ° C. for 1 hour. The temperature condition was selected. In addition, the atmosphere gas was set to CO 2 : N 2 = 1: 5 assuming an actual heavy oil combustion atmosphere, and the air flow rate was set to 2 liters / minute.

上記還元焙焼試験の終了後、炉心管1内に残った残渣を取り出して分析し、還元焙焼試験前の試料と比較して、亜鉛及び鉛の揮発率を求めると共に、還元焙焼残渣中の鉛品位を求めた。これらの結果を、還元焙焼試験前の塩素品位及び鉄品位と共に、下記表2に示した。尚、鉄、亜鉛、鉛量、塩素の分析は、ICP法(メーカー名:セイコーインスツルメンツ、装置名:SPS3000)によって実施した。また、ペレットの塩素品位及び鉄品位は、混合造粒後のペレットについて組成分析をすることによって求めた。   After completion of the reduction roasting test, the residue remaining in the core tube 1 is taken out and analyzed, and compared with the sample before the reduction roasting test, the volatilization rates of zinc and lead are obtained, and in the reduction roasting residue Sought lead grade. These results are shown in Table 2 below together with the chlorine quality and iron quality before the reduction roasting test. The analysis of iron, zinc, lead content and chlorine was carried out by ICP method (manufacturer name: Seiko Instruments, apparatus name: SPS3000). Moreover, the chlorine quality and iron quality of the pellet were determined by analyzing the composition of the pellet after mixed granulation.

Figure 2008261005
Figure 2008261005

上記の結果から判るとおり、比較例である難処理原料のみからなる試料1の還元焙焼試験では、鉛揮発率は33%に過ぎない。また、難処理原料に塩化物(CaCl)を混合造粒した比較例の試料2〜3においても、鉛揮発率は36〜38%と上記試料1とほぼ同程度の揮発率しか得られなかった。 As can be seen from the above results, the lead volatilization rate is only 33% in the reduction roasting test of Sample 1 consisting only of difficult-to-process raw materials as a comparative example. Further, in Comparative Samples 2 to 3 in which chloride (CaCl 2 ) is mixed and granulated as a difficult-to-process raw material, the lead volatilization rate is 36 to 38%, which is almost the same as that of Sample 1 above. It was.

一方、本発明の試料5〜6、即ち、難処理原料に対して塩素を含む鉄酸化物を混合造粒して、塩素品位を3.5〜4.5重量%に調製した場合、通常の鉄鋼ダストと同様の80%以上の鉛揮発率が得られた。しかし、試料4では、難処理原料に塩素を含む鉄酸化物を混合造粒したが塩素品位が2.4重量%と低すぎるため、十分な鉛揮発率が得られなかった。   On the other hand, when samples 5 to 6 of the present invention, that is, iron oxide containing chlorine is mixed and granulated to a difficult-to-process raw material to prepare a chlorine quality of 3.5 to 4.5% by weight, A lead volatility of 80% or more, similar to steel dust, was obtained. However, in Sample 4, the iron oxide containing chlorine was mixed and granulated in the difficult-to-process raw material, but the chlorine quality was too low at 2.4% by weight, so that a sufficient lead volatilization rate was not obtained.

ラボレベルの焙焼試験で用いた水平式回転焙焼炉を示す概略の断面図である。1 is a schematic cross-sectional view showing a horizontal rotary roasting furnace used in a laboratory-level roasting test.

符号の説明Explanation of symbols

1 炉体
2 発熱体
3 炉心管
4 回転軸
5 熱電対
DESCRIPTION OF SYMBOLS 1 Furnace 2 Heating body 3 Core tube 4 Rotating shaft 5 Thermocouple

Claims (3)

亜鉛及び鉛を含有する鉄鋼ダストに炭素質還元剤を添加して還元焙焼することにより、亜鉛及び鉛を揮発させて回収し且つ鉄を残渣として回収する方法において、鉄鋼ダストに塩素を含む鉄酸化物を添加して混合造粒し、塩素品位が3.5〜4.5重量%及び鉄品位が20〜30重量%のペレットとした後、得られたペレットに炭素質還元剤を添加して還元焙焼することを特徴とする鉄鋼ダストの還元焙焼方法。   In a method in which zinc and lead are volatilized and recovered by adding a carbonaceous reducing agent to steel dust containing zinc and lead and then reduced and roasted, and iron is contained in the steel dust as a residue. After adding oxide and mixing and granulating, pellets with a chlorine grade of 3.5 to 4.5% by weight and an iron grade of 20 to 30% by weight are added, and then a carbonaceous reducing agent is added to the obtained pellets. A method for reducing and roasting steel dust, characterized by subjecting to reduction roasting. 前記塩素を含む鉄酸化物は、塩素を5〜10重量%及び鉄を45〜50重量%含むことを特徴とする、請求項1に記載の鉄鋼ダストの還元焙焼方法。   The method for reducing and roasting steel dust according to claim 1, wherein the iron oxide containing chlorine contains 5 to 10% by weight of chlorine and 45 to 50% by weight of iron. 前記鉄鋼ダストは、鉄品位が5〜15重量%、亜鉛品位が25〜45重量%、及び鉛品位が1〜3重量%であることを特徴とする、請求項1又は2に記載の鉄鋼ダストの還元焙焼方法。   The steel dust according to claim 1 or 2, wherein the steel dust has an iron grade of 5 to 15 wt%, a zinc grade of 25 to 45 wt%, and a lead grade of 1 to 3 wt%. Reduction roasting method.
JP2007104453A 2007-04-12 2007-04-12 Method for reduction-burning steel dust Pending JP2008261005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104453A JP2008261005A (en) 2007-04-12 2007-04-12 Method for reduction-burning steel dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104453A JP2008261005A (en) 2007-04-12 2007-04-12 Method for reduction-burning steel dust

Publications (1)

Publication Number Publication Date
JP2008261005A true JP2008261005A (en) 2008-10-30

Family

ID=39983700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104453A Pending JP2008261005A (en) 2007-04-12 2007-04-12 Method for reduction-burning steel dust

Country Status (1)

Country Link
JP (1) JP2008261005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506008A (en) * 2021-07-19 2021-10-15 太原重工股份有限公司 Steel pipe warehouse and steel pipe storage management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506008A (en) * 2021-07-19 2021-10-15 太原重工股份有限公司 Steel pipe warehouse and steel pipe storage management method
CN113506008B (en) * 2021-07-19 2022-09-09 太原重工股份有限公司 Steel pipe warehouse and steel pipe storage management method

Similar Documents

Publication Publication Date Title
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
JP5862305B2 (en) Smoke ash treatment method
Mahdavian et al. Recovery of vanadium from Esfahan Steel Company steel slag; optimizing of roasting and leaching parameters
JP6094467B2 (en) Method for producing zinc oxide ore
CN101341265A (en) Separation of metal values in zinc leaching residues
CN105861838A (en) Method for enriching platinum from fluorine-containing failure platinum catalyst
JP2006307268A (en) Method for collecting dust formed in slag fuming
JP5742360B2 (en) Operation method of rotary kiln for steel dust reduction roasting
JP7151404B2 (en) Method for producing zinc oxide ore
JP6094468B2 (en) Method for producing zinc oxide ore
JP2012021176A (en) Method for producing metallic lead
JP2008261005A (en) Method for reduction-burning steel dust
WO2017187973A1 (en) Method for processing iron and steel dust, method for producing zinc, method for producing starting material for iron and steel, and starting material for iron and steel
JP2006316333A (en) Zinc-containing dust pellet, and zinc recovering method using the same
CN206986256U (en) A kind of system for handling utilising zinc containing waste residue
JP2003147450A (en) Method of producing rude zinc oxide powder
JP5168992B2 (en) Method for treating iron starch generated from nickel refining process
JP2009167469A (en) Method for treating copper-containing dross
JP2006176857A (en) Slag fuming method
JP2007186761A (en) Method for recovering valuable metal
JP2003342648A (en) Process for operating rotary kiln used for reduction roasting of iron and steel dust
JP2003342649A (en) Process for operating rotary kiln used for reducing iron and steel dust
CN109338096A (en) Process for producing zinc calcine by using rotary kiln
CN107326189A (en) A kind of system and method for handling utilising zinc containing waste residue
WO2024193245A1 (en) Method of treating a platinum group metal material