JPS6095508A - Diffraction grating type optical multiplexer - Google Patents

Diffraction grating type optical multiplexer

Info

Publication number
JPS6095508A
JPS6095508A JP20419083A JP20419083A JPS6095508A JP S6095508 A JPS6095508 A JP S6095508A JP 20419083 A JP20419083 A JP 20419083A JP 20419083 A JP20419083 A JP 20419083A JP S6095508 A JPS6095508 A JP S6095508A
Authority
JP
Japan
Prior art keywords
laser array
diffraction grating
multiplexer
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20419083A
Other languages
Japanese (ja)
Inventor
Shigeta Ishikawa
石川 重太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20419083A priority Critical patent/JPS6095508A/en
Publication of JPS6095508A publication Critical patent/JPS6095508A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a small-sized, high density multiplexer which has low loss, a wide band, and low noise by constituting the multiplexer integrally with a laser. CONSTITUTION:A laser array 11 is incorporated directly instead of an array of optical fibers for incidence and only one optical fiber 12 for projection is therefore used. This laser array 11 has four mutually-sectioned light emission parts 11-1a, 11-1b, 11-1c, and 11-1d, which are controlled precisely to four mutually different wavelengths by distributed feedback type Bragg reflectors (DFB) 11-2a, 11-2b, 11-2c, and 11-2d which are formed closely to the respective light emission parts and differ in grating interval slightly from one another. Individual lasers are driven independently by respective electrodes 11-3a, 11-3b, 11-3c, 11-3d, and 11-4. Projection light from the laser array 11 is invariably linear polarized light and an S wave to all diffraction gratings, realizing high-efficiency, wide-band, and stable diffraction.

Description

【発明の詳細な説明】 本発明は、光通信用光波長多重伝送方式に適用される回
折格子形光合波器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diffraction grating type optical multiplexer applied to an optical wavelength division multiplexing transmission system for optical communications.

一般に、光波長多重伝送方式においては、送信側で複数
の異なる波長の光信号を発生させ。
Generally, in optical wavelength division multiplexing transmission systems, optical signals of multiple different wavelengths are generated on the transmitting side.

これ等の光信号を合波器により1本の光ファイバに多重
化して伝送する。これに用いられる合波器としては、干
渉膜形と回折格子形とがあるが、後者の方が高密度の波
長多重化に適している。
These optical signals are multiplexed onto one optical fiber by a multiplexer and transmitted. There are two types of multiplexers used for this, an interference film type and a diffraction grating type, but the latter is more suitable for high-density wavelength multiplexing.

従来用いられている回折格子形合波器は、第1図の構成
口に見られるように、伝送路に接続される1本の出射用
ファイバ1−0と、それぞれの光源に接続される複数の
入射用ファイバ1−1.・・・、1−Nとは近接して配
列され、ファイバアレイを構成している。入射用ファイ
バよりそれぞれ出射した光ビームはレンズ2により平行
ビームとなり9回折格子6に到達する。
A conventionally used diffraction grating multiplexer has one output fiber 1-0 connected to a transmission line and a plurality of output fibers connected to each light source, as shown in the configuration in Figure 1. Input fiber 1-1. ..., 1-N are arranged closely to form a fiber array. The light beams respectively emitted from the input fibers are turned into parallel beams by the lens 2 and reach the nine diffraction gratings 6.

回折格子3は、それぞれ到達した光の波長に応じて光ビ
ームを回折させ、その結果、各入射用ファイバ1−1〜
1−Nから出射した波長λ1〜λNの光ビームは総て出
射用ファイバ1−0に合波される。なお、第1図におい
て、光の方向を示す矢印を逆にすれば分波器として用い
られる。
The diffraction grating 3 diffracts the light beam according to the wavelength of the light that has arrived, and as a result, each of the input fibers 1-1 to
All the light beams with wavelengths λ1 to λN emitted from the fiber 1-N are combined into the output fiber 1-0. In addition, in FIG. 1, if the arrow indicating the direction of light is reversed, it can be used as a demultiplexer.

この種の回折格子形では1合波器に限らず。This type of diffraction grating type is not limited to one multiplexer.

分波器においても入射用ファイバのコア径が出射用ファ
イバコア径に較べて小さい程、損失スペクトラムの通過
域がより低損失で、かつ平坦な特性を示す。又、遮断域
への立上り特性がより急峻になり5合波または分波器と
して望ましい特性となる。
Even in a duplexer, the smaller the core diameter of the input fiber is compared to the output fiber core diameter, the lower the loss and the flatter the passband of the loss spectrum. In addition, the rise characteristic to the cutoff region becomes steeper, which is a desirable characteristic for a five-wave multiplexer or a demultiplexer.

昭和55年度電子通信学会総合全国大会の予講、S4−
11.渡辺、野須、藤井氏による゛長波長帯合波・分波
器の検討”には、出射用ファイバのコア径60μmに対
して、入射用ファイバはコア径40μmのものを用いて
損失スペクトラムの改善を計っていることの記載がある
。一方。
Preliminary lecture for the 1981 IEICE General Conference, S4-
11. In the study by Mr. Watanabe, Mr. Nosu, and Mr. Fujii, "Study of long wavelength band multiplexing and demultiplexing filters", the loss spectrum was improved by using a core diameter of 40 μm for the input fiber, while the core diameter of the output fiber was 60 μm. There is a description that it is measured.

高密度の波長多重伝送に適した半導体レーザとしては、
製造時に1発光波長が容易、かつ精密に制御可能であり
、動作時には2発光スペクトラム幅が狭く、中心波長が
安定な特性を有するDFBレーザ、DBRレーザ等が開
発されている。
As a semiconductor laser suitable for high-density wavelength multiplexed transmission,
DFB lasers, DBR lasers, and the like have been developed which have characteristics such that one emission wavelength can be easily and precisely controlled during manufacture, two emission spectrum widths are narrow during operation, and the center wavelength is stable.

回折格子への入射エネルギーに対する出射エネルギーの
割合、すなわち回折効率は一般に入説明するためのそれ
ぞれグラフおよび回折図を示したものである。第2図(
a)のグラフには2回折効率スペクトラム・が偏光方向
によって異なっている様子が見られる。図(b)を参照
し2回折格 4子3の溝方向に対して電界成分が垂直と
なる偏光をSで、又平行となる偏光をPで表わすと。
A graph and a diffraction diagram are shown for general explanation of the ratio of output energy to input energy to a diffraction grating, that is, diffraction efficiency. Figure 2 (
In the graph a), it can be seen that the 2nd diffraction efficiency spectrum differs depending on the polarization direction. Referring to Figure (b), the polarized light whose electric field component is perpendicular to the groove direction of the two-diffraction grating 3 is represented by S, and the polarized light which is parallel to it is represented by P.

一般に、S偏光では、高効率、広帯域であるのに対して
、P偏光では逆に低効率、狭帯域となる。従来の構成で
は、入射ファイバから出射した光ビームにはSとPの両
側光を含むため1回折効率はPどSのほぼ平均値(曲線
N)となり。
Generally, S-polarized light has high efficiency and a wide band, whereas P-polarized light has low efficiency and a narrow band. In the conventional configuration, the light beam emitted from the input fiber includes both S and P lights, so the single diffraction efficiency is approximately the average value of P and S (curve N).

効率、帯域双方に関して充分な特性が得られないとい゛
う欠点がある。また、入射用ファイバ内を伝搬する光ビ
ームの偏光方向の変動により。
The drawback is that sufficient characteristics cannot be obtained in terms of both efficiency and bandwidth. Also, due to variations in the polarization direction of the light beam propagating within the input fiber.

回折効率が変動し、その結果アナログ伝送方式で特に不
要な卸音を発生する。
Diffraction efficiency fluctuates, resulting in generation of unwanted noise, especially in analog transmission systems.

一方、第1図のごとき従来の合波・分波器では。On the other hand, in the conventional multiplexer/demultiplexer as shown in Figure 1.

ファイバアレイが多数のファイバを近接して配置してい
るために2合波・分波器自体の小形化に限界があるし、
実装時には光源と受光器とのチャンネル毎の接続のため
に、ファイバを引き回わさねばならず、広いスペースを
要するという欠点があった。さらに、損失スペクトラム
の通過域特性の平坦化は入射側ファイバのコア径を小さ
くすることによって可能であるが9合波器においては、
コアの細径化により半導体レーザとの結合やコネクタの
製作が困難となるため。
Since a fiber array has a large number of fibers arranged close to each other, there is a limit to the miniaturization of the dual multiplexer/demultiplexer itself.
During implementation, fibers must be routed to connect the light source and receiver for each channel, which has the disadvantage of requiring a large space. Furthermore, it is possible to flatten the passband characteristics of the loss spectrum by reducing the core diameter of the input fiber, but in the 9-wave multiplexer,
This is because the smaller diameter of the core makes it difficult to combine it with a semiconductor laser or manufacture a connector.

特性の平坦化が困難になるという欠点があった。This has the disadvantage that it is difficult to flatten the characteristics.

本発明の目的は、低損失で平坦な通過域損失特性を有し
、かつ小形で、高密度に実装が可能な回折格子形光合波
器を提供することにある。
An object of the present invention is to provide a diffraction grating type optical multiplexer that has low loss and flat passband loss characteristics, is small, and can be mounted at high density.

本発明によれば、各々異なる波長で発振する複数の半導
体レーザを同一基板上に配列してなる1つのレーザアレ
イと、該レーザアレイからの出射ビームを平行ビームに
変換する少なくとも1つのレンズと、該平行ビームを回
折させ。
According to the present invention, one laser array is formed by arranging a plurality of semiconductor lasers each emitting at different wavelengths on the same substrate, and at least one lens that converts an emitted beam from the laser array into a parallel beam; Diffract the parallel beam.

再び該レンズに戻すための少なくとも1つの回折格子と
、前記の各々異なる波長の平行ビームを合流するための
少なくとも1本の光ファイバとから構成される回折格子
形光合波器が得られる。
A diffraction grating type optical multiplexer is obtained which includes at least one diffraction grating for returning to the lens and at least one optical fiber for combining the parallel beams of different wavelengths.

次に2本発明による回折格子形光合波器について実施例
を挙げ9図面を参照して説明する。
Next, two embodiments of the diffraction grating type optical multiplexer according to the present invention will be described with reference to nine drawings.

第3図は本発明による実施例の構成を側面図により示し
たものである。この図において、レンズ2および回折格
子3は従来例と変わらないが、入射用ファイバのアレイ
に代ってレーザアレイ11が・直接に組込まれており、
したがって。
FIG. 3 shows the configuration of an embodiment according to the present invention in a side view. In this figure, the lens 2 and the diffraction grating 3 are the same as in the conventional example, but a laser array 11 is directly incorporated in place of the input fiber array.
therefore.

出射用の光ファイバ12が1本だけ用いられている。第
4図(a)および(b)は、第6図におけるレーザアレ
イ11の具体的な構成をそれぞれ側断面図および正面断
面図により示している。このレーザアレイ11は4つの
互に区切られた発光部1l−1a、1l−1b、1l−
1c、1l−1dを有し。
Only one optical fiber 12 for output is used. FIGS. 4(a) and 4(b) show the specific configuration of the laser array 11 in FIG. 6 using a side sectional view and a front sectional view, respectively. This laser array 11 has four light emitting sections 1l-1a, 1l-1b, 1l-
1c, 1l-1d.

それぞれの発光部に近接して形成された格子間隔が少し
ずつ異なる分布帰還形ブラッグ反射器(DFB) 11
−2a、、 11−2b、 11−2c、 11−2d
によって、扉に異なる4つの波長に精密に制御されてい
る。個々のレーザはそれぞれ電極1l−d 3a、 11−3b、 11−3c、 11−3dlと
11−4によって独立に駆動することができる。レーザ
アレイ11からの出射光は常に直線偏光であり、その向
きは第4図において矢印で示した向きとなる。したがっ
て、出射光は総ての回折格子に対して、第2因における
S波となり、高効率で広帯域な回折効率が安定して得ら
れることになる。
Distributed feedback Bragg reflector (DFB) with slightly different lattice spacing formed close to each light emitting part 11
-2a, 11-2b, 11-2c, 11-2d
The light is precisely controlled to four different wavelengths on the door. The individual lasers can be driven independently by electrodes 1l-d 3a, 11-3b, 11-3c, 11-3dl and 11-4, respectively. The light emitted from the laser array 11 is always linearly polarized light, and its direction is shown by the arrow in FIG. Therefore, the emitted light becomes the S wave in the second factor for all the diffraction gratings, and a highly efficient and broadband diffraction efficiency can be stably obtained.

その結果、従来の合波器における偏光方向の変動に起因
する雑音が発生しない。又、半導体レーザの発光径は非
常に小さく:(5X0.5μm程度)。
As a result, noise caused by fluctuations in polarization direction in conventional multiplexers is not generated. Furthermore, the emission diameter of the semiconductor laser is very small (about 5×0.5 μm).

従来の構成における入射用ファイバのコア径を小さくし
たことと同じ効果がある。したがって。
This has the same effect as reducing the core diameter of the input fiber in the conventional configuration. therefore.

レーザの発光波長の変動に対しても、安定した2 出射用ファイバtへの結合効率が得られる。なお1以上
のようなレーザアレイについては、数少ないが基礎的な
実験結果が「K、A1K1.、 M。
Even with fluctuations in the laser emission wavelength, stable coupling efficiency to the output fiber t can be obtained. Regarding laser arrays such as 1 or more, there are a few but basic experimental results such as "K, A1K1., M.

NaKamura、 and、 J、Umeda、 ”
Frequencymultiplexing lig
ht 5ource with mo −nolith
ically intergrated distri
bu−ted−feedbaCh diode コa、
5ers ”、Applj、edphysi、cs L
etters、Vol、29.No、8.pp−506
−507,Ocl:1976Jにより報告されており。
NaKamura,and,J,Umeda,”
Frequency multiplexing lig
ht 5source with mo-nolith
ically integrated distri
but-ted-feedbaCh diode core a,
5ers”, Applj, edphysi, cs L
etters, Vol. 29. No, 8. pp-506
-507, Ocl: 1976J.

今後の製造技術の進展に伴って工業的に充分実現し得る
デバイスである。
This is a device that can be fully realized industrially as manufacturing technology advances in the future.

第5図(a)および(b)は9本発明による他の実施例
の構成をそれぞれ上面図および側面図により示したもの
である。図において、出射用光ファイバ22.レンズ2
6および回折格子24が合波機能を受持っており、レー
ザアレイ21はヒートシンク25の上に固定される。レ
ーザアレイ21の各々異なる波長で発生する複数のレー
ザは、複数の端子28からボンディングワイヤ29を介
してそれぞれ駆動される。上記全てのエレメントは、ベ
ース26に固定され、カバー27により保護されている
。実装の方法は、従来のICと同様なパッケージ形式が
採られるから、プリント板上で、直接他の:[C,TJ
S工等と共に実装が可能となり、装置も小形になる。
FIGS. 5(a) and 5(b) show the structure of another embodiment according to the present invention in a top view and a side view, respectively. In the figure, an output optical fiber 22. lens 2
6 and a diffraction grating 24 are responsible for the multiplexing function, and the laser array 21 is fixed on a heat sink 25. A plurality of lasers emitted at different wavelengths in the laser array 21 are respectively driven from a plurality of terminals 28 via bonding wires 29. All the above elements are fixed to a base 26 and protected by a cover 27. The mounting method uses the same package format as conventional ICs, so it can be mounted directly on the printed board.
It can be mounted together with S-engineering, etc., and the device can also be made smaller.

以」二の説明により明らかなように1本発明によれば、
レーザと一体で構成されるから、従来の合波器にくらべ
て低損失、広帯域、低雑音。
As is clear from the following explanation, according to the present invention,
Since it is integrated with a laser, it has lower loss, wider bandwidth, and lower noise than conventional multiplexers.

小形および高密度の多重合波器が得られる。特に、DB
RやDFB構造のレーザアレイと組合せると9発光波長
の高安定性と単一軸モード発振とにより、従来不可能で
あった波長間隔の狭い高密度波長多重伝送が実現できる
。又、このような合波器は、マルチモードファイバを用
いた近距離伝送のみならず、材料分散の抑制が不可欠な
シングルモードファイバを用いた長距離大容量伝送にも
適用できるなど、経済性の向上に対して得られる効果は
太きい。
A compact and high-density multiplexer is obtained. In particular, D.B.
When combined with a laser array of R or DFB structure, the high stability of nine emission wavelengths and single-axis mode oscillation make it possible to achieve high-density wavelength multiplexing transmission with a narrow wavelength interval, which was previously impossible. In addition, such a multiplexer can be applied not only to short-distance transmission using multimode fibers, but also to long-distance high-capacity transmission using single-mode fibers, where it is essential to suppress material dispersion, making it economically viable. The benefits of improvement are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回折格子形合波器の構成例を)および回
折図、第6図は本発明による実施例の構成を示す側面図
、第4図(a)および(b)は、第6図におけるレーザ
アレイの具体的な構成を示すそれぞれ側断面図および正
面断面図、第5図(a)および(1))は1本発明によ
る他の実施例の構成を示すそれぞれ上面図および側面図
である。 図において、2.23はレンズ、3.24は回折格子、
11.21はレーザアレイ、12.22は光ノアイバ、
25はヒートシンク、26はベース。 27はカバー、28は端子、 1l−1a、 1l−1
b。 1l−1c、1l−1dは発光部、1l−2aはブラッ
ク反射器、11−3a、 11−3b、 11−3c、
 11−3d。 11−4は電極である。 さ ( へ1 へ。 Jユ 回覧波+!r−E
Fig. 1 shows an example of the structure of a conventional diffraction grating multiplexer) and a diffraction diagram, Fig. 6 is a side view showing the structure of an embodiment according to the present invention, and Figs. 6 is a side sectional view and a front sectional view showing the specific structure of the laser array, respectively, and FIGS. 5(a) and (1)) are a top view and a side view, respectively, showing the structure of another embodiment according to the present invention. It is a diagram. In the figure, 2.23 is a lens, 3.24 is a diffraction grating,
11.21 is a laser array, 12.22 is an optical noiba,
25 is the heat sink, 26 is the base. 27 is a cover, 28 is a terminal, 1l-1a, 1l-1
b. 1l-1c, 1l-1d are light emitting parts, 1l-2a is a black reflector, 11-3a, 11-3b, 11-3c,
11-3d. 11-4 is an electrode. Sa (Go to 1. Jyu circular wave +!r-E

Claims (1)

【特許請求の範囲】[Claims] 1、各々異なる波長で発振する複数の半導体レーザを同
一基板上に配列してなる1つのレーザアレイと、該レー
ザアレイからの出射ビームを平行ビームに変換する少な
くとも1つのレンズと、該平行ビームを回折させ、再び
該レンズに戻すための少なくとも1つの回折格子と、前
記の各々異なる波長の平行ビームを合流するための少な
くとも1本の光ファイバとから、構成される回折格子形
光合波器。
1. A laser array formed by arranging a plurality of semiconductor lasers each emitting at different wavelengths on the same substrate, at least one lens that converts the emitted beam from the laser array into a parallel beam, and the parallel beam. A diffraction grating type optical multiplexer comprising at least one diffraction grating for diffracting and returning to the lens, and at least one optical fiber for combining the parallel beams of different wavelengths.
JP20419083A 1983-10-31 1983-10-31 Diffraction grating type optical multiplexer Pending JPS6095508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20419083A JPS6095508A (en) 1983-10-31 1983-10-31 Diffraction grating type optical multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20419083A JPS6095508A (en) 1983-10-31 1983-10-31 Diffraction grating type optical multiplexer

Publications (1)

Publication Number Publication Date
JPS6095508A true JPS6095508A (en) 1985-05-28

Family

ID=16486322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20419083A Pending JPS6095508A (en) 1983-10-31 1983-10-31 Diffraction grating type optical multiplexer

Country Status (1)

Country Link
JP (1) JPS6095508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741390B2 (en) 2002-05-02 2004-05-25 Fujitsu Limited Variable wavelength light source apparatus and optical amplifier using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110908A (en) * 1980-02-06 1981-09-02 Takumi Tomijima Wave combination and distribution method of optical signal for optical multiplex communication
JPS5729005A (en) * 1980-07-30 1982-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110908A (en) * 1980-02-06 1981-09-02 Takumi Tomijima Wave combination and distribution method of optical signal for optical multiplex communication
JPS5729005A (en) * 1980-07-30 1982-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741390B2 (en) 2002-05-02 2004-05-25 Fujitsu Limited Variable wavelength light source apparatus and optical amplifier using same

Similar Documents

Publication Publication Date Title
US6434291B1 (en) MEMS-based optical bench
CA2387645C (en) Multiple wavelength optical sources
US6836487B1 (en) Spectrally tailored raman pump laser
US5572357A (en) Optical system for amplifying signal light
JPH0333805A (en) Optical device with focusing bragg reflector, optical multiplexing instrument, optical feedback multi- plexing instrument and optical filter
JPH01502619A (en) Optical wavelength division multiplexer
JP2003202463A (en) Wavelength multiplex bidirectional optical transmission module
JP2003294964A (en) Optical communication module
US6028881A (en) Wavelength selectable laser source
JPH04217233A (en) Multiwavelength light amplifier
JP2002267998A (en) Wavelength dispersion compensation module, optical receiving circuit, and optical communication system
US6697392B2 (en) Single wavelength laser module
US6687275B2 (en) Resonating cavity system for broadly tunable multi-wavelength semiconductor lasers
CN107611777A (en) The narrow linewidth semiconductor outside cavity gas laser and control method of a kind of flexible wavelength
US6400508B1 (en) Compact wavelength interleaver
CA2310199A1 (en) Multi-wavelength lasers
JP3382394B2 (en) Wavelength multiplexing optical circuit using Bragg grating
JP2003224322A (en) Two-wavelength semiconductor laser light source for optical pickup
JP4118865B2 (en) Multi-channel light source and multi-channel optical module using the same
JPS6095508A (en) Diffraction grating type optical multiplexer
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
US7447439B2 (en) Optical duplexer and optical triplexer
JP3112105B2 (en) WDM light source
JP2600507B2 (en) Optical multiplexer / demultiplexer
JPS6366436B2 (en)