JPS6096502A - Process for producing hydrogen gas - Google Patents

Process for producing hydrogen gas

Info

Publication number
JPS6096502A
JPS6096502A JP20304683A JP20304683A JPS6096502A JP S6096502 A JPS6096502 A JP S6096502A JP 20304683 A JP20304683 A JP 20304683A JP 20304683 A JP20304683 A JP 20304683A JP S6096502 A JPS6096502 A JP S6096502A
Authority
JP
Japan
Prior art keywords
hydrogen gas
water
amalgam
aluminum
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20304683A
Other languages
Japanese (ja)
Inventor
Kazuo Naito
内藤 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20304683A priority Critical patent/JPS6096502A/en
Publication of JPS6096502A publication Critical patent/JPS6096502A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To produce hydrogen safely and economically with a simple apparatus, by removing the oxide film from the surface of Al, forming Hg or amalgam coating layer to the surface, and contacting the Al with water thereby causing the decomposition of water. CONSTITUTION:The plate, chip, powder, etc. of Al is treated with an aqueous solution of a caustic alkali such as NaOH, KOH, etc. to remove the oxide film from the surface. A thin coating film of Hg or Zn amalgam having uniform thickness is applied to the treated surface e.g. by vacuum metallizing. When the metallized Al is immersed in water, water is decomposed into hydrogen and oxygen by the catalytic action of Hg or Hg in the amalgam. Generated hydrogen is collected in the form of gas, and oxygen reacts with Al to form Al2O3.

Description

【発明の詳細な説明】 本発明は簡単な装置で、安価に、安全に、純粋な水素ガ
スを製造する方法を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a method for producing pure hydrogen gas inexpensively and safely using a simple device.

水素ガスの工業的製造法としては従来水の電気分解法、
水・囮ガスからの分離法、炭化水素の分解法などがある
が、これらは大がかりな装置を必要とするという問題点
がある。又水の電気分解法は電力消費が人でコスト高と
なる一方、水・陣ガスからの分離法、炭化水素の分解法
は炭素成分が水素ガス中に混じり純粋な水素ガスを得る
のが困難であるという問題点がある。
Conventional methods for producing hydrogen gas include water electrolysis,
There are methods for separating water and decoy gas, and methods for decomposing hydrocarbons, but these methods have the problem of requiring large-scale equipment. In addition, the electrolysis method of water is expensive due to the power consumption, while the separation method from water/gas and the decomposition method of hydrocarbons have carbon components mixed in the hydrogen gas, making it difficult to obtain pure hydrogen gas. There is a problem that.

又水素ガスの実験的製法として、金属ナトリウムを水中
に浸漬して水素ガスを発生させる方法などがあるが、金
属ナトリウム等の取扱いが危険で、水素ガスの発生を制
御することも回器なため安全性に問題がある。しかもN
aOHなどが生成されて強アルカリ性となり、その処理
に困ることになる。
In addition, as an experimental method for producing hydrogen gas, there is a method of immersing metallic sodium in water to generate hydrogen gas, but handling of metallic sodium etc. is dangerous and it is difficult to control the generation of hydrogen gas. There are safety issues. Moreover, N
AOH etc. are generated and become strongly alkaline, making it difficult to dispose of them.

本発明は上記従来例の諸問題点を一挙に解消したもので
あって、酸化膜を除去したアルミニウムの表面に水銀又
はアマルガムの被膜を形成し、次いでこれに水を接触さ
せて水素ガスを発生させることを特徴とする。
The present invention solves all the problems of the above-mentioned conventional examples at once.A mercury or amalgam coating is formed on the surface of aluminum from which the oxide film has been removed, and then water is brought into contact with this to generate hydrogen gas. It is characterized by causing

アルミニウム(若干の他金属、不純物を含有するものを
も含む)の酸化膜を除去する方法としては、苛性カリ、
苛性ソーダなどのアルカリ性液又は塩酸、硫酸などの酸
性液で洗浄すればよい。具体的には、アルミニウム板、
アルミニウム片、アルミニウム粉末を苛性カリ溶液など
に浸漬したり、これらによって表面洗浄すればよい。前
記酸化膜除去方法は機械的方法などの他の方法であって
もよい。
To remove the oxide film of aluminum (including some other metals and impurities), caustic potash,
It may be cleaned with an alkaline liquid such as caustic soda or an acidic liquid such as hydrochloric acid or sulfuric acid. Specifically, aluminum plate,
The aluminum piece or aluminum powder may be immersed in a caustic potash solution, or the surface may be cleaned with the same. The oxide film removal method may be another method such as a mechanical method.

酸化膜を除去したアルミニウムの表面に水銀又はアマル
ガムの被膜を形成するには、表面張力で球滴となった水
銀又はアマルガムをアルミニウムの表面に置き、これを
薄膜状にして前記表面をカバーすればよい。酸化膜を除
去したアルミニウムの表面と水銀(又はアマルガム)と
は濡れ性が良く、容易に前記被膜が形成される具体的に
は、例えば苛性カリ溶液中にアルミニウム板を浸漬し、
酸化膜を除去した後、水銀又はアマルガムをアルミニウ
ム板の表面に塗布してアルミニウム板の表面に薄い均一
厚さの前記被膜を形成する。
To form a mercury or amalgam film on the surface of aluminum from which the oxide film has been removed, mercury or amalgam, which has become a droplet due to surface tension, is placed on the aluminum surface, and this is formed into a thin film to cover the surface. good. The surface of aluminum from which the oxide film has been removed has good wettability with mercury (or amalgam), and the film is easily formed. Specifically, for example, an aluminum plate is immersed in a caustic potash solution,
After removing the oxide film, mercury or amalgam is applied to the surface of the aluminum plate to form a thin and uniform coating on the surface of the aluminum plate.

前記被膜の形成方法としては、アルミニウム板、アルミ
ニウム片、アルミニウム粉末などの表面に水銀、又はア
マルガムを真空蒸着するなど他の方法を採用することも
可能である。
As a method for forming the film, other methods such as vacuum deposition of mercury or amalgam on the surface of an aluminum plate, aluminum piece, aluminum powder, etc. can also be adopted.

前記アマルガムとしてはカドミウムアマルガム、錫アマ
ルガム、銀アマルガム、銅アマルガムなどを使用できる
が、最も良好なものは亜鉛アマルガムである。実験によ
ると、この亜鉛アマルガムを被膜としたものの方が水銀
を被膜としたものよりも、水素ガス発生率が格段に良好
である。
As the amalgam, cadmium amalgam, tin amalgam, silver amalgam, copper amalgam, etc. can be used, but the most preferable one is zinc amalgam. According to experiments, the rate of hydrogen gas generation is much better with zinc amalgam coatings than with mercury coatings.

以上のようにして水銀又はアマルガムの被膜を形成した
アルミニウムを水中に浸漬すると、水は分解されて水素
ガスを発生すると同時にアルミニウムが酸化されてアル
ミナが生成される。前記アルミニウムの水との接触方法
は、水中に浸漬する外、水蒸気を吹付ける方法などがあ
る。
When aluminum coated with mercury or amalgam is immersed in water as described above, the water is decomposed to generate hydrogen gas, and at the same time, the aluminum is oxidized to produce alumina. The aluminum may be brought into contact with water by immersing it in water or by spraying water vapor on it.

前記水素ガスの発生原理は次のとおりであるすなわち、
アルミニウム(AI)と水銀(Hg)の接触面において
、Hg中にAIが溶解しアマルガム化するとき、AIが
電子を放出することによって次の反応が起きる。
The hydrogen gas generation principle is as follows:
At the interface between aluminum (AI) and mercury (Hg), when AI is dissolved in Hg and amalgamated, the following reaction occurs as AI releases electrons.

Al−Al” +3e− 次いでイオン化したAIと自由電子e−とが前記被膜の
Hg中に拡散し、水(H2O)との接触面において次の
反応が起る。
Al-Al'' +3e- Next, the ionized AI and free electrons e- diffuse into the Hg of the coating, and the following reaction occurs at the surface in contact with water (H2O).

この結果水素ガスとアルミナが生成される。As a result, hydrogen gas and alumina are produced.

以上の反応が進行することにより、アルミニウムは消費
されてアルミナに変化して水中に沈澱などする一方、水
は分解されて水素ガスが生成される。その間水銀は触媒
として働き、その量は増減しない。前記被膜としてアマ
ルガムを使用したときは、その成分中の水銀が上記のよ
うに働き、亜鉛などの他の成分がその働きを助長する。
As the above reaction progresses, aluminum is consumed and changed to alumina, which is precipitated in water, while water is decomposed and hydrogen gas is generated. During this time, mercury acts as a catalyst and its amount does not increase or decrease. When amalgam is used as the coating, mercury in its components functions as described above, and other components such as zinc facilitate this function.

又前記反応は水温によって大きく影響を受け、水温が高
い程水素ガス発生率は向上する。しかし大気圧下では余
り高温にすると、反応が激しくなり、前記被膜がアルミ
ニウム表面より剥離するおそれがあるので、90℃以下
に保つ必要がある。40℃〜80℃の範囲に水温を保つ
と好適である。
Further, the reaction is greatly influenced by water temperature, and the higher the water temperature, the higher the hydrogen gas generation rate. However, if the temperature is too high under atmospheric pressure, the reaction may become intense and the coating may peel off from the aluminum surface, so it is necessary to maintain the temperature at 90° C. or lower. It is preferable to keep the water temperature within the range of 40°C to 80°C.

本発明によれば上述のように、非富に簡単な装置を用い
て純粋な水素ガスを製造することができる。又エネルギ
計算を行うと純度99.99%のアルミニウム製造に要
する消費エネルギ(消費電力)の約25%を回収するこ
とができ、鉛蓄電池以上の高効率の電力貯蔵手段となる
。従って低純度のアルミニウム(純度99%)を使用す
るときには、水素ガス発生あために要する消費エネルギ
(アルミニウムに蓄積したエネルギ)は、水の電気分解
などに要するエネルギより少なくなり、低コストとなる
。その上、水素ガスと同時に生成される純粋なアルミナ
はニューセラミックスの原料として貴重なもので、これ
による収益を勘案すると、水素ガスの製造コストは大幅
に引下げられる。更に本発明においては、水素ガス製造
にほとんど危険を伴わず、又その反応生成液も中性又は
弱アルカリ性でその処理が容易であるので、安全性にお
いても優れている。
According to the present invention, as described above, pure hydrogen gas can be produced using a very simple device. Furthermore, when calculating the energy consumption, it is possible to recover approximately 25% of the energy (power consumption) required to produce 99.99% pure aluminum, making it a more efficient power storage means than lead-acid batteries. Therefore, when using low-purity aluminum (99% purity), the energy consumed to generate hydrogen gas (the energy stored in aluminum) is less than the energy required for water electrolysis, etc., resulting in lower costs. Moreover, pure alumina, which is produced at the same time as hydrogen gas, is valuable as a raw material for new ceramics, and when the profits from this are taken into account, the cost of producing hydrogen gas can be significantly reduced. Furthermore, in the present invention, hydrogen gas production is accompanied by almost no danger, and the reaction product liquid is also neutral or weakly alkaline and can be easily disposed of, so it is also excellent in terms of safety.

(第1実施例) 純度99.99%のアルミニウム板を5 c+a X 
’l c+nXo、3 cn+の矩形板状のアルミニウ
ム片に切断し、これを苛性カリ溶液(20%)中に浸漬
して酸化膜を除去する。次いで苛性カリ溶液中において
水銀の薄い被膜(50μ〜1ooμ程度の厚さ)を前記
アルミニウム片の両表面(合計20.ffl>に形成す
る。これを温水を満した水素ガス発生装置(枝管付フラ
スコ)に投入する。そして、前記装置において発生した
水素ガスを束数する。
(First example) 5 c+a X aluminum plates with a purity of 99.99%
'l c+nXo, 3 cn+' is cut into a rectangular plate-shaped aluminum piece and immersed in a caustic potash solution (20%) to remove the oxide film. Next, a thin film of mercury (approximately 50μ to 1OOμ thick) is formed on both surfaces of the aluminum piece (20.ffl in total) in a caustic potash solution. ).Then, the hydrogen gas generated in the device is counted.

第1図は以上の結果得られる水素ガスの積算発生量を示
している。
FIG. 1 shows the cumulative amount of hydrogen gas generated as a result of the above.

Aは水温を27℃に保った場合で、1時間当り平均19
.5ccの水素ガスがflられた。
A is when the water temperature is kept at 27℃, and the average water temperature is 19 per hour.
.. 5 cc of hydrogen gas was flushed.

Bは水温を50℃に保った場合で、1時間当り平均11
4 ccの水素ガスが得られた。
B is when the water temperature is kept at 50℃, and the average of 11 per hour
4 cc of hydrogen gas was obtained.

Cは水温を70℃に保った場合で、1時間当り平均34
5ccの水素ガスが得られた。
C is when the water temperature is kept at 70℃, and the average is 34 per hour.
5 cc of hydrogen gas was obtained.

(第2実施例) 被膜として亜鉛含有量約5%以下の亜鉛アマルガムを用
いた外は、第1実施例と同様にした。水温を50℃と7
0℃との2種類に維持したときの水素ガス発生速度(c
c/h)を第2図に示している。水温を50℃に維持し
た場合はDで示すように、実験開始約10分後にピーク
に達し、約7.000cc/hとなる。他方水温を70
℃に維持した場合はEで示すように、実験開始約3分後
にピークに達し、約18.000cc/hとなる。
(Second Example) The same procedure as in the first example was carried out except that a zinc amalgam having a zinc content of about 5% or less was used as the coating. Set the water temperature to 50℃ and 7
Hydrogen gas generation rate (c
c/h) is shown in FIG. When the water temperature is maintained at 50° C., as shown by D, the peak is reached about 10 minutes after the start of the experiment and becomes about 7.000 cc/h. On the other hand, set the water temperature to 70
When the temperature is maintained at ℃, the peak value is reached about 3 minutes after the start of the experiment and becomes about 18,000 cc/h, as shown by E.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素を被膜とした場合の水素ガスの樟算発生量
と時間との関係を示すグラフ、第2図は亜鉛アマルガム
を被膜とした場合の水素ガスの発生速度と時間との関係
を示すグラフである。 代理人 弁理士 石 原 勝
Figure 1 is a graph showing the relationship between the amount of hydrogen gas generated and time when hydrogen is used as a coating, and Figure 2 is a graph showing the relationship between hydrogen gas generation rate and time when zinc amalgam is used as a coating. This is a graph showing. Agent Patent Attorney Masaru Ishihara

Claims (1)

【特許請求の範囲】[Claims] +11 酸化膜を除去したアルミニウムの表面に水銀又
はアマルガムの被膜を形成し、次いでこれに水を接触さ
せて水素ガスを発生させることを特徴とする水素ガス製
造法。
+11 A hydrogen gas production method characterized by forming a mercury or amalgam film on the surface of aluminum from which an oxide film has been removed, and then bringing water into contact with the film to generate hydrogen gas.
JP20304683A 1983-10-29 1983-10-29 Process for producing hydrogen gas Pending JPS6096502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20304683A JPS6096502A (en) 1983-10-29 1983-10-29 Process for producing hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20304683A JPS6096502A (en) 1983-10-29 1983-10-29 Process for producing hydrogen gas

Publications (1)

Publication Number Publication Date
JPS6096502A true JPS6096502A (en) 1985-05-30

Family

ID=16467448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20304683A Pending JPS6096502A (en) 1983-10-29 1983-10-29 Process for producing hydrogen gas

Country Status (1)

Country Link
JP (1) JPS6096502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110446C (en) * 1999-09-06 2003-06-04 李明伟 Method of extracting hydrogen from water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540854A (en) * 1967-05-26 1970-11-17 United Aircraft Corp Metal-water fueled reactor for generating steam and hydrogen
JPS5855303A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
JPS5855304A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
JPS5855302A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540854A (en) * 1967-05-26 1970-11-17 United Aircraft Corp Metal-water fueled reactor for generating steam and hydrogen
JPS5855303A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
JPS5855304A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
JPS5855302A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110446C (en) * 1999-09-06 2003-06-04 李明伟 Method of extracting hydrogen from water

Similar Documents

Publication Publication Date Title
US3470044A (en) Electrolytic regeneration of spent ammonium persulfate etchants
SU1621818A3 (en) Method of utilization of electric storage batteries, printed-circuit boards with electronic components
US5248398A (en) Process for direct electrolytic regeneration of chloride-based ammoniacal copper etchant bath
WO2005087968A1 (en) Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
US4280887A (en) Method of regenerating ammoniacal etching solutions useful for etching metallic copper
US4853095A (en) Conversion of manganese dioxide to permanganate
US4992149A (en) Process for the simultaneous recovery of manganese dioxide and zinc
US3137600A (en) Dissolution of copper
GB2147611A (en) Process for treating the surface of valve metals with chalcogens
EP3356577B1 (en) Treatment of etch baths
US5062930A (en) Electrolytic permanganate generation
JPS5997536A (en) Method for recovering ruthenium from metallic electrode
JPS6096502A (en) Process for producing hydrogen gas
JPH0733595B2 (en) Conversion of manganate to permanganate
US5085730A (en) Process for regenerating ammoniacal chloride etchants
US3455845A (en) Method for the production of finely-divided catalyst coatings on pore-free surfaces of hydrogen-absorbing metallic substances,and product resulting therefrom
US3378669A (en) Method of making non-porous weld beads
UA80456C2 (en) Method for removing mercury from solutions contaminated with mercury
CA1055882A (en) Process for the electrolytic recovery of gallium and/or alkali metals
US2162385A (en) Process of manufacturing large surface electrodes
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
JPS6096524A (en) Preparation of high-purity alumina powder
US4007037A (en) Composition and method for chemically etching copper elements
JPS624890A (en) Surface treating agent
JPS6134125A (en) Method for recovering silver