JPS6095098A - Polyurethane structure for crushing rock - Google Patents

Polyurethane structure for crushing rock

Info

Publication number
JPS6095098A
JPS6095098A JP20223483A JP20223483A JPS6095098A JP S6095098 A JPS6095098 A JP S6095098A JP 20223483 A JP20223483 A JP 20223483A JP 20223483 A JP20223483 A JP 20223483A JP S6095098 A JPS6095098 A JP S6095098A
Authority
JP
Japan
Prior art keywords
crushing
cylindrical unit
polyurethane structure
unit molded
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20223483A
Other languages
Japanese (ja)
Other versions
JPS6319678B2 (en
Inventor
八木 賢二
松井 正州
服部 鋭一
鎌苅 龍太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Toyo Tire Corp
Original Assignee
Kajima Corp
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Toyo Tire and Rubber Co Ltd filed Critical Kajima Corp
Priority to JP20223483A priority Critical patent/JPS6095098A/en
Publication of JPS6095098A publication Critical patent/JPS6095098A/en
Publication of JPS6319678B2 publication Critical patent/JPS6319678B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、靭性指数の大なる破砕性拡張ツノの得られ
るウレタンエラストマーの人なる破砕性エネルギーによ
って4、 コンクリート構造物や岩盤等を無振動、無4
3i音の下に破砕Jる岩盤破砕用ポリウレタン構造体に
関するものである。
[Detailed Description of the Invention] This invention utilizes the fracture energy of urethane elastomer, which has fracture expandable horns with a large toughness index, to create vibration-free and vibration-free construction of concrete structures, rock, etc.
This invention relates to a polyurethane structure for rock crushing that can be crushed under a 3i sound.

従来一般には、コンクリートブレーカ等の破砕機による
岩盤の掘削、方向性火薬による掘削、空気ハンマー等に
よる掘削等が行なわれているが、振動、騒音を完全に避
りる必要のある場所では、いずれも使用不可能である。
Conventionally, rock excavation has been carried out using crushers such as concrete breakers, excavation using directional explosives, excavation using air hammers, etc. However, in places where it is necessary to completely avoid vibration and noise, is also unusable.

次に、例示の図面に基づいて、この発明の岩盤破砕用ポ
リウレタン構造体の態様を詳述する。
Next, embodiments of the polyurethane structure for rock crushing of the present invention will be described in detail based on exemplary drawings.

第1図は、この発明の岩盤破砕用ポリウレタン構造体を
稼動する一例として岩盤破砕装置FMの要部を断面にて
示したものである。
FIG. 1 shows, in cross section, the essential parts of a rock crushing device FM as an example of operating the polyurethane structure for rock crushing of the present invention.

この工法の概要は、岩盤RBに穿孔した穿孔穴D1−1
中に破砕装置を差し込み、ジヤツキ1で加圧づることに
よって目的物を無振動、無騒音の下に破砕する工法であ
る。
The outline of this construction method is as follows: Drill hole D1-1 drilled in bedrock RB
This method crushes the target object without vibration or noise by inserting a crushing device inside and pressurizing it with jack 1.

この工法の主体をなすこの発明の岩盤破砕用ポリウレタ
ン構造体は、エラストマー中、靭性の大なるウレタンエ
ラストマーの靭性指数の大なる領域を使用するものであ
り、その円筒状単位成形体の複数個からなる大きな弾性
エネルギーを有する破砕機能体FFSをテンションロッ
ドの先端に挿入し、両端部を、金属板によって挾持し、
この破砕機能体FFSを金属板間にて加圧・圧縮して側
方への拡張力によって岩盤の節理に沿って破砕するもの
である。
The polyurethane structure for rock crushing of this invention, which is the main body of this construction method, uses a urethane elastomer with a large toughness index in the elastomer, and is made from a plurality of cylindrical unit molded bodies. A crushing function body FFS having a large elastic energy is inserted into the tip of the tension rod, and both ends are sandwiched between metal plates.
This crushing function body FFS is pressurized and compressed between metal plates and is crushed along the joints of the rock by the lateral expansion force.

この例示の岩盤破砕装置FMは、ジヤツキ1〈能力が1
00t〜200tのセンターボールジヤツキ)、テンシ
ョンロッド2、ラムチェア−3、円筒状単位成形体4、
金属板5.5からなる構造体で、円筒状のラムチェア−
3の中を摺動するテンションロッド2は、ジヤツキ1に
よって上下に摺動するものであり、このテンションロッ
ド2の先端に、破砕機能体FFSを挿入して金属板5.
5にて挟持固定するものである。
This example rock crushing device FM has a jack of 1 and a capacity of 1.
00t~200t center ball jack), tension rod 2, ram chair 3, cylindrical unit molded body 4,
A cylindrical ram chair with a structure made of 5.5 metal plates.
A tension rod 2 sliding inside the metal plate 5.3 is slid up and down by a jack 1, and a crushing function body FFS is inserted into the tip of the tension rod 2.
It is clamped and fixed at 5.

上記の円筒状単位成形体4は、抗張力および伸び共に増
大傾向を有する硬1(J18.スプリング式ゴム硬度計
)80°以上の靭性指数の大なる領域のウレタンエラス
トマーを使用することによって、大きな破砕エネルギー
を得るようにしたものであって、硬度80’〜95°程
度の範囲の領域が大なる破砕効果を発揮するものである
。すなわち、ウレタンエラストマーの円筒状単位成形体
4の複数個(通常5〜8個〉を、テンションロッド2の
先端に挿入して破砕I幾能体FFSを構成するものであ
る。この破砕機能体FFSは、テンションロッド2をジ
ヤツキ1によって引き上げると同時にラムチェア−3を
押し下げ、ラムチェア−3とテンションロッド2との金
属板5.5間において圧縮力を受けて側方(径方向)へ
大きな拡張力を発生するものである。
The above-mentioned cylindrical unit molded body 4 is made of a urethane elastomer with a toughness index of 80 degrees or more, hardness 1 (J18, spring type rubber hardness tester), which tends to increase in both tensile strength and elongation. It is designed to obtain energy, and exhibits a great crushing effect in the hardness range of about 80' to 95°. That is, a plurality of cylindrical unit molded bodies 4 of urethane elastomer (usually 5 to 8 pieces) are inserted into the tip of the tension rod 2 to constitute the fracture I geometric body FFS. At the same time, the tension rod 2 is pulled up by the jack 1, and the ram chair 3 is pushed down, and a compressive force is applied between the metal plate 5.5 between the ram chair 3 and the tension rod 2, and a large expansion force is applied laterally (in the radial direction). It is something that occurs.

穿孔穴は通常、パーカッションドリルによって岩盤の状
態に応じて125n++nφ〜(35mmφのものがあ
けられる。従って、円筒状単位成形体の外径は、通常圧
縮率10%内外で穿孔穴を充填する秒置に形成される。
Drilling holes are usually drilled with a percussion drill from 125n++nφ to (35mmφ) depending on the condition of the rock mass. Therefore, the outer diameter of the cylindrical unit molded body is usually set at a compression ratio of around 10% and the diameter of the hole is approximately 10%. is formed.

また、岩盤破砕装置FMは、大量に破砕する場合は、フ
ローラ等に搭載して挿入する。 ジヤツキ1による加圧
は、破砕深さによって決まり、ジヤツキ能力は深さ1.
5mで100を程度、ジヤツキ1のストロークは破砕機
能体FFSの金高の40%程度が必要である。
Moreover, when crushing a large amount of rock, the rock crushing device FM is mounted on a flora or the like and inserted. The pressure applied by the jack 1 is determined by the crushing depth, and the jacking capacity is determined by the depth 1.
The stroke of the jack 1 is approximately 40% of the metal height of the crushing function body FFS.

なお、破砕機能体FFSの岩盤への側方加圧は150 
k(+/ Cl112程度になる。
In addition, the lateral pressure applied to the rock by the crushing function body FFS is 150
k(+/Cl112).

この側圧による亀裂の発生状態は、岩の場合、亀裂は節
理に沿ってはいりやすいものである。
In the case of rocks, cracks tend to form along joints when cracks occur due to this lateral pressure.

第2図は、ウレタンエラストマーの円筒状単位成形体4
の改変型の一例を示した立面図で、外周面が直線である
基本形状を一部改変したもので、外径OD、内径ID、
高さ]」からなる円筒状で、その外周面は端面部eと逆
クラウン部RCからなるもので、逆クラウン部RCは、
これを高さ方向に圧縮した場合、3%〜5%の圧縮時に
、側方へ拡張して直線状となる逆クラウン部を形成した
ものである。これはウレタンエラストマーの可塑性変形
による永久歪として残存する歪をあらかじめ排除して置
き、すぐれた復元性を得るように配慮したものである。
Figure 2 shows a cylindrical unit molded body 4 of urethane elastomer.
This is an elevational view showing an example of a modified type, in which the basic shape with a straight outer peripheral surface is partially modified, and the outer diameter OD, inner diameter ID,
It has a cylindrical shape with a height of 1.5 cm, and its outer peripheral surface consists of an end surface e and an inverted crown part RC, and the inverted crown part RC is
When this is compressed in the height direction, an inverted crown portion is formed that expands laterally and becomes linear when compressed by 3% to 5%. This was designed to eliminate residual permanent strain due to plastic deformation of the urethane elastomer in advance and to obtain excellent restorability.

この円筒状単位成形体4は、1回の破砕を終ると、次の
穿孔穴に挿入して破砕し、順次破砕を繰り返すため、頻
繁に穿孔穴に出入されるものである。従って、永久歪が
大きいと出入に支障を来たずおそれがあるからである。
After this cylindrical unit molded body 4 has been crushed once, it is inserted into the next punched hole and crushed, and the crushing is repeated in sequence, so that it is frequently moved in and out of the punched hole. Therefore, if the permanent deformation is large, there is a risk that it will cause trouble in getting in and out.

このような逆クラウン部に形成するこにより永久歪があ
っても、復元後の外周中央部が外径ODより大きくなっ
て出入に支障を来たすことがないので好ましい。
By forming such an inverted crown part, even if there is permanent distortion, the center part of the outer periphery after restoration will not become larger than the outer diameter OD, which is preferable because it will not cause problems in getting in and out.

なお、円筒状単位成形体4の少数個を積み重ねて金属板
5.5にて挟持固定した破砕機能体FFSを圧縮づると
、穿孔穴に充満し、芒らに破砕力の発生のために加圧さ
れると加圧の進行に伴い、両端部の円筒状単位成形体4
が、金属板5.5と穿孔穴DHとの透き間に侵入変形し
て損傷される誘因を生起するものである。囚って、両端
部の円筒状単位成形体4に限定して、各用途における所
要の加圧力に対応して、透き間に侵入しないにうに、第
2図の逆クラウン部RCを10%〜40%の圧縮時にそ
れぞれ側方へ拡張して直線状となるような大きな逆クラ
ウン部を形成して、破砕加圧力による両端部の透き間へ
の侵入変形を、可及的抑制して損傷誘因を防止する必要
がある。
Note that when the crushing function body FFS, which is made by stacking a small number of cylindrical unit molded bodies 4 and clamping and fixing them between metal plates 5.5, is compressed, the perforation hole is filled and the awns are applied to generate crushing force. As the pressure progresses, the cylindrical unit molded body 4 at both ends
However, the metal plate 5.5 enters the gap between the metal plate 5.5 and the perforated hole DH and deforms, causing damage. In particular, limited to the cylindrical unit molded body 4 at both ends, the inverted crown portion RC shown in FIG. When compressed by %, a large inverted crown part is formed that expands laterally into a straight line, suppressing as much as possible the deformation that enters the gap at both ends due to crushing pressure, and preventing damage. There is a need to.

また、金属板5.5にて挾持された破砕機能体FFSは
、圧縮によって穿孔穴を充満するものであるが、その充
満状態は、中央部から端部に順次波及するようにして岩
盤押圧力を上昇することが好ましい。その方法の一つと
して、同高の円筒状単位成形体4に硬度差を設定するこ
とである。
In addition, the crushing function body FFS held between the metal plates 5.5 is compressed to fill the perforation hole, and the filling state spreads sequentially from the center to the edges to increase the rock pressing force. It is preferable to increase the One method is to set a hardness difference in cylindrical unit molded bodies 4 of the same height.

すなわち、金属板5.5にて挾持された破砕機能体FF
Sの円筒状単位成形体4の硬度を80゜〜95°の範囲
において、金属板5.5に近いものほど高硬度とし、中
央部に近いものほど低硬度とするもので、第3図の破砕
機能体の立面図に示すように、円筒状単位成形体の位置
符号を5個の場合、a、b、、c、7個の場合〈図省略
)、all) 、C、dとすると、たとえば、 a−95°、b =90°、C=85°。
In other words, the crushing function body FF held between the metal plates 5.5
The hardness of the S cylindrical unit molded body 4 is in the range of 80° to 95°, and the closer to the metal plate 5.5, the higher the hardness, and the closer to the center, the lower the hardness, as shown in Fig. 3. As shown in the elevational view of the crushing function body, if the position codes of the cylindrical unit molded bodies are 5, a, b, , c, and 7 (figure omitted), all), C, d. , for example, a-95°, b = 90°, C = 85°.

a−95°、b =92”、’C’=9’O” 。a-95°, b = 92", 'C' = 9'O".

a =93° 、b=90° 、C,=87° 。a=93°, b=90°, C,=87°.

a=901、b−87°、C=84°。a=901, b-87°, C=84°.

a −88° 、b=84° 、C=80’。a -88°, b=84°, C=80'.

a −95° 、b =93° 、C=90’ 、d=
87’ 等各種の組み合わせが考えられるが、岩盤の状況に応じ
て、破砕に必要なエネルギーの大小に応じて最も好まし
い組合せを利用するものである。
a -95°, b =93°, C=90', d=
Although various combinations such as 87' are possible, the most preferable combination is used depending on the state of the rock mass and the amount of energy required for crushing.

第4図の破砕機能体の立面図は、金属板5.5にて挾持
された破砕機能体FFSの円筒状!)1位成形体4の高
さを金属板に近いものほど低く、中央部に近いものほど
高くして、圧縮時に、穿孔穴D Hの中央部から順次拡
大充填するようにして充填操作を容易にするものである
The elevational view of the crushing function body in Figure 4 shows the cylindrical shape of the crushing function body FFS held between metal plates 5.5! ) The height of the No. 1 molded body 4 is set lower as it is closer to the metal plate and higher as it is closer to the center, and during compression, the filling operation is facilitated by sequentially expanding and filling from the center of the perforated hole DH. It is something to do.

図示のように、円筒状単位成形体4の位置符号を、第3
図と同様、5個の組合「の場合、a、1)、007個の
組合せの場合(図示省略) a’ 、 b 。
As shown in the figure, the position code of the cylindrical unit molded body 4 is
As in the figure, in the case of 5 combinations, a, 1), and in the case of 007 combinations (not shown) a', b.

c、dとすると、 たとえば、 A組(a =50 mlR、b =100111m5C
=15011111)、8組(a =80 mm Sb
 =100 mm、 c =130 mm)、0組(a
 =100 mm、 b = 130 mm、 c =
 150 mm>、D組 (a =50 nun Sb
 = 80 mm、c =100 mm。
For example, if c and d are group A (a = 50 mlR, b = 100111 m5C
= 15011111), 8 sets (a = 80 mm Sb
= 100 mm, c = 130 mm), 0 sets (a
= 100 mm, b = 130 mm, c =
150 mm>, Group D (a = 50 nun Sb
= 80 mm, c = 100 mm.

d=13On+丑) 等穿孔穴D Hの径と円筒状単位成形体4の外径との差
、すなわら、透き間の大小によって適宜にa、b、cの
高さの組合せを考慮して使用するものである。この場合
も岩盤の状況に応じて各組において80°〜95°の範
囲において適当な硬度のものを選択して使用するもので
ある。
d = 13 On + Ox), etc. Considering the difference between the diameter of the perforated hole D H and the outer diameter of the cylindrical unit molded body 4, that is, the size of the gap, the combination of heights a, b, and c is appropriately considered. It is what you use. In this case as well, a suitable hardness in the range of 80° to 95° is selected and used for each set depending on the rock condition.

なお、各組合せにおいて、金属板5.5に接する部分に
、別に高さの低い又は/及び硬度の高い円筒状単位成形
体4の侵入防止付加体PAを設定することによって、穿
孔穴DHとの透き間への侵入を防止することが出来る。
In addition, in each combination, by separately setting an intrusion prevention addition body PA of a cylindrical unit molded body 4 having a low height and/or high hardness in the part that contacts the metal plate 5.5, the connection with the perforated hole DH is prevented. It can prevent intrusion into gaps.

たとえば、上記0組の場合、PA= 30 mm 。For example, in the case of the above set 0, PA=30 mm.

a = 10’Omm 、 b = 13011111
1 XC= 150111111 。
a = 10'Omm, b = 13011111
1XC=150111111.

b= 130mm、a= 10Onon、PA= 3O
n+m。
b=130mm, a=10onon, PA=3O
n+m.

の7個となる。There are 7 pieces.

第5図の立面図は、一部切欠して補強材RMを示したも
ので、金属板接着式の破砕機能体FFSの例を示したも
のである。
The elevational view in FIG. 5 shows the reinforcing material RM with a portion cut away, and shows an example of the metal plate adhesive type crushing function body FFS.

寸なりも、破砕機能体FFSの両端部の円筒状単位成形
体4のウレタンエラストマーを金属板5.5に接着固定
するものである。この接r1においては、接着部の円筒
状単位成形体4と同系のウレタンエラストマーにて埋設
したaliN質または金属質の網状体等の補強材RMを
介して金属板に接着することにより強大な圧縮力に耐え
る接着力を得ることか出来たものである。このように構
成することによって、穿孔穴D1−1と金属板5.5と
の透き間にウレタンエラストマーの侵入が防止され、著
しく耐久性を増大しうるものである。
In other words, the urethane elastomer of the cylindrical unit molded body 4 at both ends of the crushing function body FFS is adhesively fixed to the metal plate 5.5. In this contact r1, the cylindrical unit molded body 4 of the adhesive part is bonded to the metal plate through the reinforcing material RM, such as an aliN or metal mesh, embedded with a urethane elastomer of the same type as the cylindrical unit molded body 4, thereby creating a strong compression. We were able to obtain adhesive strength that could withstand the force. With this configuration, the urethane elastomer is prevented from entering into the gap between the perforated hole D1-1 and the metal plate 5.5, and durability can be significantly increased.

なお、この岩盤破砕用ポリウレタン構造体は、上記のと
おり、円筒状単位成形体4からなる破砕機能体FFSを
圧縮して破砕性の拡張力を与えて岩盤を破砕さゼるもの
であるため、ウレタンエラストマーである円筒状単位成
形体4の外表面が、特に、岩盤を穿孔穴D Hの内面の
凹凸面に圧接され且つ摺動するため、圧接力並びに摩擦
力による損傷誘因を有するものである。
In addition, as mentioned above, this polyurethane structure for rock crushing compresses the crushing function body FFS consisting of the cylindrical unit molded body 4 and applies a crushing expansion force to crush the rock. The outer surface of the cylindrical unit molded body 4 made of urethane elastomer is pressed against and slides on the uneven surface of the inner surface of the drilled hole DH, which causes damage due to pressure contact force and frictional force. .

従って、耐久性の増大のため保護カバーの設定を考慮す
る必要がある。
Therefore, it is necessary to consider the setting of the protective cover to increase durability.

第6図、第7図は、この管状の保護カバーの構造を例示
したものである。
FIGS. 6 and 7 illustrate the structure of this tubular protective cover.

第6図−1は、管の軸線方向の補強材を埋設した保護カ
バーの正面図で、一部切欠して補強材を示したものであ
る。
FIG. 6-1 is a front view of a protective cover in which a reinforcing material in the axial direction of the tube is embedded, with a portion cut away to show the reinforcing material.

第6図−2は同断面図である。FIG. 6-2 is a sectional view of the same.

この軸線方向補強材を有する保護カバーPCは、補強材
6、外被層7、内被層8からなる管状体で、両端部には
補強材を被覆するキャップCPが形成されている。補強
材6は、金属線または金属コードあるいは有機繊維コー
ドを管の軸線に対し平行方向に配列したものであって、
ゴム系あるいは樹脂系の弾性高分子物質にて埋設成形さ
れるもので、内外には弾性高分子物質の外被層7と内被
層8を形成するものである。金属補強材には主してスチ
ールワイヤ、スチールコードが使用され、有機繊維コー
ドには、主としてタイヤコードが使用される。弾性高分
子物質には、適当な伸縮性と良好な復元性を有するゴム
系、樹脂系物質が使用される。
The protective cover PC having the axial reinforcing material is a tubular body consisting of a reinforcing material 6, an outer covering layer 7, and an inner covering layer 8, and caps CP covering the reinforcing material are formed at both ends. The reinforcing material 6 is made of metal wires, metal cords, or organic fiber cords arranged in a direction parallel to the axis of the tube,
It is embedded and molded with a rubber-based or resin-based elastic polymer material, and an outer covering layer 7 and an inner covering layer 8 of elastic polymer material are formed inside and outside. Steel wires and steel cords are mainly used as metal reinforcing materials, and tire cords are mainly used as organic fiber cords. As the elastic polymer material, a rubber-based or resin-based material having appropriate elasticity and good restorability is used.

この軸線方向の補強材構造は、縦方向に伸縮Uず横方向
にのみ拡張するものである。
This axial stiffener structure expands only in the lateral direction without stretching or contracting in the longitudinal direction.

第7図−1は、答の軸線に対し、バイアス方向に補強材
を埋設した保護カバーの正面図で、一部切欠して補強材
を示したものである。第7図−2は、同断面図であ。
FIG. 7-1 is a front view of a protective cover in which a reinforcing material is embedded in a bias direction with respect to the axis of the cover, with a portion cut away to show the reinforcing material. FIG. 7-2 is a sectional view of the same.

このバイアス方向補強材を有する保護カバーPCは、補
強材9、外被層7、内被層8からなる管状体で、両端部
には第6図同様4−ヤツプCPが形成されている。補強
材9は、金属線または金属コードあるいは有機繊維コー
ドを笛の軸線に対し、バイアスに配列したものであって
、埋設に使用される弾性高分子物質は第6図と同様であ
る。
The protective cover PC having the bias direction reinforcing material is a tubular body consisting of the reinforcing material 9, the outer covering layer 7, and the inner covering layer 8, and has 4-yaps CP formed at both ends as in FIG. 6. The reinforcing material 9 is made of metal wires, metal cords, or organic fiber cords arranged in a biased manner with respect to the axis of the whistle, and the elastic polymer material used for embedding is the same as that shown in FIG.

なお、バイアス方向補強材の角度θは、45゜より小さ
くして、軸方向の伸びを小さくするように形成すること
が望ましい。
Note that it is desirable that the angle θ of the bias direction reinforcing material be smaller than 45° to reduce the elongation in the axial direction.

上記第6図、第7図の保護カバーP’Cは、穿孔穴DH
の全長にわたり挿入されるものである。従っで、岩盤の
破砕が終ると容易に引き出づことが出来る。:1、た、
破砕機能体F F Sは、保護カバーPCの平)iな内
面に圧接または摺動されるのでIQ傷されるJ3それが
ない。また、破砕時に岩盤の割れ目に食い込む口とによ
つC10傷されることも防止される!、:め6(久(’
lの増大に寄Jjりる6のである。
The protective cover P'C shown in Figs. 6 and 7 above has a drilled hole DH.
It is inserted over the entire length of the Therefore, it can be easily pulled out after the rock has been crushed. :1, ta,
Since the crushing function body FFS is pressed or slid against the flat inner surface of the protective cover PC, there is no risk of IQ damage. In addition, C10 damage caused by the mouth that bites into cracks in the rock during crushing is also prevented! , :me6(ku('
6, which contributes to the increase in l.

4、回向の簡11川fd1明 第1図は、このyt明の岩盤破砕用ポリウレタン構造体
を示1岩盤破砕装四の概要断面図、第2図は、外111
面に逆クラウン部を形成した円筒状中位成形体の改変型
の立面図、 第3図は、円筒状単位成形体に硬石変化を与えた破砕機
能体の立面図、 第4図は、円8:)状単位成形体に^さ変化を与えた破
砕1幾11ヒ休の−j面図、 第5図は、両端部の円筒状単位成形体を金属板に接着固
定した破砕I幾面体のw面図、第6図−1は、l1lI
I線り内袖強材を右りる保護カバーの一部切欠補強材を
示した正面図、第6図−2は同断面図、 第7図−1は、バイアス方向補強材を有する保護カバー
の一部切欠補強材を示したif面図、第7図−2同断面
図である。
4. Eko's Simple 11 River FD1 Light Figure 1 shows this yt light's polyurethane structure for rock crushing. 1 Schematic cross-sectional view of the rock crushing equipment
Figure 3 is an elevational view of a modified version of a cylindrical intermediate molded body with an inverted crown on its surface; Figure 5 is a -j side view of the fractured 1-11 Hikyu in which a circle 8:)-shaped unit molded body is given a change in height. The w-plane view of the I geometry, Figure 6-1, is l1lI
A front view showing a partially cut-out reinforcing material of the protective cover that holds the I-line inner sleeve reinforcement, Fig. 6-2 is a sectional view of the same, and Fig. 7-1 is a protective cover with a bias direction reinforcing material. FIG. 7 is a cross-sectional view of FIG. 7-2 showing a partially cutaway reinforcing material.

R13・・・岩盤 D I−1・・・穿孔穴1:[S・
・・破砕a面体 RM・・・補強材e・・・端面部 1
< C・・・逆クラウン部PC・・・保護カバー 2・
・・テンション[1ツド4・・・円筒状単位成形体 5
・・・金属板6・・・補強44 9・・・補強材 代理人 弁理士 大 島 泰 Fti
R13...Rock D I-1...Drilling hole 1: [S.
...Crushed a-hedron RM...Reinforcement material e...End face part 1
< C... Reverse crown part PC... Protective cover 2.
...Tension [1 Tsudo 4...Cylindrical unit molded body 5
...Metal plate 6...Reinforcement 44 9...Reinforcement material agent Patent attorney Yasushi Oshima Fti

Claims (1)

【特許請求の範囲】 (1)岩盤の穿孔穴内に挿入するテンション0ツドの先
端に、円筒状単位成形体からなる硬度80゜〜95°の
ウレタンエラストマーを複数個挿入積み重ねて形成した
破砕機能体を金属板にて挟持固定し、その破砕機能体を
軸方向に圧縮して径方向に破砕性の拡張力を与える岩盤
破砕用ポリウレタン構造体。 (2)円筒状単位成形体の高さの両端面部の内側の外周
面に、5%圧縮時に直線状となる逆クラウン部を形成し
た特許請求の範囲第1項記載の岩盤破砕用ポリウレタン
構造体。 (3) 破砕機能体の両端の円筒状単位成形体において
、両端面部の内側の外周面に、高さの10%〜40%圧
縮時に直線状となる逆クラウン部を形成した特許請求の
範囲第1項記載の岩盤破砕用ポリウレタン構造体。 (4)複数個挿入積み重ねた円筒状単位成形体において
、両端部より中央部に至るにつれて、それぞれの円筒状
単位成形体の硬度を80°〜95°の範囲において、漸
次低くした特許請求の範囲第1項記載の岩盤破砕用ポリ
ウレタン構造体。 (5)複数個挿入積み重ねた円筒状単位成形体の両端部
の円筒状単位成形体を、同系のウレタンエラストマーに
て埋設した補強材を介して金属板に接着した特許請求の
範囲第1項記載の岩盤破砕用ポリウレタン構造体。 (6)複数個挿入積み重ねた円筒状単位成形体において
、各円筒状単位成形体の高さを、積み重ねの両端部より
中央部に向かって漸次高くした特許請求の範囲第1項記
載の岩盤破砕用ポリウレタン構造体。 [7] @mの穿孔内に挿入するテンションロッドの先
端に、円筒状単位成形体らなる硬度80’〜95°のウ
レタンエラストマーを複数個挿入積み重ねて形成した破
砕機能体を金属板にて挟持固定し、上記穿孔穴内面に管
状の保護カバーを設定し、上記破砕機能体を軸方向に圧
縮して径方向に破砕性の拡張力を与える岩盤破砕用ポリ
ウレタン構造体。 (8)管状の保護カバーがゴム系あるいは樹脂系の弾性
高分子物質である特許請求の範囲第7項記載の岩盤破砕
用ポリウレタン構造体。 (9)管状の保護カバーが、管の軸線に対し、平行方向
に配列した金属線または金属コードあるいは有機se維
コードを補強材として、ゴム系あるいは樹脂系の弾性高
分子物質にてM段成形されたものである特許請求の範囲
第7項記載の岩盤破砕用ポリウレタン構造体。 flol 管状の保護カバーが、管の軸線に対しバイア
スに配列した金属線または金属コードあるいは有機繊維
コードを補強材として、ゴム系あるいは樹脂系の弾性高
分子物質にて埋設成形されたものである特許請求の範囲
第7項記載の岩盤破砕用ポリウレタン構造体。
[Scope of Claims] (1) A crushing function body formed by inserting and stacking a plurality of urethane elastomers made of cylindrical unit molded bodies with a hardness of 80° to 95° at the tip of a zero-tension tube inserted into a drilled hole in a rock. A polyurethane structure for rock crushing that is clamped and fixed between metal plates and compresses the crushing function body in the axial direction to provide crushing expansion force in the radial direction. (2) The polyurethane structure for rock crushing according to claim 1, wherein an inverted crown portion that becomes linear when compressed by 5% is formed on the inner outer circumferential surface of both end surfaces of the height of the cylindrical unit molded body. . (3) In the cylindrical unit molded body at both ends of the crushing function body, an inverted crown portion that becomes straight when compressed by 10% to 40% of the height is formed on the inner outer circumferential surface of both end surfaces. The polyurethane structure for rock crushing according to item 1. (4) In a cylindrical unit molded body in which a plurality of cylindrical unit molded bodies are inserted and stacked, the hardness of each cylindrical unit molded body is gradually lowered in the range of 80° to 95° from both ends to the center part. The polyurethane structure for rock crushing according to item 1. (5) The cylindrical unit molded bodies at both ends of a plurality of inserted and stacked cylindrical unit molded bodies are adhered to a metal plate via a reinforcing material embedded with the same type of urethane elastomer. polyurethane structure for rock crushing. (6) Rock crushing according to claim 1, in which a plurality of cylindrical unit molded bodies are inserted and stacked, and the height of each cylindrical unit molded body is gradually increased from both ends of the stack toward the center. polyurethane structure. [7] A crushing function body formed by inserting and stacking a plurality of urethane elastomers made of cylindrical unit molded bodies with a hardness of 80' to 95 degrees to the tip of the tension rod inserted into the perforation of @m is held between metal plates. A polyurethane structure for rock crushing that is fixed and has a tubular protective cover set on the inner surface of the drilled hole, compresses the crushing function body in the axial direction, and applies a crushing expansion force in the radial direction. (8) The polyurethane structure for rock crushing according to claim 7, wherein the tubular protective cover is made of a rubber-based or resin-based elastic polymer material. (9) The tubular protective cover is molded in M stages using a rubber-based or resin-based elastic polymer material, using metal wires, metal cords, or organic SE fiber cords arranged in a direction parallel to the axis of the tube as reinforcing materials. The polyurethane structure for rock crushing according to claim 7, which is a polyurethane structure for rock crushing. flol A patent in which a tubular protective cover is embedded and molded with rubber-based or resin-based elastic polymeric material, using metal wires, metal cords, or organic fiber cords as reinforcement materials arranged in a bias direction with respect to the axis of the tube. A polyurethane structure for rock crushing according to claim 7.
JP20223483A 1983-10-27 1983-10-27 Polyurethane structure for crushing rock Granted JPS6095098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20223483A JPS6095098A (en) 1983-10-27 1983-10-27 Polyurethane structure for crushing rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20223483A JPS6095098A (en) 1983-10-27 1983-10-27 Polyurethane structure for crushing rock

Publications (2)

Publication Number Publication Date
JPS6095098A true JPS6095098A (en) 1985-05-28
JPS6319678B2 JPS6319678B2 (en) 1988-04-23

Family

ID=16454175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20223483A Granted JPS6095098A (en) 1983-10-27 1983-10-27 Polyurethane structure for crushing rock

Country Status (1)

Country Link
JP (1) JPS6095098A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216192U (en) * 1985-07-16 1987-01-30
JPS62159507U (en) * 1986-03-26 1987-10-09
JP2007175608A (en) * 2005-12-27 2007-07-12 High Frequency Heattreat Co Ltd Method and tool for crushing
KR20210021741A (en) * 2019-08-19 2021-03-02 송종섭 Rock cracking heads with split wedges with reduced friction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216192U (en) * 1985-07-16 1987-01-30
JPS62159507U (en) * 1986-03-26 1987-10-09
JP2007175608A (en) * 2005-12-27 2007-07-12 High Frequency Heattreat Co Ltd Method and tool for crushing
KR20210021741A (en) * 2019-08-19 2021-03-02 송종섭 Rock cracking heads with split wedges with reduced friction

Also Published As

Publication number Publication date
JPS6319678B2 (en) 1988-04-23

Similar Documents

Publication Publication Date Title
US8960315B2 (en) Swellable downhole apparatus and support assembly
CA2927672C (en) Plug for well drilling provided with ring-shaped ratchet structure
WO2018036224A1 (en) Rubber cylinder with hard sealing rings on both ends, packer and bridge plug
US5143484A (en) Mine cribbing device and method
WO2014208527A1 (en) Rubber member for downhole tools, downhole tool, and method for recovering hydrocarbon resource
JPS6095098A (en) Polyurethane structure for crushing rock
CN116641374B (en) Air sac type recyclable anchor rod
JPS5841189A (en) Method and tool for cleaving rock
CN113585250A (en) Recoverable air bag trigger type soil nail structure
KR100778608B1 (en) Soil nailing device and method using double casings
CN116335739B (en) Multistage pressure-yielding anti-impact device suitable for anchoring support
KR20110005577A (en) Pre-stressing tunneling method using presupport concept and thereof apparatus
CN210483772U (en) Scour protection decompression anchor rope
CN102337914A (en) Welding type anchor rod with dynamic and static combination
JPS6095099A (en) Polyurethane structure for crushing rock
CN202280468U (en) Welded-type dynamic and static combined anchor rod
JP3896668B2 (en) Seismic isolation structure
CN215169800U (en) Drill rod for constructing inclined pile
CN220238756U (en) Lining plate fixing structure
CA3094937C (en) Downhole plug with protective member
JPS61500128A (en) Expandable cartridge device
CN217974344U (en) PHC tubular pile drill way gasbag shutoff improvement structure
JP2578227B2 (en) Crushing equipment
SU883481A1 (en) Anchor for securing mine workings
JPH0251035B2 (en)