JPS6096524A - Preparation of high-purity alumina powder - Google Patents

Preparation of high-purity alumina powder

Info

Publication number
JPS6096524A
JPS6096524A JP58203047A JP20304783A JPS6096524A JP S6096524 A JPS6096524 A JP S6096524A JP 58203047 A JP58203047 A JP 58203047A JP 20304783 A JP20304783 A JP 20304783A JP S6096524 A JPS6096524 A JP S6096524A
Authority
JP
Japan
Prior art keywords
aluminum
film
mercury
water
alumina powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58203047A
Other languages
Japanese (ja)
Inventor
Kazuo Naito
内藤 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58203047A priority Critical patent/JPS6096524A/en
Publication of JPS6096524A publication Critical patent/JPS6096524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To prepare high-purity fine alumina powder at low cost, by forming a mercury film on the surface of aluminum from which an oxidized film is removed, oxidizing the mercury film in water or in an oxygen atmosphere. CONSTITUTION:An oxidized film of aluminum in a lamellar, powder, etc, having >=99wt% purity is removed by chemical method of immersion in an alkali solution such as caustic potash, etc. or an acidic solution such as hydrochloric acid, etc. or by mechanical method. A thin, uniform film is formed on the surface of aluminum by coating or vacuum metallizing. The mercury film is then oxidized in water or in an oxygen atmosphere, Al dissolved as amalgam in mercury is reacted with H2O at the interface with water, to form Al2O3 and H2, or it is reacted with gaseous oxygen to form Al2O3, and high-purity fine aluminum powder having about 1mu is obtained.

Description

【発明の詳細な説明】 本発明は高純度で微細なアルミナ粉末を低コストで製造
する方法を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a method for producing fine alumina powder with high purity at low cost.

ニューセラミックスのfa ffi 5 ’14料であ
るアルミナは、高純度であること及び粒度が小であるこ
と(焼結温度に大きな差が生ずる。)が要求されている
Alumina, which is a material for new ceramics, is required to have high purity and small particle size (which causes a large difference in sintering temperature).

かかる要求の下で、再結晶アンモニウム明ばんを焼成し
たり、アンモニウム明ぽんと炭酸水素アンモニウムとを
反応させる方法などが開発されているが、高コストにつ
くという問題点がある。
In response to these demands, methods such as firing recrystallized ammonium alum and reacting ammonium alum with ammonium hydrogen carbonate have been developed, but these methods have the problem of high cost.

本発明は上記従来例の問題点を解消したものであって、
酸化膜を除去したアルミニウムの表面に水銀被膜を形成
し、次いでこれを水中又は酸素雰囲気中において酸化さ
せて粉末状のアルミナを生成することを特徴とする。
The present invention solves the problems of the above-mentioned conventional example, and
It is characterized in that a mercury film is formed on the surface of aluminum from which the oxide film has been removed, and then this is oxidized in water or an oxygen atmosphere to produce powdered alumina.

アルミニウム(少なくとも純度99%以上は必要である
。)の酸化膜を除去する方法としては、苛性カリ、苛性
ソーダなどのアルカリ性液又は塩酸、硫酸などの酸性液
で洗浄すればよい。
As a method for removing the oxide film of aluminum (which must have a purity of at least 99%), it may be washed with an alkaline solution such as caustic potash or caustic soda, or an acidic solution such as hydrochloric acid or sulfuric acid.

具体的にはアルミニウム板、アルミニウム片、アルミニ
ウム粉末を苛性カリ溶液などに浸漬したり、これらによ
って表面洗浄すればよい。前記酸化膜除去方法は機械的
方法などの他の方法であってもよい。
Specifically, an aluminum plate, an aluminum piece, or an aluminum powder may be immersed in a caustic potash solution or the like, or the surface may be cleaned with the same. The oxide film removal method may be another method such as a mechanical method.

酸化膜を除去したアルミニウムの表面に水銀の被膜を形
成するには、表面張力で球滴となった水銀をアルミニウ
ムの表面に置き、これを薄膜状にして前記表面をカバー
すればよい。酸化膜を除去したアルミニウムの表面と水
銀とは濡れ性が良く、容易に前記被膜が形成される。
In order to form a mercury film on the surface of aluminum from which an oxide film has been removed, mercury that has become a droplet due to surface tension is placed on the surface of the aluminum, and this is formed into a thin film to cover the surface. The surface of aluminum from which the oxide film has been removed has good wettability with mercury, and the film is easily formed.

具体的には、例えば苛性カリ溶液中にアルミニウム板を
浸漬し、酸化膜を除去した後水銀をアルミニウム板の表
面に塗布してアルミニウム板の表面に薄い均一厚さの前
記被膜を形成する前記被膜の形成方法としては、アルミ
ニウム板、アルミニウム片、アルミニウム粉末などの表
面に水銀を真空蒸着するなど他の方法を採用することも
可能である。
Specifically, for example, an aluminum plate is immersed in a caustic potash solution, an oxide film is removed, and then mercury is applied to the surface of the aluminum plate to form a thin, uniformly thick film on the surface of the aluminum plate. Other methods such as vacuum deposition of mercury on the surface of an aluminum plate, aluminum piece, aluminum powder, etc. can also be used as a forming method.

以上のようにして水銀の被膜を形成したアルミニウムを
水中において酸化させると粉末状のアルミナが生成され
ると同時に水は分解されて水素ガスを発生する。
When aluminum coated with mercury is oxidized in water as described above, powdered alumina is produced and at the same time water is decomposed to generate hydrogen gas.

前記粉末状のアルミナが生成される原理は次のとおりで
ある。
The principle of producing the powdered alumina is as follows.

すなわち、アルミニウム(AI)と水銀(l1g)の接
触面において、Hg中に八1が熔解しアマルガム化する
とき、AIが電子を放出することによって次の反応が起
きる。
That is, at the interface between aluminum (AI) and mercury (l1g), when 81 is dissolved in Hg and amalgamated, the following reaction occurs as AI releases electrons.

Al−Al +3e 次いでイオン化したAI’+と自由電子e−とが前記被
膜のHg中に拡散し、水(+120)との接触面におい
て次の反応が起る。
Al-Al +3e Next, ionized AI'+ and free electrons e- diffuse into the Hg of the coating, and the following reaction occurs at the contact surface with water (+120).

この結果微粒子状のアルミナと水素ガスとが生成される
As a result, particulate alumina and hydrogen gas are generated.

以上の反応が進行することにより、アルミニウムは消費
されて粉末状のアルミナに変化して水中に沈澱する一方
、水は分解されて水素ガスが生成される。その間水銀は
触媒として働き、その量は増減しない。前記反応は水温
によって大きく影響を受け、水温が高い程アルミナ生成
率は向上する。しかし大気圧下では余り高温にすると、
反応が激しくなり、前記被膜がアルミニウム表面より剥
離するおそれがあるので、90℃以下に保つ必要がある
As the above reaction progresses, aluminum is consumed and changed into powdered alumina, which is precipitated in water, while water is decomposed and hydrogen gas is generated. During this time, mercury acts as a catalyst and its amount does not increase or decrease. The reaction is greatly influenced by water temperature, and the higher the water temperature, the higher the alumina production rate. However, if the temperature is too high under atmospheric pressure,
It is necessary to maintain the temperature at 90° C. or lower since the reaction may become intense and the coating may peel off from the aluminum surface.

以上に述べた水中における酸化に代えて、水銀の被膜を
形成したアルミニウムを酸素雰囲気中において酸化させ
ることによっても粉末状のアルミナを得ることができる
。この場合は前記3十 水銀(Hg)の働きによってイオン化されたAIが酸素
(02)との間で次の反応を起す。
Instead of the above-described oxidation in water, powdered alumina can also be obtained by oxidizing aluminum coated with mercury in an oxygen atmosphere. In this case, AI ionized by the action of 30 mercury (Hg) causes the following reaction with oxygen (02).

4八I + 302−2AI20x この結果、極微粒子状のアルミナが前記被膜表面上に生
成されるのである。
48I + 302-2AI20x As a result, ultrafine alumina particles are generated on the surface of the coating.

前記酸素雰囲気としては空気が最適であるが、アルゴン
などの不活性ガスがし在する酸素雰囲気であってもよく
、更に純酸素であってもよい。
Although air is most suitable as the oxygen atmosphere, an oxygen atmosphere in which an inert gas such as argon is present may be used, or even pure oxygen may be used.

本発明は上述のように、アルミニウムを原料とし、非常
に簡単な装置を用いてアルミナ粉末を得ることができる
ので、大幅なコストダウンを図ることができる。しかも
本発明方法で得られたアルミナ粉末は高純度であると共
に1μ以下の微粒子とすることも可能であるので、ニュ
ーセラミノラスの材料としては最適である。又水中にて
アルミナ粉末を生成する場合には副産物として水素ガス
を得ることができるという長所もある。
As described above, in the present invention, aluminum is used as a raw material and alumina powder can be obtained using a very simple device, so that it is possible to significantly reduce costs. Moreover, the alumina powder obtained by the method of the present invention has high purity and can be made into fine particles of 1 μm or less, making it optimal as a material for new ceramino lath. Another advantage of producing alumina powder in water is that hydrogen gas can be obtained as a by-product.

(実施例) 純度99.99%のアルミニウム板を5CIIIX2C
IIlx0.3 ellの矩形板状のアルミニウム片に
切断し、これを苛性カリ溶液(20%)中に浸漬して酸
化膜を除去する。次いで苛性カリ溶液中において水銀の
薄い被19i (50μ〜100μ程度の厚さ)を前記
アルミニウム片の両表面(合計20d)に形成する。こ
れを温水に満たした水素ガス発生装置(枝管付フラスコ
)に投入する。そして、前記装置において発生した水素
ガスを集収すると共に、前記装置に沈澱したアルミナ粉
末を回収する。
(Example) 5CIIIX2C aluminum plate with a purity of 99.99%
Cut into a rectangular plate-shaped aluminum piece of 0.3 ell and immerse it in a caustic potash solution (20%) to remove the oxide film. Next, a thin coating 19i of mercury (about 50 μm to 100 μm thick) is formed on both surfaces of the aluminum piece (20 d in total) in a caustic potash solution. Pour this into a hydrogen gas generator (flask with branch pipe) filled with hot water. Then, the hydrogen gas generated in the device is collected, and the alumina powder precipitated in the device is recovered.

図面は以上の結果得られるアルミナ粉末の積算製造量を
示している。
The drawing shows the cumulative production amount of alumina powder obtained as a result of the above.

Aは水温を27℃に保った場合で、アルミナ粉末の1時
間当りの製造量は平均30■、すなわち1.5■/h、
 c+4であった。
A is a case where the water temperature is kept at 27°C, and the amount of alumina powder produced per hour is on average 30 ■, that is, 1.5 ■/h.
It was c+4.

Bは水温を50℃に保った場合で、アルミナ粉末の1時
間当りの製造量は平均175■、すなわち8.75■/
h・−であった。
B is a case where the water temperature is kept at 50℃, and the amount of alumina powder produced per hour is on average 175■, that is, 8.75■/
It was h・-.

Cは水温を70℃に保った場合で、アルミナ粉末の1時
間当りの製造量は平均531■、すなわち26.5■/
h−一であった。
C is a case where the water temperature is kept at 70℃, and the average amount of alumina powder produced per hour is 531■, that is, 26.5■/
It was h-1.

以上のようにして生成されたアルミナ粉末を水中から取
出し、乾燥させた後、その粒子を電子顕微鏡で観察する
と、1μ前後の粒径であることが確められた。
After the alumina powder produced as described above was taken out of water and dried, the particles were observed under an electron microscope, and it was confirmed that the particles had a particle size of about 1 μm.

【図面の簡単な説明】[Brief explanation of drawings]

図面は水中lll演法よる本発明を実施した結果得られ
たアルミナ粉末の積算製造量と時間との関係を示すグラ
フである。 代理人 弁理士 石 原 勝
The drawing is a graph showing the relationship between the cumulative production amount of alumina powder obtained as a result of implementing the present invention using the underwater lll algorithm and time. Agent Patent Attorney Masaru Ishihara

Claims (1)

【特許請求の範囲】[Claims] +11 酸化膜を除去したアルミニウムの表面に水銀被
膜を形成し、次いでこれを水中又は酸素雰囲気中におい
て酸化させて粉末状のアルミナを生成することを特徴と
する高純度アルミナ粉末の製造法。
+11 A method for producing high-purity alumina powder, which comprises forming a mercury film on the surface of aluminum from which an oxide film has been removed, and then oxidizing this in water or an oxygen atmosphere to produce powdered alumina.
JP58203047A 1983-10-29 1983-10-29 Preparation of high-purity alumina powder Pending JPS6096524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58203047A JPS6096524A (en) 1983-10-29 1983-10-29 Preparation of high-purity alumina powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58203047A JPS6096524A (en) 1983-10-29 1983-10-29 Preparation of high-purity alumina powder

Publications (1)

Publication Number Publication Date
JPS6096524A true JPS6096524A (en) 1985-05-30

Family

ID=16467462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58203047A Pending JPS6096524A (en) 1983-10-29 1983-10-29 Preparation of high-purity alumina powder

Country Status (1)

Country Link
JP (1) JPS6096524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507206A (en) * 2002-11-21 2006-03-02 コミツサリア タ レネルジー アトミーク Preparation of monolithic hydrated alumina, amorphous or crystalline alumina, aluminate, and composites by oxidizing aluminum or aluminum alloys
CN102826579A (en) * 2012-09-05 2012-12-19 大连海蓝光电材料有限公司 Preparation method of ultrahigh-purity and superfine aluminium oxide powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507206A (en) * 2002-11-21 2006-03-02 コミツサリア タ レネルジー アトミーク Preparation of monolithic hydrated alumina, amorphous or crystalline alumina, aluminate, and composites by oxidizing aluminum or aluminum alloys
CN102826579A (en) * 2012-09-05 2012-12-19 大连海蓝光电材料有限公司 Preparation method of ultrahigh-purity and superfine aluminium oxide powder

Similar Documents

Publication Publication Date Title
JP5470332B2 (en) Ammonia electrosynthesis method and ammonia electrosynthesis apparatus
US6861122B2 (en) Ceramic member with fine protrusions on surface and method of producing the same
JPH07501855A (en) How to create a strong bond between copper layer and ceramic
JP2008063166A (en) Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor
KR20070045369A (en) Spray coated member for plasma processing container internal member and production method therefor
CN103238380A (en) Metallized substrate, metal paste composition, and method for producing metallized substrate
US5525320A (en) Process for aluminum nitride powder production
US4836898A (en) Methane conversion reactor
Schlögl et al. The reaction of potassium-graphite intercalation compounds with water
JP2004003022A (en) Plasma treatment container inside member
HUT34562A (en) Process for the production of electrodes
US2419561A (en) Crystal contact of which one element is mainly silicon
JPS6096524A (en) Preparation of high-purity alumina powder
JP4681560B2 (en) Reaction medium used for hydrogen production by water decomposition and method for producing the same
KR20050013968A (en) Plasma resistant member
US4732751A (en) High purity lithium oxide process
WO2006064730A1 (en) Method for producing metal
JP3908104B2 (en) Carbon nanotube wiring board and manufacturing method thereof
JPS6096502A (en) Process for producing hydrogen gas
CN109529799A (en) A kind of cladded type methane oxidative coupling catalyst and preparation method and application
JP4431564B2 (en) Carbon nanotube wiring board and manufacturing method thereof
US4032623A (en) Hydroperoxy group-containing aluminum compound and method of making the same
US20200232106A1 (en) Production of carbon products in molten salt media
JPH10182133A (en) Refining of silicon
US20080311032A1 (en) Method of manufacturing aluminum oxide (Al2O3) substrate