JPS609648B2 - electromagnetic induction device - Google Patents
electromagnetic induction deviceInfo
- Publication number
- JPS609648B2 JPS609648B2 JP56080220A JP8022081A JPS609648B2 JP S609648 B2 JPS609648 B2 JP S609648B2 JP 56080220 A JP56080220 A JP 56080220A JP 8022081 A JP8022081 A JP 8022081A JP S609648 B2 JPS609648 B2 JP S609648B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- grooves
- electromagnetic induction
- winding
- insulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/18—Liquid cooling by evaporating liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/323—Insulation between winding turns, between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/12—Insulating of windings
- H01F41/122—Insulating between turns or between winding layers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Coils Of Transformers For General Uses (AREA)
- Insulating Of Coils (AREA)
- Transformer Cooling (AREA)
- Discharge Heating (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
この発明は、一般的には蒸発冷却型電磁誘導装置に関し
、特に蒸発冷却型変圧器等の電磁誘導装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates generally to evaporatively cooled electromagnetic induction devices, and more particularly to electromagnetic induction devices such as evaporatively cooled transformers.
変圧器その他の絶縁媒体を必要とする電気装置に使用さ
れる絶縁性冷煤として、油の代りにガスと蒸気からなる
冷煤が使用できる。Cold soot made of gas and steam can be used instead of oil as insulating cold soot used in transformers and other electrical devices that require an insulating medium.
これが広く使用されない要因はその経済性である。即ち
、現在知られている冷煤としての蒸気の費用に対して、
油のそれは数分の1にすぎない。ガス/蒸気変圧器に必
要な高価な液体絶縁物の量を減らすのに有効な最近の変
圧器産業に於ける新しい技術は、粉体塗装された絶縁電
線の開発である。The reason it is not widely used is its economy. That is, compared to the currently known cost of steam as cold soot,
That of oil is only a fraction of that. A recent new technology in the transformer industry that is effective in reducing the amount of expensive liquid insulation required in gas/steam transformers is the development of powder coated insulated wire.
この絶縁技術の開発によって、巻線導体に要求される絶
縁が数ミル(1/1000インチ)の厚さまで減り、巻
線の大きさが減りトこれに相応して変圧器全体の大きさ
が4・さくなり、必要な蒸発冷却用液体誘電性冷嬢の量
も少なくなった。しかし、この絶縁方法に於ては、極め
て一様な絶縁表面被覆(普通は望ましいことである)の
せいで、かような絶縁のなされた電線で形成される巻線
の隣り合ったターン間を、液体冷煤が通り抜けられない
という問題が現われた。油入り変圧器で用いられる如く
巻線のターンの間に適当なスベーサで冷煤通路を設ける
という従来の方法は、いくつかの理由で粉体塗装給寮漆
線を使用する蒸発冷却変圧器には適当ではない。The development of this insulation technology has reduced the insulation required for the winding conductors to a few mils (1/1000 of an inch) thick, reducing the size of the windings and correspondingly reducing the overall size of the transformer to 4.・The amount of liquid dielectric cooler required for evaporative cooling is also reduced. However, in this method of insulation, because of the highly uniform insulation surface coating (which is usually desirable), the distance between adjacent turns of a winding made of such insulated wire is limited. , a problem appeared that liquid cold soot could not pass through. The traditional method of providing cold soot passages with suitable spacing between winding turns, as used in oil-filled transformers, is not suitable for evaporatively cooled transformers using powder-coated wire for several reasons. is not appropriate.
第1に、ガス又は黍気冷煤と在来の油バリャとの誘電係
数の違いによって、電位勾配が非常に異なるので、油入
り変圧器用の絶縁構造は有効に使用できない。第2に、
固体のスベーサを設ければ巻線の半径方向寸法が大きく
なり、高価な蒸発可能な冷煤の必要量が増し、変圧器自
体の大きさも大きくなる。第3に、巻線のターンの間に
最適値以上にスべ−サを差込むと、短絡事故時の電磁力
に対抗する強度が減る。以上に述べた理由で、固体のス
ベーサを用いないで、誘導巻線の表面に液体絶縁物を行
き亘らせ、又それらの表面の間を通り抜けさせる適当な
通路を得るために、一体とされた通路を持つ粉体塗装絶
縁コイルを得ることは望ましいことである。First, insulation structures for oil-filled transformers cannot be used effectively because the potential gradients are very different due to the difference in dielectric coefficients between gas or smoke-cooled soot and conventional oil barriers. Second,
The provision of a solid spacer increases the radial dimensions of the windings, increases the requirement for expensive evaporable cold soot, and increases the size of the transformer itself. Thirdly, if the spacer is inserted between the turns of the winding more than the optimum value, the strength against electromagnetic force in the event of a short circuit will be reduced. For the reasons stated above, it is necessary to avoid the use of solid spacers, which are integrated in order to provide adequate passage for the liquid insulation to span and pass between the surfaces of the induction winding. It would be desirable to have a powder-coated insulated coil with passages that are clear.
簡単にいえば、この発明はターンの表面の隣り合う部分
間に冷却および絶縁のための蒸発可能な液体誘電体が流
れる空間を形成するために、巻線ターン表面に所定の凹
凸を持つ巻線を備えた新規な改良された蒸発冷却電磁誘
導装置に関するものである。Briefly, the invention consists of windings with predetermined irregularities on the surface of the winding turns to form spaces between adjacent portions of the surfaces of the turns through which an evaporable liquid dielectric for cooling and insulation flows. The present invention relates to a new and improved evaporative cooling electromagnetic induction device.
表面の凹凸は、長い金属質導体の側面の一つに、所定間
隔で形成された横方向の絶縁体の溝或いは突起とするこ
とができる。この発明の明細書ではまた、連続的に移動
する長い金属導体の表面に、精密に制御された間隔で溝
を形成することと、かように形成された溝の間隔を製造
中に測定することとのための方法および装置も開示され
ている。The surface irregularities may be lateral insulating grooves or protrusions formed at predetermined intervals on one side of the long metallic conductor. The specification of this invention also provides for forming grooves at precisely controlled spacing in the surface of a continuously moving long metal conductor and for measuring the spacing of the grooves so formed during manufacture. Also disclosed are methods and apparatus for.
その方法には、導体の少く共一つの表面に所定間隔で切
り込まれた溝を特っ、一様に固体絶縁された導体を得る
ために、溝を持つ導体を絶縁するステップを備えている
。次に添附図面に示す本発明の実施例に沿って本発明を
説明する。第1図にガスノ蒸気冷却型の3相電力用変圧
器の概略が示されている。The method includes the step of insulating the grooved conductor to obtain a uniformly solid insulated conductor, with grooves cut at predetermined intervals into one surface of the conductor. . Next, the present invention will be described along with embodiments of the present invention shown in the accompanying drawings. FIG. 1 schematically shows a gas-steam cooled three-phase power transformer.
この変圧器は、タンク則ち囲い12の中に、磁気鉄心一
巻線組立体14を有し、又この鉄○一巻線組立体の正常
な運転温度範囲内で蒸発可能な、C2CI4、C8F,
60等の液体誘電体16がある。この液体誘電体16が
例えばポンプ18とパイプ装置20の様な適当な手段で
、鉄心一巻線組立体14の上にそそぎかけられる。この
液体誘電体16の蒸気に加えて、変圧器10の運転開始
の際の絶縁のために、非凝縮性のガス例えばSF6を囲
い12の中に入れてもよい。鉄心一巻線組立体14は、
磁気鉄心22と、この変圧器10の接続される電力源(
図示されてない)のそれぞれの相に対して一つずつの3
組の巻線24を備えている。巻線24は、層26の様に
軸万向に並べられた複数の層を有する。第2図に示され
る様に、それぞれの層26は、半径方向に並ぶ複数のタ
ーン例えば32,34からなり、これらのターンがター
ン表面36,38,40,42で互いに接触しあってい
る。従来のやり方ではこれらのターンはセルロースべ−
パで包んで絶縁されていた。The transformer has a magnetic core single winding assembly 14 in a tank or enclosure 12, and has C2CI4, C8F, which is evaporable within the normal operating temperature range of the magnetic core single winding assembly. ,
There is a liquid dielectric 16, such as 60. This liquid dielectric 16 is poured onto the core single winding assembly 14 by suitable means such as, for example, a pump 18 and a piping system 20. In addition to this liquid dielectric 16 vapor, a non-condensable gas such as SF6 may be introduced into the enclosure 12 for insulation during commissioning of the transformer 10. The iron core single winding assembly 14 is
The magnetic core 22 and the power source connected to this transformer 10 (
3, one for each phase (not shown).
A set of windings 24 is provided. The winding 24 has a plurality of layers arranged axially, such as layers 26 . As shown in FIG. 2, each layer 26 is comprised of a plurality of radially aligned turns, such as 32, 34, which contact each other at turn surfaces 36, 38, 40, 42. Traditionally, these turns are made using cellulose base.
It was insulated by wrapping it in plastic.
紙で包まれたターンは、ターン表面間に液体誘電物が流
れるのに十分な凹凸を有しており、巻線が一様な膜で覆
われてその膜が蒸発して巻線が冷却される。最近の粉体
塗装技術によって、巻線導体の表面に2から4ミル(0
.06から0.12側)の厚さの一様な絶縁物の付着が
可能になり、コイルの半径方向寸法を減らすことができ
るようになった。しかし、この新しいソリッドタィプの
粉体塗装で導体に絶縁が施こされると、ターン表面が互
いに密着して、液体誘電体の巻線の通り抜ける通路が得
られなくなる。冷却/絶縁液体誘電体が巻線全体の内部
を一様に流れてコイルのターン表面を覆う液体誘電体の
膜が形成され、これが蒸発し、冷却し、絶縁する機能を
果すことが最も重要なことである。The paper-wrapped turns have enough roughness to allow liquid dielectric to flow between the turn surfaces, coating the windings with a uniform film that evaporates and cools the windings. Ru. Modern powder coating technology allows coating of 2 to 4 mils (0.
.. This makes it possible to deposit an insulator with a uniform thickness (from 0.06 to 0.12 side), making it possible to reduce the radial dimension of the coil. However, when the conductor is insulated with this new solid type of powder coating, the turn surfaces stick together and there is no passageway for the liquid dielectric windings to pass through. Cooling/Insulation The liquid dielectric flows uniformly inside the entire winding to form a film of liquid dielectric covering the turns surface of the coil, which evaporates and most importantly performs its cooling and insulating functions. That's true.
このために、二つの異る解決法が考慮された。第1のも
のは、油入り変圧器で用いられる油ダクトに似た冷媒ダ
クトを巻線全体に形成するために、固体の絶縁スべ−サ
を使用するものであった。この解決方法は幾つかの理由
で満足の得られないものである。この様なスベーサによ
れば、巻線の半径方向寸法が増し、粉体塗装絶縁で得ら
れるスペース節減の効果が無くなる。又、固体のスベー
サを用いると、短絡事故の際の力に対抗するのに必要な
コイルの強度が低下する。最も重大な事は、ガス或いは
黍気冷媒と在来の固体バリャ(絶縁スベーサ)との誘電
率の違いのために、電位勾配が大きく変化してしまうこ
とである。ガス又は蒸気の誘電率は1に近いのに対して
、在来の団体絶縁材料の誘電率は約4乃至6である。ガ
ス状の誘電体の中に存在する非一様な或いは高いストレ
スの与えられている露場を貫く誘電率の高い材料は、固
体スべ−サの無い場合に比べて、コロナ開始電圧を極め
て低くし、絶縁破壊を低い電圧で発生させる原因と成り
得る。在釆の液体冷却の装置で用いられる様な、Lコイ
ルと巻線を支えるスべ−サとして望ましい構成の或るも
のは、1に近い誘電率を持つ絶縁誘電物の中での非一様
な亀場を貫くスベーサはその高い誘電率のために、ガス
/蒸気冷却装置に用いるのには適当でない。最も簡単で
かつ望ましい解決法は、スベーサを用いない方法であり
、巻線内部に液体袷煤循環通路が形成されるように、何
らかの形の凹凸を表面に持つ粉体塗装絶縁表面を得るこ
とである。For this purpose, two different solutions were considered. The first was to use solid insulating spacers to form refrigerant ducts throughout the windings, similar to the oil ducts used in oil-filled transformers. This solution is unsatisfactory for several reasons. Such a spacer increases the radial dimensions of the windings and eliminates the space savings provided by powder coated insulation. Also, the use of a solid baser reduces the strength of the coil needed to resist the forces in the event of a short circuit. Most importantly, the potential gradient changes significantly due to the difference in dielectric constant between the gas or smoke refrigerant and the conventional solid barrier. The dielectric constant of gases or vapors is close to 1, whereas the dielectric constant of conventional bulk insulation materials is about 4 to 6. A high permittivity material penetrating a non-uniform or highly stressed field in a gaseous dielectric can significantly increase the corona onset voltage compared to the case without a solid spacer. This can cause dielectric breakdown to occur at low voltages. Some of the preferred configurations for spacers supporting L-coils and windings, such as those used in existing liquid-cooled systems, are based on non-uniformity in an insulating dielectric material with a dielectric constant close to 1. Due to its high dielectric constant, a substrate penetrating through a curved surface is not suitable for use in gas/vapor cooling devices. The simplest and most desirable solution is to avoid using a smoother, and to obtain a powder-coated insulating surface with some form of roughness on the surface so that liquid soot circulation channels are formed inside the windings. be.
この問題は、粉体塗装絶縁処理の特徴が表面の一様性で
あるのだから、その表面に凹凸形成する最良の方法であ
る。固体の均質な電気絶縁材料の被覆から成る一様な被
覆を持つ長い導体に凹凸を与えるのに、二つの方法が用
いられた。第1の方法では、第3図乃至第6図に示され
ている様に、絶縁物が粉体塗装される前に、導体の表面
に溝48の様な等しい間隔の溝状の横方向の窪みが設け
られた。This problem is solved because the characteristic of powder coating insulation treatment is surface uniformity, so this is the best way to form irregularities on the surface. Two methods have been used to texture long conductors with a uniform coating of solid, homogeneous electrically insulating material. In the first method, as shown in FIGS. 3-6, the surface of the conductor is coated with equally spaced lateral grooves, such as grooves 48, before the insulation is powder coated. A depression was provided.
これらの溝48の幅は例えば幅250ミル(6.35側
)で、矩形断面の長い導体50の大きい方の側面表面5
2に設けられた。溝48は例えば6ミル(0.16肋)
の深さに形成されたが、粉体塗装で絶縁物がつけられた
後でも、この6ミルの深さが維持された。この溝48の
深さは、金属導体50の断面積に対する溝48の深さ(
その深さで削り取られる断面積)の比が計画された巻線
の動作に必要な所定の電流容量を導体に与えるのに必要
な値でなければならぬことで決定される。このように形
成された溝を持つ絶縁導体50がコイル型に巻き付けら
れて、巻線24と同様な巻線が作られると、これらの溝
で形成される通路を通って、液体冷煤がうまく流れた。
導体501こ形成される溝の間隔、深さおよび導体の長
手方向軸Dに対する角度(第3図および第4図では、導
体の軸心を90oで横切る溝48が示されているが、こ
れらの溝は任意の角度で導体表面に設けることができる
)を制御することによって液体議電体の流量を制御でき
る。第3図および第4図に示されている溝48は砂時計
の首の形(中細り)である。The width of these grooves 48 may be, for example, 250 mils wide (on the 6.35 side), and the width of the large side surface 5 of the long rectangular cross-section conductor 50.
It was established on 2. Groove 48 is, for example, 6 mil (0.16 ribs)
This 6 mil depth was maintained even after the insulation was applied with powder coating. The depth of the groove 48 is determined by the depth of the groove 48 relative to the cross-sectional area of the metal conductor 50 (
It is determined that the ratio of the cross-sectional area to be removed at that depth must be the value necessary to give the conductor a predetermined current carrying capacity necessary for the operation of the planned winding. When the insulated conductor 50 with the grooves thus formed is wound into a coil shape to form a winding similar to the winding 24, the liquid cold soot can be successfully transported through the passages formed by these grooves. flowed.
The spacing, depth, and angle of the grooves formed on the conductor 501 with respect to the longitudinal axis D of the conductor (in FIGS. The flow rate of the liquid electrolyte can be controlled by controlling the grooves (the grooves can be provided at any angle on the conductor surface). The groove 48 shown in FIGS. 3 and 4 is hourglass neck shaped (tapered).
この形はこの発明の実施に必要なものではない(即ちま
つすぐな溝であっても充分に働く)が、この発明の好ま
しい実施例として図示されている。これらの砂時計の首
の形の溝48によって、導体50が巻かれて巻線となる
と、隣り合うターン表面52の接触する幾つかの部分で
は砂時計の百の形のダクトが形成され、これらのダクト
の中での液体誘電体の流れが増し、またこれらの砂時計
の首の形の溝の間のたる形の部分56によって、導体5
0の表面52に、導体が巻線とされる時導体の締めつけ
られる力に充分に耐えられる表面積が得られることにな
る。第5図および第6図にこのユニークな形を持つ溝4
8とそれらの間のたる形の部分56の断面が示されてい
る。以上には溝の形として、まつすぐなものと砂時計の
首の形のものについて述べたが、この発明は特定の形の
溝に限定されるものではなく、全ての形の溝が含まれる
。Although this shape is not necessary to practice the invention (i.e., straight grooves will work well), it is shown as a preferred embodiment of the invention. These hourglass neck-shaped grooves 48 form hourglass-shaped ducts in some parts of the contact between adjacent turn surfaces 52 when the conductor 50 is wound into a winding, and these ducts The flow of liquid dielectric within the conductor 5 is increased and the barrel shaped portions 56 between these hourglass neck shaped grooves increase the flow of the liquid dielectric within the conductor 5.
0 surface 52 has a surface area sufficient to withstand the constricting force of the conductor when the conductor is wound. Grooves 4 with this unique shape are shown in Figures 5 and 6.
8 and the barrel-shaped portion 56 between them are shown in cross section. Although the shapes of the grooves are straight and hourglass-shaped, the present invention is not limited to specific groove shapes, and includes grooves of all shapes.
溝の形と溝の角度と溝の寸法とは、導体の形と導体の寸
法と共に、この発明から放れることなしに、変形が可能
である。導体50の様な連続的に移動する長い金属導体
の表面に、精密に間隔の定められた溝を形成する装置の
概略が第7図に示されている。The shape of the groove, the angle of the groove, and the dimensions of the groove, as well as the shape of the conductor and the dimensions of the conductor, can be varied without departing from the invention. A schematic diagram of an apparatus for forming precisely spaced grooves in the surface of a continuously moving long metal conductor, such as conductor 50, is shown schematically in FIG.
溝形成装置60は、連続的に移動する金属導体の表面に
溝を切るための、図示のルータカッタ等の溝形成装置6
4と、溝切装置64のカッティングの深さを変化させる
図示の深さ割出し装置等の装置66と、連続的に移動す
る長い金属導体を支える図示の裏当て台等の支持装置6
8と、これらの装置を支持するフレーム62とを備えて
いる。溝功装置64は、レーザカツ夕或いはスタンピン
グ装置等の連続的に移動する長い金属導体に溝を形成で
きる任意の装置でもよい。支持装置68も水平支持台或
いは一連の平行に置かれたローラ等の連続的に移動する
長い金属導体を溝を形成する間支えることのできる任意
の装置でよい。溝形成装置60には、溝切装置64の動
作の周期を変化させるための、例えば駆動ベルト70と
モータ速度制御装置74の組合わせが含まれる。動作の
周期の変化によって、導体50の様な連続的に移動する
長い金属導体の表面に定められた間隔で溝を形成する様
に「溝功装置64が制御されることになる。溝形成装置
601ま、連続的に移動する長い金属導体50の表面5
2に形成される溝の間の間隔を計る計測装置76を備え
ている。計測装置76は、センサ78とこのセンサ78
に電気的に接続されたストロボライト80とスケール8
2からなっている。ストロボライト8川ま移動する導体
上で、またスケール82は反対側で、それぞれフレーム
62に取付けられている。センサ78は、溝切装置64
によってそれぞれの溝が形成されたことを感知するもの
で、磁気的、電気的、機械的或いはその他の方法で溝の
形成を感知するものである。第7A図に「センサ78の
一つの構成の大要が示されている。この図で、ルータカ
ツタヘツド84にはこれと共に回転する様に偏心カム8
2′が取付られている。1組の機械的接点86が設けら
れ、レバーアーム88は偏心カム82′への方向のバイ
アスバネの力を与えられている。The groove forming device 60 is a groove forming device 6 such as a router cutter shown in the figure for cutting grooves on the surface of a continuously moving metal conductor.
4, a device 66 such as the illustrated depth indexing device for varying the cutting depth of the groove cutting device 64, and a support device 6 such as the illustrated backing table for supporting a continuously moving long metal conductor.
8 and a frame 62 that supports these devices. Grooving device 64 may be any device capable of forming grooves in a continuously moving long metal conductor, such as a laser cutter or stamping device. The support device 68 may also be any device capable of supporting a continuously moving long metal conductor during groove formation, such as a horizontal support or a series of parallel rollers. The grooving device 60 includes, for example, a combination of a drive belt 70 and a motor speed control 74 to vary the period of operation of the grooving device 64. By changing the period of operation, the groove forming device 64 is controlled to form grooves at predetermined intervals on the surface of a continuously moving long metal conductor such as the conductor 50. 601, the surface 5 of a continuously moving long metal conductor 50
A measuring device 76 is provided to measure the distance between the grooves formed in the grooves 2. The measuring device 76 includes a sensor 78 and this sensor 78
A strobe light 80 and a scale 8 electrically connected to
It consists of 2. The strobe lights 8 are each mounted on the frame 62 on the moving conductor and the scale 82 on the opposite side. The sensor 78 is connected to the groove cutting device 64
The formation of each groove is detected by magnetic, electrical, mechanical, or other methods. FIG. 7A schematically shows one configuration of the sensor 78. In this figure, the router cutter head 84 has an eccentric cam 84 for rotation therewith.
2' is attached. A set of mechanical contacts 86 is provided and the lever arm 88 is biased spring biased towards the eccentric cam 82'.
カッタヘツド84と共に偏心カム82′が回転して「
カッタヘッド84の1回転ごとに接点86が開閉され、
ストロボライト80の電源回路が瞬間的に閉じられトス
トロボラィト80が瞬間的に発光し、スケール82を照
らし、それぞれの溝の形成がセンサ76で感知されると
、新しく溝の形成された連続的に移動する長い導体50
の定められた部分も同時に照明される。そこで、スケー
ル82の場所で、移動する導体50の瞬間的静止像が作
られて、装置のオペレータは、溝の間の間隔とスケール
のメモリとを読み比べて、溝形成装置の動作周期を調整
し、移動する長い導体50の表面62に、定められた間
隔で溝を形成させることができる。導体50の表面52
に形成される溝48が、上で述べた様に、砂時計の首の
形を持つ様にするために、カッタヘッド84に第7B図
に示される様な凹凸のバイト90が設けられる。The eccentric cam 82' rotates together with the cutter head 84.
The contact 86 is opened and closed every rotation of the cutter head 84,
The power supply circuit of the strobe light 80 is momentarily closed, the strobe light 80 momentarily emits light, illuminating the scale 82, and as the formation of each groove is sensed by the sensor 76, a continuous line of newly formed grooves is detected. A long conductor 50 moving to
A predetermined portion of the area is also illuminated at the same time. An instantaneous still image of the moving conductor 50 is then made at the location of the scale 82, and the machine operator adjusts the operating cycle of the groove forming machine by comparing the spacing between the grooves and the scale's memory. , grooves can be formed in the surface 62 of the moving long conductor 50 at defined intervals. Surface 52 of conductor 50
In order to cause the groove 48 formed in the cutter head 84 to have an hourglass neck shape as described above, the cutter head 84 is provided with a concave and convex cutting tool 90 as shown in FIG. 7B.
このバイト90の凹面92の両端が、連続的に移動する
導体50の表面52の両端に、バイト90のその凹面9
2の中央部分より、深く、かつより早くからより後まで
、接触して、この溝48の様な砂時計の首の形が形成さ
れる。第7図に戻って、溝形成装置60が運転されて、
溝切装置64と支持装置68との間を、導体50の様な
連続的に移動する長い導体が通り過ぎて行くと、その導
体の表面52に溝が形成される。Both ends of the concave surface 92 of this cutting tool 90 are connected to both ends of the surface 52 of the continuously moving conductor 50.
The central portions of the grooves 2 and 2 contact each other deeper and from earlier to later, forming an hourglass neck shape such as this groove 48. Returning to FIG. 7, the groove forming device 60 is operated,
As a continuously moving long conductor, such as conductor 50, passes between the groover 64 and the support 68, grooves are formed in the surface 52 of the conductor.
それぞれ溝の形成がセンサ78で感知され、ストロボラ
イト80の回路が閉じられ、それぞれの溝の形成の感知
と同期して、ストロボライトが発光し、新しく溝の形成
された連続的に移動する長い導体50の定められた部分
94とスケール82とが瞬間的に照らされて、この部分
94の瞬間的静止像が得られる。オペレータは、この瞬
間的静止像の溝間隔とスケール82の所望の間隔とを見
比べて、溝の間の距離を計り、溝切装置64の動作周期
を変更貝0ち駆動モータ72の速度を調整し、カッタヘ
ツド84の角速度を変更して、導体60の表面52に、
所望の間隔で溝が形成される様にすることができる。表
面52に所定間隔で溝が形成された後、導体50‘ま全
体として符号110で示される静電粉体塗装装置と、全
体として符号112で示される導体加熱装置とを通され
て、一様な均質な固体絶縁物の被覆が得られる。The formation of each groove is sensed by the sensor 78, the circuit of the strobe light 80 is closed, and in synchronization with the sensing of the formation of each groove, the strobe light emits light and the newly grooved continuously moving long A defined portion 94 of conductor 50 and scale 82 are momentarily illuminated to provide an instantaneous static image of this portion 94. The operator compares the groove spacing in this instantaneous static image with the desired spacing on the scale 82, measures the distance between the grooves, changes the operating cycle of the groove cutting device 64, and adjusts the speed of the drive motor 72. Then, by changing the angular velocity of the cutter head 84, the surface 52 of the conductor 60 is
Grooves can be formed at desired intervals. After grooves are formed in the surface 52 at predetermined intervals, the conductor 50' is passed through an electrostatic powder coating device, generally designated 110, and a conductor heating device, generally designated 112, to uniformly coat the conductor 50'. A uniform solid insulation coating is obtained.
この導体50の様な矩形断面を持つ連続的に移動する長
い導体の周囲に、加熱熔融され硬化された固体の無溶剤
性微細粉末樹脂性ポリマ粉体の一様な層をなす膜で静電
粉体被覆を施す装置とその方法とが、米国特許第405
180叫号‘こ開示されている。A continuously moving long conductor with a rectangular cross section, such as the conductor 50, is surrounded by a uniform layer of solid, solvent-free, finely powdered resinous polymer powder that is heated, melted, and hardened to generate electrostatic charges. An apparatus and method for applying a powder coating is disclosed in U.S. Pat. No. 405
180 shouts' have been disclosed.
ェポキシ樹脂粉体の様な加熱熔融される、無溶剤性樹脂
性ポリマ粉体の一様な被覆で、静電粉体塗装装置110
1こよって、予め溝の形成されている導体60の回りに
、静電気的に粉体塗装がなされ、一様な被覆の施こされ
た溝付き導体50が加熱装置1 12において所定温度
まで加熱される。上述のェポキシ樹脂組成については、
絶縁物の粉体粒子を溶かして「一様な、均質な固体絶縁
物の被覆とするのに、約500午0の温度が適当である
。このようにして絶縁の施こされた溝付き導体50は、
その一様で均質な絶縁物被覆が得られること即ち、導体
の溝の部分にも、その他の部分の絶縁物厚さと同じ厚さ
の絶縁物が附着させられることが特徴である。上で述べ
た固体の電気絶縁物の均質な被覆の一様な皮膜を持つ導
体50の様な長い導体の表面に凹凸を形成するのに用い
られた第2の方法は、絶縁物それ自体に、定められた間
隔で、ィボ或いはコブを付けるものである。そのための
装置が第8図に示されている。この装置では、絶縁物粉
体の圧縮されて棒状とされたもの120が、細かく刻ま
れて、連続的に移動する長い導体の上に落とされ、その
導体が上で述べた静電粉体塗装装置とヒータを通り抜け
る。かようにして、圧縮された粉体絶縁物の細かく刻ま
れたものと、同じ絶縁粉体からなる粉体粒子の一様な被
覆とが溶かされて、定められた間隔で絶縁物のィボまた
はコブを持つ固体絶縁物の一様で均質な被覆とされ、絶
縁された導体の表面に凹凸が得られる。要約すれば、蒸
発可能な誘電性液体が巻線内部を流れることを可能にす
るために、幾つかのターンの表面の互いに隣り合う部分
の間に空間を設けるために、表面に凹凸を持つ長い金属
質の導体を用いて形成された巻線を備える蒸発冷却電気
誘導装置が開示されている。Electrostatic powder coating equipment 110 with a uniform coating of heat-melted, solvent-free resinous polymer powder, such as epoxy resin powder.
1. Therefore, powder coating is applied electrostatically around the conductor 60 in which grooves have been formed in advance, and the grooved conductor 50 having a uniform coating is heated to a predetermined temperature in the heating device 112. Ru. Regarding the above-mentioned epoxy resin composition,
A temperature of approximately 500°C is suitable for melting the powder particles of the insulating material into a uniform, homogeneous coating of solid insulating material. 50 is
The feature is that a uniform and homogeneous insulating coating can be obtained, that is, the insulating material of the same thickness as the insulating material of other parts is deposited even in the groove part of the conductor. A second method used to create irregularities on the surface of a long conductor, such as the conductor 50 with a uniform coating of a solid electrical insulator described above, is to create irregularities on the surface of the insulator itself. , warts or bumps are added at predetermined intervals. A device for this purpose is shown in FIG. In this device, a compressed rod-shaped insulating powder 120 is chopped into pieces and dropped onto a continuously moving long conductor, which is coated with the electrostatic powder coating described above. Pass through equipment and heaters. In this way, the finely chopped compacted powder insulation and the uniform coating of powder particles of the same insulation powder are melted to form voids of insulation at defined intervals. Alternatively, it is a uniform and homogeneous coating of solid insulator with bumps, resulting in unevenness on the surface of the insulated conductor. In summary, in order to allow the evaporable dielectric liquid to flow inside the winding, a long An evaporative cooled electrical induction device is disclosed that includes windings formed using metallic conductors.
この発明は変圧器産業での問題解決のためになされたも
のではあるが、この発明は変圧器に用いられるものには
限らず、全ての蒸発冷却される電気装置であって、粉体
塗装絶縁導体の一様な仕上げを持ち、その巻線内部で蒸
発可能な液体譲亀体の流れることを可能にする空間を設
けるために、絶縁された巻線ターン表面に形成される表
面凹凸と導体とを組合わせたし、場合に実施可能である
ことが理解されるべきである。Although this invention was made to solve a problem in the transformer industry, this invention is not limited to those used in transformers, but is applicable to all evaporatively cooled electrical equipment. Surface asperities formed on the surface of the insulated winding turns to provide a uniform finish for the conductor and to provide space for the flow of evaporable liquid fluid within the winding. It should be understood that it is possible to combine and implement the following cases.
第1図はこの発明の実施可能な蒸発冷却電気装置の概略
を示す図、第2図は第1図の装置のコイルの層を示す上
面図、第3図はこの発明の実施例の固体絶縁溝付導体の
上面図、第4図は第3図の導体の側面図、第6図は第3
図の導体の線V−Vに沿った断面図、第6図は第3図の
導体の線の−Wに沿った断面図、第7図はこの発明に従
って、連続的に移動する長い金属費導体の表面に、精密
に制御された間隔を持つ溝を形成する装置を示す図、第
7A図は第7図の装置のセンサの概略を示す図、第7B
図は第7図の装置で用いられるカッテイングバイトを示
す図、第8図はこの発明の別の実施例の絶縁物の一様な
被覆にィボを形成する装置の概略を示す図である。
12……囲い、14……磁気鉄心一巻線組立体、16・
・・・・・液体誘電体、18・・・・・・ポンプ、20
・・・・・・パイプ装置、24・・…・巻線、26・・
・…層、32,34……ターン、36,38,40,4
2…・・・ターン表面、48・・・・・・導体表面の溝
、50・・・・・・導体、52・・・・・・導体表面、
56・・・・・・導体表面のタル形部分(溝に挟まれた
部分)。
FIGI
FIG2
F!G3
FIG4
F!G5
FIG6
FIG.7
FIG,7A
FIG.78
FIG.8.FIG. 1 is a schematic diagram of an evaporative cooling electrical device according to an embodiment of the present invention; FIG. 2 is a top view showing the coil layers of the device of FIG. 1; FIG. A top view of the grooved conductor, Figure 4 is a side view of the conductor in Figure 3, and Figure 6 is a side view of the conductor in Figure 3.
FIG. 6 is a cross-sectional view of the conductor of FIG. 3 along line -W; FIG. FIG. 7A is a schematic diagram of the sensor of the device of FIG. 7; FIG. 7B is a diagram showing an apparatus for forming grooves with precisely controlled spacing on the surface of a conductor;
This figure shows a cutting tool used in the apparatus shown in FIG. 7, and FIG. 8 schematically shows another embodiment of the apparatus for forming warts in a uniform coating of an insulating material. 12...Enclosure, 14...Magnetic core single winding assembly, 16.
...Liquid dielectric, 18...Pump, 20
...Pipe device, 24...Winding, 26...
・...Layer, 32, 34...Turn, 36, 38, 40, 4
2... Turn surface, 48... Groove on conductor surface, 50... Conductor, 52... Conductor surface,
56... Barrel-shaped portion on the conductor surface (portion sandwiched between grooves). FIGI FIG2 F! G3 FIG4 F! G5 FIG6 FIG. 7 FIG, 7A FIG. 78 FIG. 8.
Claims (1)
に固体絶縁されたターン表面を持つ絶縁された導体の少
なくとも2つの周方向に隣接するターンを有し、通常運
転の際に熱を発生する電気巻線と、 前記囲い内で所定
レベルにまで設けられ、所定の粘度を持ち、前記巻線の
通常運転温度範囲内で蒸発する液体誘電体と、 前記液
体誘電体を前記巻線上に散布して冷却かつ絶縁する液体
誘電体とを備え、 少なくとも1つの前記ターン表面が
、製造中にその上に形成された所定の表面隆起部を有し
、前記ターン表面の周方向に隣り合う部分間に前記液体
誘電体が軸方向に流れる空間が形成されてなる電磁誘導
装置。 2 前記巻線が、複数の軸方向に隣接した層を有し、そ
れぞれの前記層が、前記ターン表面上に互いに接触する
均質固体絶縁を有する径方向に隣接する複数のターンを
備えてなる特許請求の範囲第1項記載の電磁誘導装置。 3 前記表面隆起部が、絶縁された前記ターン表面の長
手方向に沿って所定間隔で形成された複数の横方向の窪
みにより形成されてなる特許請求の範囲第1項記載の電
磁誘導装置。4 前記導体が、沈着された非層構造の絶
縁体により均質に絶縁され、前記隆起部が、前記導体の
長手方向に対して所定角度で前記絶縁ターン表面に設け
られ、所定の幅と深さを持つ複数の溝を有してなる特許
請求の範囲第3項記載の電磁誘導装置。Claims: 1. An enclosure having at least two circumferentially adjacent turns of an insulated conductor disposed within the enclosure and having homogeneously solid insulated turn surfaces in circumferential contact with each other. , an electrical winding that generates heat during normal operation; a liquid dielectric disposed within said enclosure to a predetermined level, having a predetermined viscosity, and evaporating within the normal operating temperature range of said winding; a liquid dielectric distributed over the windings to cool and insulate the windings, at least one of the turn surfaces having a predetermined surface ridge formed thereon during manufacturing; An electromagnetic induction device in which a space is formed between circumferentially adjacent portions of the surface in which the liquid dielectric flows in the axial direction. 2. The winding has a plurality of axially adjacent layers, each said layer comprising a plurality of radially adjacent turns having homogeneous solid insulation in contact with each other on said turn surfaces. An electromagnetic induction device according to claim 1. 3. The electromagnetic induction device according to claim 1, wherein the surface ridge is formed by a plurality of lateral depressions formed at predetermined intervals along the length of the insulated turn surface. 4. the conductor is homogeneously insulated by a deposited non-layered insulator, the ridge being provided on the surface of the insulating turn at a predetermined angle to the longitudinal direction of the conductor and having a predetermined width and depth; 4. The electromagnetic induction device according to claim 3, comprising a plurality of grooves.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15415280A | 1980-05-28 | 1980-05-28 | |
US154152 | 1980-05-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5710913A JPS5710913A (en) | 1982-01-20 |
JPS609648B2 true JPS609648B2 (en) | 1985-03-12 |
Family
ID=22550214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56080220A Expired JPS609648B2 (en) | 1980-05-28 | 1981-05-28 | electromagnetic induction device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS609648B2 (en) |
KR (1) | KR840002387B1 (en) |
CA (1) | CA1180073A (en) |
FR (1) | FR2483678A1 (en) |
NO (1) | NO811767L (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3236446A1 (en) * | 1982-10-01 | 1984-04-05 | Smit Transformatoren B.V., 6500 Nijmegen | METHOD FOR THE PRODUCTION OF A WIRE OR FILM WRAPPING EMBEDDED IN A POWDERING MEASUREMENT AND WINDING MATERIAL USED FOR THE METHOD |
CA1338677C (en) * | 1989-09-29 | 1996-10-22 | Yoshihiro Nishiyama | Thermosetting covering sheet and a method of forming hard coating on the surface of substrates using the same |
US9133613B2 (en) | 2011-09-17 | 2015-09-15 | Nippon Kayaku Kabushiki Kaisha | Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet, and method for producing same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR907160A (en) * | 1943-01-06 | 1946-03-05 | Hermes Patentverwertungs Gmbh | Flat bar winding |
FR984255A (en) * | 1948-04-07 | 1951-07-04 | Improvements to electrical machines | |
FR1501977A (en) * | 1966-09-30 | 1967-11-18 | Alsthom Savoisienne | Sheet windings for electrical coils |
DE1589518A1 (en) * | 1967-04-22 | 1970-04-09 | Bbc Brown Boveri & Cie | Multi-turn coil for surge current systems |
FR2281636A1 (en) * | 1974-08-09 | 1976-03-05 | Jeumont Schneider | Prodn. of transformer winding cooling channel - by passing section of metal strip winding between cogs to form spacing corrugations |
FR2365867A1 (en) * | 1976-09-22 | 1978-04-21 | Alsthom Savoisienne | Multiple concentrically wound coils - include cylindrical frames with supporting ridges defining fluid channels for dielectric fluid |
GB1596985A (en) * | 1977-03-14 | 1981-09-03 | Imi Kynoch Ltd | Electrical windings |
GB1595094A (en) * | 1977-10-19 | 1981-08-05 | Gen Electric | Method and system for cooling electrical apparatus |
-
1981
- 1981-05-05 CA CA000376900A patent/CA1180073A/en not_active Expired
- 1981-05-23 KR KR1019810001800A patent/KR840002387B1/en active IP Right Grant
- 1981-05-26 NO NO811767A patent/NO811767L/en unknown
- 1981-05-27 FR FR8110596A patent/FR2483678A1/en not_active Withdrawn
- 1981-05-28 JP JP56080220A patent/JPS609648B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2483678A1 (en) | 1981-12-04 |
KR840002387B1 (en) | 1984-12-24 |
KR830006784A (en) | 1983-10-06 |
NO811767L (en) | 1981-11-30 |
CA1180073A (en) | 1984-12-27 |
JPS5710913A (en) | 1982-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9003647B2 (en) | Method and apparatus for manufacturing a flat-type wire | |
JP2934313B2 (en) | Induction heating coil | |
US2838639A (en) | Film resistor spirallising | |
US4682565A (en) | Vapor nozzle with gas barrier bars | |
JPS609648B2 (en) | electromagnetic induction device | |
US4503605A (en) | Method of making a cellulose-free electrical winding | |
US3555670A (en) | Methods of constructing electrical transformers | |
US4173746A (en) | Vaporization cooled electrical apparatus | |
US5980995A (en) | Method for producing an insulated metallic strip | |
EP0640240B1 (en) | Strip conductor for transformers | |
US4493138A (en) | Vapor cooled electrical inductive apparatus | |
US3626587A (en) | Methods of constructing electrical transformers | |
EP0154862B1 (en) | Method for producing superconducting coil | |
EP0135025B1 (en) | Travelling wave induction heater | |
JPH03188221A (en) | High-frequency hardening device for crank shaft | |
JPS5815444A (en) | Insulating coil for high-voltage | |
JPH0662499U (en) | High frequency heating coil | |
JPS58105A (en) | Manufacture of superconducting coil | |
SU1667184A1 (en) | Method for production of insulating cylinders for collectors of electrical machines | |
JPH0514765B2 (en) | ||
JPH0614487A (en) | Field winding of rotary electrical equipment and insulation thereof | |
EP0279509A1 (en) | A heat-distributing winding | |
JPS5849072A (en) | Manufacture of insulated coil for rotary electric machine | |
JPH0471346A (en) | High-tension rotating machine coil | |
SU1001335A1 (en) | Method of applying insulation coatings onto magnetic core surface |