JPS6095715A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS6095715A
JPS6095715A JP20106383A JP20106383A JPS6095715A JP S6095715 A JPS6095715 A JP S6095715A JP 20106383 A JP20106383 A JP 20106383A JP 20106383 A JP20106383 A JP 20106383A JP S6095715 A JPS6095715 A JP S6095715A
Authority
JP
Japan
Prior art keywords
core
glass
magnetic
melting point
point glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20106383A
Other languages
Japanese (ja)
Inventor
Terumasa Sawai
瑛昌 沢井
Akio Kuroe
章郎 黒江
Mitsuo Satomi
三男 里見
Masaru Higashioji
賢 東陰地
Hiroshi Sakakima
博 榊間
Kenji Kondo
近藤 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20106383A priority Critical patent/JPS6095715A/en
Publication of JPS6095715A publication Critical patent/JPS6095715A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • G11B5/1475Assembling or shaping of elements

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To obtain a stable magnetic air gap by using a core half applying sandwich lamination to a magnetic core with an auxiliary base while using a low melting point glass as an adhesives and applying a low temperature cured inorganic adhesives having approximate thermal expansion coefficient to that of the core half from the side face of the half so as to connect the auxiliary bases. CONSTITUTION:The glass base 9 sputtering a metallic magnetic core member having a large saturation magnetic flux such as amorphous or ''Sendust'' on the surface and the 2nd glass base 10 melting a low melting point glass 11 on the surface are used. The magnetic head is formed by using a couple of core halves 12 incorporated by melting again the low melting point glass 14 while the metallic magnetic core of the bases 9, 10 and the low melting point glass 11 are bonded together. The low temperature cured inorganic adhesives 14 is applied to the core halves 12 and fixed, at least a part of the bonding of both the bases 9, 10 is formed, and the halves 12 are molten and bonded together by inserting at least the low melting point glass 11 to at least the magnetic air gap forming face or the winding window of the core halves 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度磁気記録に適し、メタルテープに対し
優れた特性をもつ磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic head that is suitable for high-density magnetic recording and has superior characteristics to metal tapes.

(従来例の構成とその問題点) 最近、磁気記録の高密度化にともない、磁気へ7ドの材
料として、飽和磁束密度の大きい金属材料か要求され、
アモルファス合金が特に重要視されている。
(Conventional structure and its problems) Recently, with the increase in the density of magnetic recording, a metal material with a high saturation magnetic flux density is required as a magnetic material.
Particular emphasis is placed on amorphous alloys.

第1図は、従来の金属磁気材料による薄板あるいは薄膜
を用いたビデオヘッドの一例である。
FIG. 1 is an example of a conventional video head using a thin plate or film made of metal magnetic material.

ビデオヘッドのように、そのヘッドトラ、り幅Wが10
ミクロン前後から教つクロンの極めて狭い場合は、その
トラック幅と等しい厚さに圧延しり薄板やスパッタリン
グなどによって(=1着した薄膜を用い、へ、ドコアを
構成するものが多い。しかし、このような薄板や薄膜だ
けで形成した磁気ヘッドは、コア自体の強度、あるいは
9:1テープとの対摩耗性の点から非常に弱い欠点があ
る。このため、金属コア1の両側からガラス板やセラミ
ックスあるいはフェライト板などを補助基板2,3とし
て、サンドイッチ積層した構造により、磁気ヘッドの幅
を広くシ、強度や耐摩耗性を向上させている。ff1i
l記のように、第一補助基板2に金属コアをス・ぐツタ
リングにょシ付けた場合は接着剤は不要である。しかし
、他方補助基板3は接着材層4を用い接着する必要があ
る。すなわち、少なくともサンドイッチ積層する片方の
補助基板側には接着材層4が存在する構成である。従来
この接着材層4の多くは、コア材としてアモルファス合
金を使用する場合には、そのコアの磁気特性が劣化しな
い温度範囲、すなわちアモルファス結晶化温度以下で処
理しなければならない。通常アモルファス合金のTxが
400℃ないし500Cであるため、それ以下の温度で
比i的容易に接着できるエポキシ系樹脂が用いられてい
た。しかしエポキシ樹脂接着層は強度、あるいは温度、
温度の変化に対して接着力が弱くなり、特に磁気空隙5
の形成面の研磨工程捷だけ、磁気ヘッド前面におけるテ
ープ摺動に対して耐力がなくなシ、前記接着剤層・1か
ら磁気コア1および補助基板3が剥離することが多発す
るため、ザンドイッチ層構造が維持できなくなる欠点が
あった。このため前記エボギン樹脂による接着に代えて
、接着剤層4′fニガラス層で構成することにより、補
助基板3と磁気コア1の結合力を高め、研磨あるいは衝
撃に対する強度を高めた構造も実用され始めている。こ
のようにガラス積層したコア半休を用い、さらに高精度
で安定した磁気空隙5をもった磁気ヘッドを製造するた
めKは、フェライトヘラ)パでみられるように、磁気空
隙5形成面とその結合をガラスで行なう必要がある。し
かし、アモルファス合金コアを用いた場合、前述の通り
そのアモルファス合金の結晶化温度以下で処理できるガ
ラスでなければならないという制限から、低融点ガラス
に限定さi″Lるものである。
Like a video head, the head width W is 10
When the track width is extremely narrow, it is common to use a thin film that is rolled or sputtered to a thickness equal to the track width. Magnetic heads formed only from thin plates or thin films have the disadvantage of being very weak in terms of the strength of the core itself or the abrasion resistance with 9:1 tape. Alternatively, a sandwich layered structure using ferrite plates or the like as auxiliary substrates 2 and 3 increases the width of the magnetic head and improves its strength and wear resistance.ff1i
If the metal core is glued onto the first auxiliary substrate 2 as described in Section 1, no adhesive is required. However, on the other hand, the auxiliary substrate 3 needs to be bonded using the adhesive layer 4. That is, the adhesive layer 4 is present on at least one of the auxiliary substrates on which the sandwich is stacked. Conventionally, when an amorphous alloy is used as the core material for most of the adhesive layer 4, it must be processed within a temperature range where the magnetic properties of the core do not deteriorate, that is, below the amorphous crystallization temperature. Since the Tx of an amorphous alloy is usually 400° C. to 500° C., epoxy resins have been used because they can be bonded relatively easily at temperatures below that temperature. However, the epoxy resin adhesive layer does not depend on strength or temperature.
The adhesive force becomes weaker due to temperature changes, especially when the magnetic gap 5
Due to the polishing process of the surface on which the Zandwich layer is formed, the strength against the tape sliding on the front surface of the magnetic head is lost, and the magnetic core 1 and the auxiliary substrate 3 often peel off from the adhesive layer 1. There was a drawback that the structure could not be maintained. For this reason, a structure in which the bonding force between the auxiliary substrate 3 and the magnetic core 1 is increased and the strength against polishing or impact is increased by configuring the adhesive layer 4'f with a glass layer instead of using the Evogin resin has also been put into practical use. It's starting. In order to manufacture a magnetic head with a highly accurate and stable magnetic gap 5 by using the glass-laminated core halves, K is used for forming the magnetic gap 5 forming surface and its bond, as seen in the ferrite spatula. must be done with glass. However, when an amorphous alloy core is used, the glass is limited to a low melting point because, as mentioned above, the glass must be processable at a temperature below the crystallization temperature of the amorphous alloy.

このため、従来の磁気へ、ドでは、低融点ガラスによっ
てサンドイッチ積層したコア半休を用い、そのコア半休
の磁気空隙形成面に、その積層時と同種またはほぼ近い
低融点ガラス6を付着させるか、あるいは磁気空隙形成
面の近くの巻線窓に、前記の低融点ガラス6を介在せし
めて、熔着し一体結合した磁気へ・ンド体7を製造して
いた。
For this reason, in conventional magnetism, a half-core core is sandwich-laminated with low-melting glass, and a low-melting glass 6 of the same type or almost similar to that used in the stacking is attached to the magnetic gap forming surface of the half-core. Alternatively, the low melting point glass 6 is interposed in the winding window near the magnetic gap forming surface, and the magnetic held body 7 is manufactured by welding and integrally bonding the glass 6.

仁のように、積層部と磁気空隙形成の部分が少なくとも
、はぼ同じ低融点ガラスを使用したことによシ構成した
従来の磁気ヘッドは、磁気ヘッドの品質あるいは基本特
性を満たすため、後工程である磁気空隙構成時のガラス
が十分溶融されねばならず、積層時よりも、そのガラス
溶着温度を高めるか、捷だは処理時間を長時間として実
施していた。このため、先工程で積層した力27層も、
再溶融される結果、サンドイッチ積層部の磁気コアlと
補助基板3が剥離する欠点が生じ、トラック幅精度の低
下をはじめ、最も重要な磁気空隙5などの幅の寸法を確
保できない欠点が発生し、磁気ヘッドの性能と品質の低
下、および製造工程の歩留りの低下などをまねいていた
Conventional magnetic heads, such as those described by Jin, are constructed by using at least the same low-melting point glass for the laminated portion and the magnetic gap forming portion, but in order to satisfy the quality or basic characteristics of the magnetic head, post-processing is required. The glass in the magnetic gap configuration must be sufficiently melted, and the glass welding temperature has to be raised or the processing time has to be longer than in the case of lamination. For this reason, the 27 layers of force laminated in the previous process also
As a result of remelting, the magnetic core l of the sandwich laminated portion and the auxiliary substrate 3 are separated, resulting in a decrease in track width accuracy and the inability to secure the width of the most important magnetic gap 5. This led to a decline in the performance and quality of the magnetic head, and a decline in the yield of the manufacturing process.

(発明の目的) 本発明の目的は、従来例の欠点を解消し、積層コア体の
周辺から低温硬化無機接着剤を充填塗布し、積層コア体
の再結合積層強度を機械的にも耐熱的にも向上させるこ
とである。
(Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the conventional example, fill and apply a low-temperature curing inorganic adhesive from the periphery of the laminated core body, and increase the recombination lamination strength of the laminated core body mechanically and heat resistant. It is also to improve.

(発明の構成) 本発明の磁気ヘッドは、低融点ガラスを接着剤として磁
気コアを補助基板でサンドイワナ積層したコア半休を用
bXこのコア半休の側面からコア半休と熱膨張係数の近
1以した低温硬化無機接着物を塗布して、補助基板間を
強固に連結させ、このようにしてできたコア半休の一対
を、磁気空隙形成面を対向させて、低融点ガラスにより
熔着して一体化するものである。
(Structure of the Invention) The magnetic head of the present invention uses a core half-hole in which a magnetic core is laminated in a sand char on an auxiliary substrate using low melting point glass as an adhesive. A low-temperature curing inorganic adhesive is applied to firmly connect the auxiliary substrates, and a pair of half-core cores thus formed are welded together using low-melting glass, with their magnetic gap forming surfaces facing each other. It is something that becomes.

(発明の実施例) 本発明の一実施例を第2図ないし第5図に基づいて説明
する。
(Embodiment of the Invention) An embodiment of the present invention will be described based on FIGS. 2 to 5.

第2図(イ)は磁気ヘッド構成のだめのコア半休を示し
ている。磁気へラドコア材料としては、アモルファス合
金を使用する。アモルファス合金ハ、飽和磁束密度が約
1100エルステツド、熱膨張係数が約120X10−
7/℃であり、その結晶化温度は約500℃である。
FIG. 2(a) shows the half core of the magnetic head structure. An amorphous alloy is used as the magnetic helad core material. Amorphous alloy has a saturation magnetic flux density of approximately 1100 oersted and a coefficient of thermal expansion of approximately 120X10-
7/°C, and its crystallization temperature is about 500°C.

このようなアモルファス合金を使用し、予め必要な寸法
と形状に加工したガラス材を用いた補助基板9の表面に
スパッタリングによって、トラ。
Using such an amorphous alloy, the surface of the auxiliary substrate 9, which is made of a glass material that has been processed into the required dimensions and shape in advance, is coated by sputtering.

り幅の厚さのアモルファス合金層8を被着させる。An amorphous alloy layer 8 is deposited with a thickness equal to the width of the amorphous alloy.

この補助基板9は、予めアモルファス合金の熱膨張係数
とほぼ同じ値をもつガラスを使用することにより、アモ
ルファス合金のスパッタリングノドきに、その熱膨張率
の差から生ずるソリを防止することができ、補助基板9
の最初の平面度を維持することができる。その他、前記
補助基板9の材料としては、非導電性の絶縁抵抗が大き
いセラミック等であればガラス以外でも使用できる。
This auxiliary substrate 9 is made of glass having approximately the same coefficient of thermal expansion as that of the amorphous alloy, so that it is possible to prevent warping caused by the difference in coefficient of thermal expansion during sputtering of the amorphous alloy. Auxiliary board 9
The initial flatness of can be maintained. In addition, as the material for the auxiliary substrate 9, materials other than glass may be used as long as they are non-conductive and have a high insulation resistance, such as ceramic.

つぎに、補助基板10を用意する。この補助基板10は
、補助基板9とほぼ同じものとし、その表面に厚さ1ミ
クロンないし3ミクロンの低融点ガラス層11をス・ぐ
ツタリングや蒸着、または粉末状や薄板状ガラスなど適
当な方法で介在、溶着して均一層として形成させる。
Next, the auxiliary substrate 10 is prepared. This auxiliary substrate 10 is almost the same as the auxiliary substrate 9, and a low melting point glass layer 11 with a thickness of 1 to 3 microns is formed on the surface of the auxiliary substrate 10 by a suitable method such as sintering, vapor deposition, powdered or thin glass. It is interposed and welded to form a uniform layer.

このように、補助基板9,10と表面被着のアモルファ
ス合金層8、ガラス層11の熱膨張係数がほぼ同じもの
を使用することにより、溶着のときにソリやクラックの
生ずる心配がない。
In this way, by using the auxiliary substrates 9, 10, the surface-adhered amorphous alloy layer 8, and the glass layer 11, which have substantially the same coefficient of thermal expansion, there is no fear of warpage or cracks occurring during welding.

したがって、補助基板9,10上のアモルファス合金層
8とガ゛ラス層11を接合し、ガラス層11の溶融温度
に加熱することによって、ガラス層11を再溶融して、
両袖助基板9と10を合体し、積層コア半体12を構成
する。
Therefore, the amorphous alloy layer 8 and the glass layer 11 on the auxiliary substrates 9 and 10 are bonded together, and the glass layer 11 is remelted by heating to the melting temperature of the glass layer 11.
The auxiliary substrates 9 and 10 on both sides are combined to form a laminated core half 12.

この熱処理は、アモルファス合金の磁気時性を劣化させ
ない温度で行なうため、低融点ガラスd、軟化温度が約
360℃のものを使用し、=I50’C30分間の熱処
理で、補助基板9,10間にアモルファス合金層8とガ
ラス層11かはさ寸れた、ザンドイッチ積層のコア半休
が完成する。
In order to perform this heat treatment at a temperature that does not deteriorate the magnetic properties of the amorphous alloy, a low melting point glass d with a softening temperature of approximately 360°C is used, and heat treatment for 30 minutes at =I50'C is performed between the auxiliary substrates 9 and 10. A core half of the Zandwich lamination, in which the amorphous alloy layer 8 and the glass layer 11 are stretched, is completed.

つぎにコア半体12の側面から、補助基板9゜10に共
通溝13を加工する。つぎに、共通溝13の中に低温硬
化無機結合剤14を塗布充填する。
Next, a common groove 13 is formed in the auxiliary substrate 9° 10 from the side surface of the core half 12. Next, a low-temperature curing inorganic binder 14 is applied and filled into the common groove 13.

本発明では低温硬化無機結合剤14としてスミセラム(
住友化学工業株式会社製、登録商標S−18A)−4使
用した。S−1’8Aはその主成分が7リカからなって
おシ、硬化温度1oo℃以上、硬化時間約60分間の処
理にょ9同化し、熱膨張率110 X 1 o−’/℃
、耐熱温度約12oo℃のセメント状となり、共通溝1
3中で強固に固着する。
In the present invention, Sumiceram (
The registered trademark S-18A)-4 manufactured by Sumitomo Chemical Industries, Ltd. was used. The main component of S-1'8A is 7 liters, and it has a thermal expansion coefficient of 110 x 1 o-'/°C after being assimilated at a curing temperature of 100°C or higher and a curing time of about 60 minutes.
, it becomes cement-like with a heat-resistant temperature of about 12oo℃, and the common groove 1
3. It will stick firmly in the middle.

なお前記のスミセラムには、その主成分にアルミナある
いはソリ力とアルミナを混合した物などもあシ、その結
合力、熱膨張係数や硬さなどを自由に構成できる。丑だ
同様な低温硬化無機結合剤として、東亜合成株式会社製
のアロンセラミックも使用できる。
The above-mentioned Sumiceram may have alumina as its main component or a mixture of warp and alumina, and its bonding strength, coefficient of thermal expansion, hardness, etc. can be freely configured. Aron Ceramic manufactured by Toagosei Co., Ltd. can also be used as a low-temperature curing inorganic binder similar to Ushida.

さらに、コア半体】2の構造として、第2図(ロ)(ハ
)で示すように、低温硬化無機結合剤14を充填する溝
を複数箇所に設ける方法や、同図に)で示すように、コ
ア半休の外側からガラス部材15で包合して固定する方
法や、同図(ホ)で示すようにコア半休の共通溝13中
にコア半休側補助基板間とほぼ等しい長さの、ガラス棒
16まだはガラス板を入れ、低温硬化無機結合剤を塗布
固着したものもある。
Furthermore, as the structure of the core half 2, as shown in FIG. There is also a method of enclosing and fixing the core half-hole from the outside with a glass member 15, and as shown in FIG. The glass rod 16 still has a glass plate inserted therein and a low-temperature curing inorganic binder coated and fixed thereon.

このようにコア半体12中に低温硬化無機結合剤を充填
することにより、コア積層間を二重に結合した構造とし
、磁気空隙形成面の研磨工程で、積層コアの剥離による
不良が発生しなくなる。
By filling the core half 12 with the low-temperature curing inorganic binder, the core laminated layers are doubly bonded, and defects due to peeling of the laminated core occur during the polishing process of the magnetic gap forming surface. It disappears.

第3図は、第2図で示すコア半体12の一対を用い、そ
の磁気空隙形成面を対向させ、磁気空隙18f:形成し
た磁気ヘッド19である。ずなゎぢ、磁気空隙形成面に
は、コア半体積層部のガラス層11とほぼ同融点のガラ
ス層全介在したもの、またけ、左右コア半体12で形成
した巻線祥にガラス17を入れ、溶融温度に加熱し、左
右のコア半体12を接着結合し、磁気空隙18を有した
磁気ヘッド】9が完成する。
FIG. 3 shows a magnetic head 19 in which a magnetic gap 18f is formed using a pair of core halves 12 shown in FIG. 2, with their magnetic gap forming surfaces facing each other. On the magnetic gap forming surface, a glass layer with approximately the same melting point as the glass layer 11 of the core half laminated portion is entirely interposed, and a glass layer 17 is placed on the winding edge formed by the left and right core halves 12. is heated to a melting temperature, the left and right core halves 12 are adhesively bonded, and a magnetic head 9 having a magnetic gap 18 is completed.

なお巻線窓中のガラスの加熱処理温度は480℃で加熱
時間は30分である。これにより、左右コア半休には強
固に一体結合することができる。
Note that the heat treatment temperature of the glass in the wire-wound window was 480° C. and the heating time was 30 minutes. Thereby, the left and right core halves can be firmly and integrally connected.

同時に、コア半体12積層のガラス部11は、その積層
時よシ高温度に加熱されるだめ、再溶融状態になる。し
かし、共通溝13中あるいはその近くに固着した低温硬
化無機剤は1000℃の耐熱性を有するため、480℃
の加熱では全く変形せず、積層間の連結はゆるまず、正
確な磁気空隙18あるいは高精度トラック幅を形成でき
る。
At the same time, the glass portion 11 of the core halves 12 is heated to a higher temperature than when the core halves 12 are laminated, and therefore becomes remelted. However, since the low temperature curing inorganic agent fixed in or near the common groove 13 has a heat resistance of 1000°C,
There is no deformation at all when heated, the connection between the laminated layers does not loosen, and an accurate magnetic gap 18 or high precision track width can be formed.

つぎに、第4図で示すような、本発明による補助構造の
磁気ヘッドは、ヘッドブロック体2oから単体磁気ヘッ
ドIII +h2 、h3を切断分離する工程において
も十分な積層強度が確保される。
Next, in the magnetic head having the auxiliary structure according to the present invention as shown in FIG. 4, sufficient lamination strength is ensured even in the step of cutting and separating the single magnetic heads III+h2 and h3 from the head block body 2o.

第5図は、さらに他の実施例を示す磁気ヘッド構造であ
る。
FIG. 5 shows a magnetic head structure showing still another embodiment.

第2図で示した積層コア半休を1つのブロックとし、そ
の瑞面に低融点力27層21を存在させ、その厚さ方向
に、繰り返えし重ね合力せだ、多数個の複合コア半休+
11 +h2 +h3 *h4 、h5を一体七して溶
着し、棒状に合体後、その一部に共通溝を設け、ガラス
棒16を入れ、その周辺から低温硬化無機結合剤14を
充填固着したコア半休を用いて、磁気空隙18を構成し
た量産型磁気ヘッド構造である。
The laminated core halves shown in Fig. 2 are made into one block, and a low melting point force 27 layer 21 is present on the first surface, and a large number of composite core halves are repeatedly layered in the thickness direction. +
11 +h2 +h3 *h4 and h5 are welded together to form a rod shape, a common groove is provided in a part of the groove, a glass rod 16 is inserted, and a low-temperature curing inorganic binder 14 is filled from the periphery of the solid core. This is a mass-produced magnetic head structure in which the magnetic gap 18 is constructed using the following.

(発明の効果) 本発明によれば、ガラスによる積層コア間の強度を高め
、ガラス積層コアを、その積層時高い温度処理によって
、磁気空隙形成時のガラス処理温度を高温にすることが
できる/こめ、強いコア結合と安定した磁気空隙をうる
ことができる。
(Effects of the Invention) According to the present invention, the strength between the glass laminated cores is increased, and the glass laminated cores are treated at a high temperature during lamination, so that the glass treatment temperature during magnetic gap formation can be made high. Therefore, strong core coupling and stable magnetic air gap can be obtained.

また同時に多数個の磁気ヘッドができる管種々の効果が
ある。
In addition, there are various effects that can be achieved by using a tube that can accommodate a large number of magnetic heads at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気ヘッドの斜視図、第2図(イ)は本
発明の一実施例による磁気ヘッド用コア半休の斜視図、
第2図(ロ)ないし0→は同断面図、第3図は本発明の
一実施例による磁気ヘッドの斜視図、第4図および第5
図は同多重磁気ヘッドの斜視図である。 ■・・・金属コア、2,3・・・補助基板、4・・・接
着剤層、5・・・磁気空隙、6・・低融点ガラス、7・
・・磁気ヘッド体、8・・・アモルファス合金/LL 
911.0・・・補助基板、11・・・低融点ガラス層
、12・・・コア半休、13・・・共通溝、14・・低
温硬化無機結合剤、15・・・ガラス部材、16・・・
ガラス棒、17・・低融点ガラス、18・・・磁気空隙
、19・・・磁気ヘッド、21・・・低融点ガラス層、
)+1 1h2 、b3 +)+4 1h5・・・複合
コア半休。 特許出願人松下電器産業株式会社 代理人星 野 恒 司 第1図 第2図− 第3図 阻 第4図 u 第5図 旧
FIG. 1 is a perspective view of a conventional magnetic head, FIG. 2(a) is a perspective view of a half-open core for a magnetic head according to an embodiment of the present invention,
2(b) to 0→ are the same sectional views, FIG. 3 is a perspective view of a magnetic head according to an embodiment of the present invention, and FIGS. 4 and 5.
The figure is a perspective view of the multiplex magnetic head. ■... Metal core, 2, 3... Auxiliary substrate, 4... Adhesive layer, 5... Magnetic gap, 6... Low melting point glass, 7...
...Magnetic head body, 8...Amorphous alloy/LL
911.0... Auxiliary substrate, 11... Low melting point glass layer, 12... Core semi-dead, 13... Common groove, 14... Low temperature curing inorganic binder, 15... Glass member, 16...・・・
Glass rod, 17...Low melting point glass, 18...Magnetic gap, 19...Magnetic head, 21...Low melting point glass layer,
)+1 1h2, b3 +)+4 1h5...Composite core half-day off. Patent Applicant Matsushita Electric Industrial Co., Ltd. Agent Hisashi Hoshino Figure 1 Figure 2 - Figure 3 Inhibition Figure 4 u Figure 5 Old

Claims (1)

【特許請求の範囲】 アモルファスやセンダストなどの飽和磁束密度の大きい
金属磁気コア材料を表面にス・ぐツタリングしたガラス
質第一基板と、表面に低融点ガ゛ラス金融着したガラス
質第2基板を用い、前記第一。 第二基板の金属磁気コアと低融点ガラスとを、互いに接
合した状態で前記低融点力゛ラスを再溶融して一体化し
た一対のコア半休を用いてなる磁気ヘッドにおいて、前
記コア半休に低温硬化無機接着剤を塗布し固着させて前
記第一、第二基板間を連′結した部分を少なくとも一箇
所以上形成し、さらに少なくとも前記コア半休の磁気空
隙形成面あるいは巻線窓に、少なくとも低融点ガラスを
介在せしめて前記各半休を互いに溶着し合体したことを
特徴とする磁気ヘッド。
[Claims] A first glass substrate on which a metal magnetic core material with a high saturation magnetic flux density such as amorphous or sendust is deposited, and a second glass substrate on which a low melting point glass is bonded. using the first method above. In a magnetic head using a pair of core halves formed by remelting the low melting point glass while bonding the metal magnetic core of the second substrate and the low melting point glass to each other, the core halves have a low temperature. A hardened inorganic adhesive is applied and fixed to form at least one connecting portion between the first and second substrates, and at least a low A magnetic head characterized in that each half is welded and combined with a melting point glass.
JP20106383A 1983-10-28 1983-10-28 Magnetic head Pending JPS6095715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20106383A JPS6095715A (en) 1983-10-28 1983-10-28 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20106383A JPS6095715A (en) 1983-10-28 1983-10-28 Magnetic head

Publications (1)

Publication Number Publication Date
JPS6095715A true JPS6095715A (en) 1985-05-29

Family

ID=16434763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20106383A Pending JPS6095715A (en) 1983-10-28 1983-10-28 Magnetic head

Country Status (1)

Country Link
JP (1) JPS6095715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172007A (en) * 1988-12-26 1990-07-03 Hitachi Maxell Ltd Multitrack magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172007A (en) * 1988-12-26 1990-07-03 Hitachi Maxell Ltd Multitrack magnetic head

Similar Documents

Publication Publication Date Title
JPH036564B2 (en)
US4847983A (en) Method of making a crystallized glass-bonded amorphous metal magnetic film-non-magnetic substrate magnetic head
JPS62162206A (en) Magnetic head
JPS6095715A (en) Magnetic head
JPS60201509A (en) Manufacture of magnetic head
JPH0256707A (en) Floating type magnetic head and its manufacture
JP3090014B2 (en) Thin film magnetic head and method of manufacturing the same
JPS6148114A (en) Magnetic head
JPH0241804B2 (en)
JPS5819720A (en) Production of magnetic head
JPS62141609A (en) Manufacture of magnetic head
JP2871439B2 (en) Stacked magnetic head
JPS61190702A (en) Magnetic head
JPH05225517A (en) Core substrate for magnetic head
JP2581855B2 (en) Manufacturing method of magnetic head
JPS60140504A (en) Production for magnetic head
JPS60187909A (en) Magnetic head
JPS61283016A (en) Magnetic head and its manufacture
JPS63269310A (en) Magnetic head and its manufacture
JPS5990218A (en) Thin-film magnetic head
JPH0622044B2 (en) Manufacturing method of core for composite type magnetic head
JPH0340205A (en) Manufacture of magnetic head
JPS6192408A (en) Magnetic head
JPH027206A (en) Manufacture of magnetic head
JPH04254908A (en) Production of magnetic head