JPS6093954A - Eddy current flaw detection apparatus - Google Patents

Eddy current flaw detection apparatus

Info

Publication number
JPS6093954A
JPS6093954A JP58202317A JP20231783A JPS6093954A JP S6093954 A JPS6093954 A JP S6093954A JP 58202317 A JP58202317 A JP 58202317A JP 20231783 A JP20231783 A JP 20231783A JP S6093954 A JPS6093954 A JP S6093954A
Authority
JP
Japan
Prior art keywords
flaw detection
center hole
coils
detection head
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58202317A
Other languages
Japanese (ja)
Inventor
Ichiro Furumura
古村 一朗
Kuniharu Uchida
内田 邦治
Satoshi Nagai
敏 長井
Taiji Hirasawa
平沢 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58202317A priority Critical patent/JPS6093954A/en
Publication of JPS6093954A publication Critical patent/JPS6093954A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Abstract

PURPOSE:To make it possible to detect the presence and absence of surface flaw in the center hole of a body to be inspected with good efficiency, by radially embedding inspection coils for eddy current flaw detection in the outer peripheral surface of a flaw detection head and measuring impedances of adjacent two coils. CONSTITUTION:A large number of inspection coils 2(1)-2(n) each formed into a cylindrical form are radially embedded in a disc shaped flaw detection head main body 1 along the outer peripheral surface thereof. This flaw detection main body 1 is set to the inlet part of the center hole provided to a rotor being a body to be inspected and a drive shaft 4 is moved into the center hole at every one step by a driver mechanism 5 every when flaw detection is performed to the surface of the center hole from said set position. The inspection coils 2(1)-2(n) are successively changed over by an electronic change-over device and adjacent two coils 2(i), 2(i+1) are selectively excited. The impedances of said coils are measured and compared and the presence or absence of the surface flaw in the center hole is discriminated from the difference thereof to perform flaw detection. By this constitution, the presence or absence of the entire surface flaw in the center hole can be detected in a real time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービンおよびタービン発電機等の回転子中心
孔内表面の欠陥を検出する渦流探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an eddy current flaw detection device for detecting defects on the inner surface of a center hole of a rotor of a turbine, a turbine generator, or the like.

〔発明の技術的背景とその問題心〕[Technical background of the invention and its problems]

タービンおよびタービン発電機の回転子に有する中心孔
内表面の非破壊検査は一般的にボアスコープを用いた内
表面目視による錆、偽等の検査、磁粉探傷による表面亀
裂あるいは表面下近傍の欠陥検査および磁粉探傷では検
出し得ない回転子中心孔内部の欠陥に対しては超音波探
傷法が採用されている。これらの探傷法のうち、磁粉探
傷法は、湿式磁粉を用いて表面に開口した欠陥あるいは
表面面下の欠陥の有無の検査を行なうことが多い。しか
しこの磁v)探傷法において、実際に回転子中心孔を検
査するにあたっては、被検査体である回転子の磁化、湿
式磁粉の散布およびボアスコープによる磁粉模様の観察
という工程を必要とするため、多大な労力−二時間がか
かシ、さらに検査が終了した後には磁粉の除去等の清掃
作業も必要となる。またこの磁粉探傷法においては、回
転子中心孔内の表面検査に限らず、被検査体に磁粉を均
一に散布することが適正な検査結果を得る上で重要な要
素となるが、この磁粉の適正な散布およびその起果得ら
れた磁粉模様のボアスコープによる目視で被検査体の欠
陥の有無を判断するには、熟練者による作業実施が必要
となる0さらに近年の重電機器にあっては高信頼性の要
求として探傷結果の記録が重要となるが、前述した磁粉
探傷法では磁粉模様の写真記録v外に良好な方法が見当
らない。
Non-destructive inspection of the inner surface of the center hole in the rotor of turbines and turbine generators generally involves visually inspecting the inner surface using a borescope to inspect for rust, forgeries, etc., and inspecting for surface cracks or defects near the surface using magnetic particle testing. Ultrasonic flaw detection is also used to detect defects inside the rotor center hole that cannot be detected by magnetic particle flaw detection. Among these flaw detection methods, the magnetic particle flaw detection method often uses wet magnetic particles to inspect for defects opened on the surface or defects below the surface. However, in this magnetic flaw detection method, actually inspecting the rotor center hole requires the steps of magnetizing the rotor, which is the object to be inspected, dispersing wet magnetic particles, and observing the magnetic particle pattern with a borescope. However, it requires a lot of effort - it takes two hours, and cleaning work such as removing magnetic particles is also required after the inspection is completed. In addition, in this magnetic particle flaw detection method, not only the surface inspection inside the rotor center hole but also the uniform distribution of magnetic particles on the object to be inspected is an important element in obtaining appropriate inspection results. In order to determine the presence or absence of defects in the inspected object by properly dispersing the magnetic particles and visually observing the resulting magnetic particle pattern using a borescope, the work must be carried out by a skilled person. As a requirement for high reliability, it is important to record the flaw detection results, but in the magnetic particle flaw detection method described above, no good method has been found other than photographic recording of the magnetic particle pattern.

L タカって、タービンおよびタービン発、電栖・等の
回転子に対する信頼性を向−ヒさせるためには操作性が
良好で、探傷効率の良いしかも探傷結果の判断が容易な
探傷装置の11′I現が要求されている。
In order to improve the reliability of turbines and rotors of turbine generators, electric generators, etc., there are 11 flaw detection devices that are easy to operate, have high flaw detection efficiency, and are easy to judge the flaw detection results. 'I present is requested.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、タービンおよびタービン発電機等の回転
子の如く中心孔を有する被検体の中心孔内表面の欠陥の
有無を効率良く探傷することができるとともに欠陥検出
能力が高く、かつ探傷結果の記録性の良好な渦流探傷装
置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to efficiently detect the presence or absence of defects on the inner surface of the center hole of a specimen having a center hole, such as a rotor of a turbine or a turbine generator. It is an object of the present invention to provide an eddy current flaw detection apparatus that can perform a flaw detection process, has a high defect detection ability, and has good recording performance of flaw detection results.

〔発明の概要〕[Summary of the invention]

本発明による渦流探傷装置は、上記目的を達 3− 成するため、中心孔を有する被検査体の前記中心孔に近
い外径を有する円板状の探傷ヘッド本体内に複数個の渦
流探傷用検査コイルを外周面に沿って放射状に埋設し一
目つ前記円板状部の略中心部に前記各渦流探傷用ト(査
コイルの接続ケーブルを挿通させた駆叩r 11+を取
付けた探傷ヘッドと、この探傷ヘッドの駆動軸を前記被
検査体の中心孔軸方向に移動せしめる駆動機構と、前記
各渦流探傷用検査コイルの中から隣接する2つのコイル
をペアーとして選択しなからIll’i次切換えるrγ
電子切換器、この電子切換器により切換えられた隣接す
る2つのコイルの励磁時被検査体に生ずる渦電流により
それぞれ変化するそのコイルのインピーダンスを測定す
る2個のインピーダンス測定器と、これらインピーダン
ス測定器により測定された値を比較してそれらの差をめ
、その結果から前記被検査体の中心孔内表面の欠陥の有
無を判定する手段と、この手段によシ判定された結果を
前記中心孔内表面の位置 4 − に対応させて表示又は記録する装置とから構成すること
を特徴としている。
The eddy current flaw detection apparatus according to the present invention has a plurality of eddy current flaw detection devices in a disc-shaped flaw detection head main body having an outer diameter close to the center hole of the object to be inspected. A flaw detection head having test coils buried radially along the outer circumferential surface and a driving r 11+ with a connecting cable of each of the eddy current flaw detection test coils inserted approximately at the center of the disc-shaped part; , a drive mechanism for moving the drive shaft of the flaw detection head in the direction of the center hole axis of the object to be inspected, and two adjacent coils selected as a pair from among the respective eddy current test coils. switching rγ
An electronic switching device, two impedance measuring devices that measure the impedance of two adjacent coils that change due to eddy currents generated in the test object when the two adjacent coils are switched by the electronic switching device, and these impedance measuring devices. means for comparing the values measured by and determining the difference between them, and determining from the result whether or not there is a defect on the inner surface of the center hole of the object to be inspected; It is characterized by comprising a device for displaying or recording in correspondence with the position of the inner surface.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例全!71面を参照して説明する。 Below is an example of the present invention! This will be explained with reference to page 71.

第1図は本発明の渦流探傷装置において用いる探傷ヘッ
ドの構成例を示す斜視図である。
FIG. 1 is a perspective view showing an example of the configuration of a flaw detection head used in the eddy current flaw detection apparatus of the present invention.

第1図において、1は円板状の探傷ヘッド本体で、この
探傷ヘッド本体1内に(d:筒状に成形された複数個の
渦流探傷用の検査コイル2(I)〜2(n)が外周面に
沿って放射状に密に埋設されている。これら各検査コイ
ル2(1)〜2(n)は探傷ヘッド本体1の略中心部に
取付けられた探傷ヘッド駆動軸4内に挿通させた接続ケ
ーブル3(J(1) e 3(1) v 〜3(n)*
 3’(n))のそねそれ対応する一端に接続されてい
る。これら探傷ヘッド本体lおよび探傷ヘッドu町h 
ll+ 4け探傷ヘッドを構成している。第2図(a)
 * (b) !叶中心孔を有する被検査体、ここでは
回転子の中心孔内表面を検査する場合の渦流探傷装置全
体の構成例を示すものである。第2図(a) ? (b
)において、5は架台土に設置された駆動機構で、この
駆動機s5は探傷ヘッド駆動軸4をその長手方向に進退
させて前記探傷ヘッド本体lを回転子6の中心孔内を軸
方向に移動させZ)ものである。一方、7は探傷ヘッド
4内の接続ケーブル3の他端が接続されたコイル選択回
路で、このコイル選択回路7は後述する制御器12がら
の指令にょ−り複数の検査コイル2(1)〜2(n)の
うち、隣接する2つのコイルをペアーとして選択しなが
ら順次切換えるものである。8a、/ibけコイル選択
回路7によ力選択された2つの検査コイル2 (1)。
In FIG. 1, 1 is a disk-shaped flaw detection head body, and inside this flaw detection head body 1 (d: a plurality of cylindrical test coils 2(I) to 2(n) for eddy current flaw detection). are embedded densely in a radial manner along the outer circumferential surface. Each of these test coils 2(1) to 2(n) is inserted into a flaw detection head drive shaft 4 mounted approximately at the center of the flaw detection head body 1. Connecting cable 3 (J(1) e 3(1) v ~ 3(n) *
3'(n)) are connected to their corresponding ends. These flaw detection head body l and flaw detection head u town h
ll+ consists of a 4-piece flaw detection head. Figure 2(a)
*(b)! This figure shows an example of the overall configuration of an eddy current flaw detection apparatus for inspecting an object to be inspected having a leaf center hole, here the inner surface of the center hole of a rotor. Figure 2 (a)? (b
), 5 is a drive mechanism installed on the pedestal soil, and this drive mechanism s5 advances and retreats the flaw detection head drive shaft 4 in its longitudinal direction, and moves the flaw detection head main body l in the center hole of the rotor 6 in the axial direction. Move Z). On the other hand, 7 is a coil selection circuit to which the other end of the connection cable 3 in the flaw detection head 4 is connected, and this coil selection circuit 7 selects a plurality of inspection coils 2 (1) to 2(n), two adjacent coils are selected as a pair and switched sequentially. 8a, /ib Two test coils 2 (1) selected by the coil selection circuit 7.

2(1+J)に対して通電および被検査体に生ずる渦流
による信号をそのコイルのインピーダンスに応じた信号
としてそれぞれ測定するインピーダンス測定回路、9は
これらインピーダンス測定回路8a、8bに対してコイ
ルを励磁するための電源として発振周波数が可変な出力
を供給する発振器である。捷た)0はインピーダンス測
定回路aa、8bによ、り測定された検査コイルのイン
ピーダンスに応じた電圧信号が入力される信号処理器、
1ノはこの信号処理器により画像表示に必要な信号処理
がなされたイぎ号が入力されるCRT表示器で、このC
R7表示器11は、中心孔内表面の展開図上に欠陥付値
を表示する、即ちCスコープ像として表示するものであ
る。さらにJ2は、コイル銹択回路7に対してはコイル
選択指令、発振器9に対しては発振動作指令、信号処理
器lOに対しては信号処理データ、そしてCRT表示器
1ノに対しては同期信号等をそれぞれ与える制御器で、
この制御器J2は信号処理器10から出力される2つの
検査コイルのインピーダンスに応じた信号を比較してそ
の差をめ、その結果から回転子の中心孔内表面の欠陥の
有無を判実するものである013はこの制御器12によ
り判定された探傷結果を保存するフロッピーデスク等の
記憶媒体である。
2 (1+J), an impedance measuring circuit that measures signals due to eddy currents generated in the inspected object as signals corresponding to the impedance of the coil; 9 excites the coils for these impedance measuring circuits 8a and 8b; This is an oscillator that provides an output with a variable oscillation frequency as a power source for the oscillator. 0 is a signal processor into which a voltage signal corresponding to the impedance of the test coil measured by the impedance measuring circuits aa and 8b is input;
No. 1 is a CRT display into which the signal signal processed by the signal processor necessary for image display is input;
The R7 display 11 displays a defect value on a developed view of the inner surface of the center hole, that is, displays it as a C scope image. Further, J2 sends a coil selection command to the coil selection circuit 7, an oscillation operation command to the oscillator 9, signal processing data to the signal processor IO, and synchronization to the CRT display 1. A controller that gives each signal etc.
This controller J2 compares the signals according to the impedance of the two test coils output from the signal processor 10, determines the difference, and determines the presence or absence of a defect on the inner surface of the center hole of the rotor from the result. 013 is a storage medium such as a floppy disk that stores the flaw detection results determined by the controller 12.

次に上記のように構成された渦流探傷装置の作用につい
て述べるに、@2図(a) t (b)において、探傷
ヘッド本体1が回転子6の中心孔の入口部 7− にセットサれ、その位置から探傷ヘッド本体1の外周面
に対応する中心孔表面を探傷する毎に探傷ヘッド駆動#
I4が駆動機構5によ、す1ステツプずつ中心孔内へ移
動するものとして説明する。今制御器12からコイル選
択回路7に選択指令が、また発振器9に発振動作開始指
令が出されると、コイル選択回路7は予め定められた位
置の2つの検査コイルz (f)t 2(i+1)を選
択し、ま之発振器9は予め設定された発振周波数で発振
動作を開始し、その一周期分の出力が前記選択された2
つの検査コイル2(1)t 2 (1+1>にインピー
ダンス測定回路111a、8bf通して供給される。す
ると、これら2つの検査コイル2(i)嘗2(1−B)
が励磁され、t83図に示すように検査コイ/l/2(
1)によル磁’jMHc1>が、検査コイル2(i+7
)によ)磁場H(1+J) がそれぞれ形成され、回転
子6の中心孔内表面に渦電流が流れる。したがって、検
査コイル2(1)s 2 (i+7)はこの渦電流によ
シコイルインピーダンスが見用上変化する。この場合積
置コイルj?(i)v 2(i+7) に及 8− ぼす影響は中心孔内表面近傍の材質の違いや欠陥の有無
等にて異なる。ここで、今検査コイル2(i)に対応す
る中心孔P3表面近傍に欠陥J4が存在しているものと
すれば、検査コイル2(1)のインピーダンス変化は検
査コイル2(1+ハのそれよシも小さくなる。
Next, to describe the operation of the eddy current flaw detection device configured as described above, as shown in Figs. Every time the center hole surface corresponding to the outer peripheral surface of the flaw detection head body 1 is flawed from that position, the flaw detection head is driven #
The explanation will be given assuming that I4 is moved into the center hole one step at a time by the drive mechanism 5. Now, when the controller 12 issues a selection command to the coil selection circuit 7 and an oscillation start command to the oscillator 9, the coil selection circuit 7 selects two test coils z(f)t2(i+1) at predetermined positions. ), the main oscillator 9 starts oscillation operation at a preset oscillation frequency, and the output for one period is the selected oscillator 9.
It is supplied to the two test coils 2(1)t 2 (1+1> through the impedance measurement circuits 111a and 8bf. Then, these two test coils 2(i) 嘗2(1-B)
is excited, and the test carp/l/2 (
1) The coil 'jMHc1> is the test coil 2 (i+7
) A magnetic field H(1+J) is formed, and an eddy current flows on the inner surface of the center hole of the rotor 6. Therefore, the coil impedance of the test coil 2(1)s 2 (i+7) changes visually due to this eddy current. In this case, is the stacking coil j? (i) The influence on v 2 (i+7) differs depending on the material near the inner surface of the center hole, the presence or absence of defects, etc. Here, if it is assumed that defect J4 exists near the surface of center hole P3 corresponding to inspection coil 2(i), the impedance change of inspection coil 2(1) is equal to that of inspection coil 2(1+c). The size also becomes smaller.

このような検査コイル2< i)* 2 (1+7)の
インピーダンスの変化に応じた信号はコイル選択回路7
を通してインピーダンス測定回路8a、 8bに入力さ
れ、ここでそのインピーダンスがそれぞれ測定される。
A signal corresponding to the change in impedance of the test coil 2<i)*2 (1+7) is sent to the coil selection circuit 7.
The signals are input to impedance measurement circuits 8a and 8b through the impedance measurement circuits 8a and 8b, where their impedances are measured respectively.

そしてインピーダンス測定回路8a、8bで測定され六
インピーダンスは電圧信号として信号処理器10に加え
られ、ここで信号処理がなされた後、制御器12に加え
られる。制御器J2ではその2つのインピーダンスを比
較して差をめ、その結果を記憶媒体13に記録するとと
もに信刊処理器10で画像表示に必要な信号処理がなさ
れた稜、CRT表示器1ノにCスコープ像として表示す
る。
The six impedances measured by the impedance measurement circuits 8a and 8b are applied as voltage signals to the signal processor 10, where the signals are processed and then applied to the controller 12. The controller J2 compares the two impedances, determines the difference, and records the result in the storage medium 13.The signal processing unit 10 then outputs the signal to the CRT display 1, where the signal processing necessary for image display has been performed. Display as a C-scope image.

以上は隣接する2つのコイル2(1’)* 2(i+J
)のインピーダンスを測定してこれらを比較し、その差
をめて欠陥の有無を判定する場合であるが、この判定が
終ると次に検査コイル2(1−H)e 2 (1+;?
)のインピルダンスを前述と全く同様に測定してこれら
を比較し、その差をめて欠陥の有無を判定するという具
合に2つの検査コイルをペアとして順次隣接する検査コ
イルへ1つずつ移行させながら繰返されて行く。この場
合、検査コイルの切換はコイル選択回路7により、また
そのコイルの励磁は発振器9の発振出力によシ同一タイ
ミングにて行なわれる。そして検査コイルの切換えが一
巡した時点で探傷ヘッド駆動軸4が駆動機構5によ、す
1ステツプずつ回転子6の中心孔内に進み、前述と全く
同様に探傷が行なわれる。
The above is two adjacent coils 2(1')*2(i+J
), the impedance of the coil 2 (1-H) e 2 (1+;?) is measured and compared, and the difference is determined to determine whether there is a defect.
) are measured in exactly the same way as above, and compared, and the difference is determined to determine whether there is a defect.Then, the two test coils are made into a pair and transferred one by one to the adjacent test coils. It is repeated as it goes. In this case, the test coil is switched by the coil selection circuit 7, and the coil is excited by the oscillation output of the oscillator 9 at the same timing. Then, when the switching of the inspection coils has completed one cycle, the flaw detection head drive shaft 4 is advanced one step at a time into the center hole of the rotor 6 by the drive mechanism 5, and flaw detection is performed in exactly the same manner as described above.

このように本実施例では円板状の探傷ヘッド本体1内に
その外周面に沿って放射状に埋設された複数個の渦流探
傷用検査コイル2(I)〜2(n)をコイル選択回路7
によ漫順次切換えて隣接する2つの検査コイルz (1
) v 2(1+J)を選択し、そのコイルの励磁によ
って回転子の中心孔内表面に生ずる渦を流によるコイル
のインピーダンス変化をインピーダンス測定回路8a、
 8bで測定L2てこれらを比較し、その差から中心7
’L内表面の欠陥の有無を判定するようにしている。t
7たがって、中心孔内表面近傍に例えば第3図に示すよ
うに欠陥14が存在すると、この欠陥14による検査コ
イル2(1)のインピーダンス変化はそのコイル個有の
インピーダンスの絶対値と比較して極く小さな値となり
、検出が困難であるが、2つのrs接する検査コイル2
N)、!−2(l+J)のインピーダンスの差として検
ffl I、ているので、そのインピーダンス変化を確
更に検出することがで唇る。また探傷ヘッド本体1の外
径は回転子中心孔の内径よりも小さくなっているため、
この探傷ヘッド本体Jはその自重等によって中心孔の中
心位置から偏よる場合がある。
As described above, in this embodiment, a plurality of eddy current test coils 2(I) to 2(n) embedded radially within the disc-shaped flaw detection head main body 1 along its outer peripheral surface are connected to the coil selection circuit 7.
Two adjacent test coils z (1
) v 2 (1+J) is selected, and the impedance measurement circuit 8a measures the change in impedance of the coil due to the vortex flow generated on the inner surface of the center hole of the rotor by excitation of the coil.
Measure L2 at 8b and compare these, and from the difference center 7
The presence or absence of defects on the inner surface of 'L is determined. t
7. Therefore, if a defect 14 exists near the inner surface of the center hole, as shown in FIG. Although the value is extremely small and difficult to detect, the test coil 2 that is in contact with the two rs
N),! Since the impedance difference is detected as the impedance difference of -2(l+J), it is possible to reliably detect the impedance change. Also, since the outer diameter of the flaw detection head body 1 is smaller than the inner diameter of the rotor center hole,
This flaw detection head main body J may deviate from the center position of the center hole due to its own weight or the like.

したがって、このような場合には、個々の検査コイルの
インピーダンスの絶対値は横41コイルと被検査体との
間隔の変化によ、す、いhゆるり11− フートオフ効果として第4図において点線(a)で示す
ように円周方向位置に対し大牲な変化を示すが、前述し
たように2つの隣接する検査コイルにあってはそのリフ
トオフ効果の影響は少ない。
Therefore, in such a case, the absolute value of the impedance of each test coil will change due to the change in the distance between the horizontal coil and the test object.As a foot-off effect, the dotted line ( As shown in a), there is a large change in the position in the circumferential direction, but as described above, the influence of the lift-off effect is small for two adjacent test coils.

これによシ、2つの隣接する検査コイルのインピーダン
スの差は第4図において実線(b)に示すように欠陥の
存在の有無によってのみ変化(c)を示し、中心孔に対
する探傷ヘッド本体1の偏心の影響を除くことが可能と
なる。
Accordingly, the difference in impedance between two adjacent test coils shows a change (c) only depending on the presence or absence of a defect, as shown by the solid line (b) in FIG. It becomes possible to eliminate the influence of eccentricity.

一方、本実施例では2つの隣接する検査コイル2(i)
s 2(1”7)を励磁する電源として発振周波数可変
の発振器9を用いて渦流探傷を行なうようにしているの
で、次のような効果が得られる。
On the other hand, in this embodiment, two adjacent test coils 2(i)
Since the eddy current flaw detection is performed using the oscillator 9 with a variable oscillation frequency as a power source for exciting the s2 (1"7), the following effects can be obtained.

即ち、一般に物体に交流磁場を物体表面からかけた場合
、磁場の?1tfRさδと交流磁場の周波数との間に次
の(1)式が成立することは良く知られている。
In other words, in general, when an alternating magnetic field is applied to an object from the surface of the object, the magnetic field's? It is well known that the following equation (1) holds between 1tfR δ and the frequency of the alternating magnetic field.

但し、σは導電率である。However, σ is electrical conductivity.

12− 従って、検査コイルのインピーダンスを測定する際にそ
の励磁周波数を発振器9により変化させれば、2つの隣
接する検査コイル2(i)*2(i+1)のインピーダ
ンスの差は欠陥深さに対応した値を示し、欠陥の度合を
判断することができるO このように探傷ヘッド本体lの外周面と対応する回転子
中心孔内表面の欠陥に対してその存在の鳴無及びその縮
さについても短時間で探傷でき、月つ探傷ヘッド本体I
ff中心孔軸方向に移動することによシ、中心孔内表面
の全面を探傷することができる。
12- Therefore, if the excitation frequency is changed by the oscillator 9 when measuring the impedance of the inspection coil, the difference in impedance between two adjacent inspection coils 2(i)*2(i+1) corresponds to the defect depth. In this way, the presence or absence of defects on the inner surface of the rotor center hole corresponding to the outer circumferential surface of the flaw detection head main body l and its shrinkage can be determined. Tsukitsu flaw detection head body I that can be used for flaw detection in a short time
ff By moving in the axial direction of the center hole, the entire inner surface of the center hole can be inspected for flaws.

次に第5図を参照して本発明による他の実施例について
述べる。
Next, another embodiment according to the present invention will be described with reference to FIG.

一般に渦流探傷法における欠陥検出感度は被検査体が強
磁性体である場合には被検査体の磁気特性の影響により
、非磁性体の場合程高い欠陥検出感度が得られないのが
普辿であるが、第5図に示す実施例ではこの点を改善し
たものである。即ち、第5図に示すように円板状の探傷
ヘッドl内にその外周面に沿って放射状に埋設された渦
流探傷用の検査コイル2(+)〜2(n)を挾んで略U
字形の永久磁石15(+)〜l 5(n)をそれぞれ配
置して回転子中心孔内表面1に直流磁場をかけるように
したものである。
In general, when the object to be inspected is a ferromagnetic material, the defect detection sensitivity in eddy current testing cannot be as high as when it is a non-magnetic material due to the influence of the magnetic properties of the object. However, the embodiment shown in FIG. 5 improves this point. That is, as shown in FIG. 5, approximately U is sandwiched between inspection coils 2(+) to 2(n) for eddy current flaw detection, which are embedded radially within a disc-shaped flaw detection head l along its outer circumferential surface.
Letter-shaped permanent magnets 15(+) to 15(n) are respectively arranged to apply a DC magnetic field to the inner surface 1 of the rotor center hole.

強磁性体における比透磁率μは第6図に示すように磁場
の強さHと磁束密1に、 I)の関係において、その勾
配で表わされ、かつJIn ”U’、 Wi度Bが飽和
に近づくにつれて小さくなることは良く知られるところ
である。本実施例ではかかる原理を応用し、前述した如
く、探傷ヘット゛本体ノに検査コイル2(1)〜2(n
)とともにこれらのコイルをそれぞれ挾むようにして配
置された永久磁石15(+)〜15(n)によ勺、強磁
性体である回転子の中心孔表面近傍を磁気飽和あるいは
飽和に近い状態として見掛上この部分の比透磁率を低下
させるものである。したがって、このような構成とすれ
ば、強磁性体の被検査体の磁束密度が小ざくなって比透
磁率を見掛上低下ざぜることかで診るので、磁気特性の
影響が少なくな一部、回転子中心孔内表面の欠陥に対す
る検出感度を向上させることがで診る。
As shown in Figure 6, the relative magnetic permeability μ in a ferromagnetic material is expressed by the gradient of the magnetic field strength H and the magnetic flux density 1 in the relationship I), and where JIn ``U'' and Wi degree B are It is well known that the size decreases as saturation approaches.In this embodiment, this principle is applied, and as described above, the test coils 2(1) to 2(n) are attached to the main body of the flaw detection head.
) and the permanent magnets 15(+) to 15(n) arranged to sandwich these coils respectively, cause the vicinity of the surface of the center hole of the rotor, which is a ferromagnetic material, to appear to be in a state of magnetic saturation or near saturation. This lowers the relative magnetic permeability of this portion. Therefore, with such a configuration, the magnetic flux density of the ferromagnetic object to be inspected becomes smaller and the relative permeability is apparently lowered. , by improving the detection sensitivity for defects on the inner surface of the rotor center hole.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に↓わば、円板状の探傷ヘッド
本体内に複数個の渦流探傷用検査コイルを外周面に沿っ
て放射状に埋設し、これらの検査コイルを電子切換器に
よh 111r1次切換えて2つの隣接すゐコイルをペ
アーとして選択して励磁するとともにそのコイルのイン
ピーダンスを測定してこれらを比較し、ぞの差から被検
査体の中心孔内表面の欠陥の有ft(全判定して中心孔
内表面を探傷する構成としたので、探傷ヘッド本体の外
周面に対応する中心孔内表面を短時間で探傷することが
でき、またこの探傷ヘッド本体を中心孔の軸方向へ移動
するのみで、リアルタイムの中心孔内表面全体の欠陥有
無の探傷が可能となる。また複数の検歪コイルのうち、
隣接する2つのコイルのインピーダンス? ’A?に比
較しながら探傷する機能に加えて磁石によシ中心孔内表
面近傍に直流磁場を形成し7てこの部15− 分の比透磁率を低下させる機能を持たせることによシ、
探傷ヘッド本体の中心孔に対する偏心の影響や被検査体
が強磁性体であることに起因する欠陥検出能力の低下を
防ぎ、探傷結果の信頼性を向上させることができる。さ
らに#S傷結果については中心孔内表面の各位置に対応
させて表示し且つ記録で齢るようにしているので、探傷
結果の判断が容易でしかも記録性の良好な渦流探傷装置
が捷供できる。
As described above, the present invention has the following features: A plurality of eddy current test coils are embedded radially along the outer circumferential surface inside a disc-shaped flaw detection head body, and these test coils are connected by an electronic switching device. h 111r Primary switching selects and energizes two adjacent coils as a pair, measures the impedance of the coils, compares them, and determines the presence of defects on the inner surface of the center hole of the object to be inspected from the difference. (Since the structure is such that the inner surface of the center hole is detected by making all judgments, the inner surface of the center hole corresponding to the outer peripheral surface of the flaw detection head body can be detected in a short time. By simply moving in the direction, it is possible to detect defects on the entire inner surface of the center hole in real time.
Impedance of two adjacent coils? 'A? In addition to the function of detecting flaws by comparing the magnet to the inner surface of the center hole, the magnet has the function of forming a DC magnetic field near the inner surface of the center hole and reducing the relative magnetic permeability of the lever part.
It is possible to prevent a decrease in defect detection ability due to the influence of eccentricity with respect to the center hole of the flaw detection head body and the fact that the object to be inspected is a ferromagnetic material, and to improve the reliability of flaw detection results. Furthermore, the #S flaw results are displayed in correspondence with each position on the inner surface of the center hole and are recorded in a timely manner, making it easy to judge the flaw detection results and providing an eddy current flaw detection device with good recording performance. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による渦流探傷装置の一実施例における
探傷ヘッドの構成を示す斜視図、第2図(a) 、 (
b)は同実施例の全体を示す構成H()、明図、第3図
および第4図は同実施例において回転子中心孔内表面の
欠陥検出時の作用を説明する念めの図、第5図は本発明
の他の実施例における探傷ヘッド本体の一部を示す斜視
図、第6図は第5図における作用を説明するためのヒス
テリシス特性図である。 1・・・探傷ヘッド本体、2(1)〜2(n)・・・検
査コイ16− ル、3・・・接続ケーブル、4・・・探傷ヘッド駆動!
11+、5・・・駆動機構、6・・・回転子、7・・・
コイル選択回路、8a、sb・・・インピーダンス測定
回路、9・・・発振器、10・・・信号処理器、1ノ・
・・CRT表示器、12・・・制御器、13・・・記憶
媒体、15(1)〜15(n)・・・永久磁石。 出願人代理人 弁理士 鈴 江 武 彦18− 第3図 第4図 中心孔内面fIA8陶独ゴ【 第5図 第6図 只
FIG. 1 is a perspective view showing the configuration of a flaw detection head in an embodiment of an eddy current flaw detection apparatus according to the present invention, and FIG.
b) is a clear view of the configuration H() showing the entire structure of the same embodiment; FIGS. 3 and 4 are diagrams for explaining the action when detecting defects on the inner surface of the rotor center hole in the same embodiment; FIG. 5 is a perspective view showing a part of the flaw detection head main body in another embodiment of the present invention, and FIG. 6 is a hysteresis characteristic diagram for explaining the effect in FIG. 5. 1...Flaw detection head body, 2(1) to 2(n)...Inspection coil 16-le, 3...Connection cable, 4...Flaw detection head drive!
11+, 5... Drive mechanism, 6... Rotor, 7...
Coil selection circuit, 8a, sb... Impedance measurement circuit, 9... Oscillator, 10... Signal processor, 1 No.
...CRT display, 12...controller, 13...storage medium, 15(1) to 15(n)...permanent magnet. Applicant's agent Patent attorney Takehiko Suzue 18- Fig. 3 Fig. 4 Center hole inner surface

Claims (2)

【特許請求の範囲】[Claims] (1) 中心孔を有する被検査体の前記中心孔に近い外
径を有する円板状の探傷ヘッド本体内外周面に沿って複
数個の渦流探傷用の検査コイルを放射状に埋設し且つ前
記探傷ヘッド本体の略中心部に前記検査コイルの接続ケ
ーブルを挿通してなる探傷ヘッド駆動軸を取付けた探傷
ヘッドと、この探傷ヘッドの駆動軸を前記被検査体の中
心孔内の軸方向に移動せしめる駆動機構と、前記検査コ
イルの中から隣接する2つのコイルをペアーとして選択
しながら順次切換える電子切換器と、この電子切換器に
よ)選択された隣接する2つのコイルの励磁時前記被検
査体のコイル周辺部に生ずる渦電流によシそれぞれ変化
するそのコイルのインピーダンスを測定する2個のイン
ピーダンス測定器と、これらインピーダンス測定器によ
り測定された値を比較して差をめ、その結果から前記被
検査体の中心孔内表面の欠陥の有無を判定する手段と、
この手段によシ判定された結果を前記中心孔内表面の位
置に対応させて表示又は記録する装置とから成る渦流探
傷装置。
(1) A plurality of test coils for eddy current flaw detection are embedded radially along the inner and outer circumferential surfaces of the main body of a disc-shaped flaw detection head having an outer diameter close to the center hole of the test object having a center hole, and the flaw detection A flaw detection head is provided with a flaw detection head drive shaft, which is formed by inserting a connection cable of the test coil into the approximate center of the head body, and the drive shaft of this flaw detection head is moved in an axial direction within the center hole of the object to be inspected. a drive mechanism; an electronic switching device that sequentially switches two adjacent coils from among the inspection coils while selecting them as a pair; and when the two adjacent coils selected by the electronic switching device are energized, the object to be inspected; Two impedance measuring devices measure the impedance of the coil, which changes due to eddy currents generated around the coil, and the values measured by these impedance measuring devices are compared to determine the difference, and from the results, the above-mentioned means for determining the presence or absence of defects on the inner surface of the center hole of the object to be inspected;
An eddy current flaw detection device comprising a device for displaying or recording the results determined by this means in correspondence with the position of the inner surface of the center hole.
(2)探傷ヘッドは探傷ヘッド本体内に埋設された各渦
流探傷用の検簀コイルを中心孔軸方向の両側から挾むよ
うにして中心孔内表面のコイル周辺を局部的に磁気飽和
させる磁石を配置したものである特許請求の範囲第(1
)項記載の渦流探傷装置。
(2) The flaw detection head has magnets arranged to locally magnetically saturate the area around the coils on the inner surface of the center hole so as to sandwich each eddy current flaw detection inspection coil embedded in the main body of the flaw detection head from both sides in the axial direction of the center hole. Claim No. 1 (1)
Eddy current flaw detection device described in ).
JP58202317A 1983-10-28 1983-10-28 Eddy current flaw detection apparatus Pending JPS6093954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58202317A JPS6093954A (en) 1983-10-28 1983-10-28 Eddy current flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58202317A JPS6093954A (en) 1983-10-28 1983-10-28 Eddy current flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPS6093954A true JPS6093954A (en) 1985-05-25

Family

ID=16455540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58202317A Pending JPS6093954A (en) 1983-10-28 1983-10-28 Eddy current flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS6093954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772840B2 (en) 2006-09-29 2010-08-10 Hitachi, Ltd. Eddy current testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772840B2 (en) 2006-09-29 2010-08-10 Hitachi, Ltd. Eddy current testing method
US7872472B2 (en) 2006-09-29 2011-01-18 Hitachi, Ltd. Eddy current testing apparatus and eddy current testing method

Similar Documents

Publication Publication Date Title
US6504363B1 (en) Sensor for eddy current testing and method of use thereof
JP2674571B2 (en) Method and apparatus for inspecting composite magnetic head
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
Xin et al. Nondestructive inspection using rotating magnetic field eddy-current probe
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
JP2639264B2 (en) Steel body inspection equipment
JP2692515B2 (en) Method and apparatus for inspecting magnetoresistive head
US5777469A (en) Method and apparatus for detecting flaws in conductive material
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JPS6093954A (en) Eddy current flaw detection apparatus
US5986452A (en) Apparatus and method for detecting flaws in conductive material
JPH0335624B2 (en)
JP2007163263A (en) Eddy current flaw detection sensor
JP2003050234A (en) Eddy-current flaw detection testing device
JPH1078412A (en) Method and device for detecting flaw on surface
JPH07181168A (en) Method of magnetic flaw detection for gear
JP2003130849A (en) High-sensitive defect examination method
JPS6011492Y2 (en) Automatic magnetic flaw detection equipment inspection equipment
Kloster et al. Linear magnetic stray flux array based on GMR gradiometers
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH07113788A (en) Probe coil for eddy current flaw detection
CA1122656A (en) Three phase eddy current instrument
CN202153218U (en) Quantitative and nondestructive defect detection probe for oil casing pipe
JPH0743349A (en) Method and device for eddy current flaw detection
JPH0439031B2 (en)