JPS6093625A - Polyether ether ketone film for vertical magnetization - Google Patents

Polyether ether ketone film for vertical magnetization

Info

Publication number
JPS6093625A
JPS6093625A JP58201833A JP20183383A JPS6093625A JP S6093625 A JPS6093625 A JP S6093625A JP 58201833 A JP58201833 A JP 58201833A JP 20183383 A JP20183383 A JP 20183383A JP S6093625 A JPS6093625 A JP S6093625A
Authority
JP
Japan
Prior art keywords
film
heat
temperature
stage
polyether ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201833A
Other languages
Japanese (ja)
Other versions
JPH05767B2 (en
Inventor
Nobuo Fukushima
福嶋 信雄
Shuji Kitamura
周治 北村
Takuzo Okumura
奥村 拓造
Teruo Tsumato
照夫 妻藤
Haruo Hayashida
林田 晴雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58201833A priority Critical patent/JPS6093625A/en
Publication of JPS6093625A publication Critical patent/JPS6093625A/en
Publication of JPH05767B2 publication Critical patent/JPH05767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To improve surface smoothness, heat resistance, low hygroscopicity and linear expandability by subjecting a polyether ether ketone film to molecular orientation and heat setting and regulating the max. surface roughness to below a specific value. CONSTITUTION:A base film for vertical magnetization which is formed by subjecting polyether ether ketone to molecular orientation and heat setting and had <=500Angstrom max. surface roughness is obtd. At least >=80kg/cm<2> backward tension is applied to the polyether ether keton film and is subjected to rolling to 1.5-4 times under at least >=100kg/cm linear pressure by a pair of pressurizing rolls kept in a temp. range of >=80 deg.C and <=140 deg.C as the 1st stage and the film is heat-set at >=250 deg.C and below the m.p. as the 2nd stage. The 3rd stage in which the film is stretched 1.5-4 times at >=120 deg.C and <=200 deg.C in the transverse direction of the film is added beteen the above-mentioned stages. The film is stretched 1.5-4 times in the transverse direction and 1.1-2 times in the longitudinal direction at >=120 deg.C and <=200 deg.C after the 1st stage and thereafter the film is subjected to the 2nd stage. The film is stretched 1.5-4 times in the longitudinal and/or transverse direction at >=120 deg.C and thereafter the film is subjected to the above-described 2nd stage.

Description

【発明の詳細な説明】 本発明はポリエーテルエーテルケトンを分子配向および
ヒートセットしてなる最大表面粗さが500A以下であ
る垂直磁化用ベースフィルムに関するものである。ここ
で最大表面粗さとはJ I S BO601に規定され
ている表面粗さであり触針法により測定できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a base film for perpendicular magnetization having a maximum surface roughness of 500A or less, which is made by molecularly orienting and heat-setting polyetheretherketone. The maximum surface roughness here is the surface roughness specified in JIS BO601, and can be measured by the stylus method.

また、ポリエーテルエーテルケトンは下記の構造単位を
くり返し有する熱可塑性樹脂であり極めて優れた耐熱性
を示す。
Furthermore, polyetheretherketone is a thermoplastic resin having the following structural units repeatedly and exhibits extremely excellent heat resistance.

現在、磁気記録はテープレコーダー、VTRをはじめコ
ンピューター分野でも外部メモリとして大きな役割を果
しており特にオフィスオートメ−シリンやパソコンには
フロッピーディスクがますます重要になっている。この
様に磁気記録はテープやディスク状で使用され、ベース
フィルムとしてはポリエステルフィルムが主流をなして
いる。一方、最近では、記録密度を高めるために垂直磁
化方式が提案され、業界では実用化にむけて開発が進め
られている。しかし、垂直i 他用ベースフィルムとし
ては表面平滑性、耐熱性、低吸湿性、線膨張係数が小さ
いことなどが要求され、現存する市販フィルムではいず
れも問題があり、実用的でない。例えばポリエステルフ
ィルムでは磁性膜形成時の耐熱性が不足しているため生
産性が極めて悪く、実用的でない。また耐熱性良好なポ
リイミドフィルムの場合は吸湿した水分の影響により磁
性膜形成時に高真空にできずフィルムと磁性膜との密着
強度が不十分であることおよび表面が粗いことなどによ
り実用的でない。
Currently, magnetic recording plays a major role as external memory in tape recorders, VTRs, and other computers, and floppy disks are becoming increasingly important for office automation machines and personal computers. In this way, magnetic recording is used in the form of tape or disk, and polyester film is the mainstream as the base film. On the other hand, recently, a perpendicular magnetization method has been proposed to increase recording density, and development is progressing in the industry toward practical use. However, base films for vertical i and other applications are required to have surface smoothness, heat resistance, low moisture absorption, and a small coefficient of linear expansion, and existing commercially available films all have problems and are not practical. For example, polyester film lacks heat resistance when forming a magnetic film, resulting in extremely poor productivity and is not practical. In addition, in the case of a polyimide film with good heat resistance, it is not practical due to the influence of absorbed moisture, which makes it impossible to create a high vacuum during the formation of the magnetic film, the adhesion strength between the film and the magnetic film is insufficient, and the surface is rough.

これに対し本発明の分子配向およびヒートセットされた
ポリエーテルエーテルケトンフィルムはこれらの問題点
を全て解決したものであり融点334℃と耐熱性が高く
、吸湿性はポリエステル以下で、線膨張係数も小さく、
しかも分子配向に伴なって最大表面粗さが500A以下
となるため垂直磁化用ベースフィルムとして必要な特性
を全て備えている。
On the other hand, the molecularly oriented and heat-set polyetheretherketone film of the present invention solves all of these problems, and has a high heat resistance with a melting point of 334°C, a hygroscopicity lower than that of polyester, and a linear expansion coefficient. small,
Moreover, as the maximum surface roughness becomes 500A or less due to molecular orientation, it has all the characteristics necessary as a base film for perpendicular magnetization.

なお、最大表面粗さが500 Xを越えると磁性膜形成
後の表面平滑性が不十分となり記録再生時に主磁極との
接触によるトラブルを生じる。
Note that if the maximum surface roughness exceeds 500X, the surface smoothness after forming the magnetic film will be insufficient, causing troubles due to contact with the main magnetic pole during recording and reproduction.

従って最大表面粗さは500%以下でなければならない
Therefore, the maximum surface roughness must be 500% or less.

本発明者等は垂直磁化用ベースフィルムについて鋭意検
討した結果、前述の如く、最大表面粗さが500 X以
下で、ポリエーテルエーテルケトンを分子配向およびヒ
ートセットしたフィルムが極めて優れた適性を有するこ
とをつきとめ本発明に到達したものである。
As a result of intensive studies on base films for perpendicular magnetization, the inventors of the present invention found that, as mentioned above, a film with a maximum surface roughness of 500X or less and made of molecularly oriented and heat-set polyetheretherketone has extremely excellent suitability. This is what led to the present invention.

本発明のポリエーテルエーテルケトンフィルムの分子配
向手段としては延伸およびロール圧延があげられる。
Stretching and roll rolling can be cited as molecular orientation means for the polyetheretherketone film of the present invention.

また、本発明者等は、垂直磁化用ベースフィルムとして
特に重要な表面平滑性の向上についてさらに検討を加え
た結果、ロール圧延法が極めて優れた手法であることを
見い出した。すなわち、延伸の場合はフィルム表面は自
由であるのに対し、ロール圧延では加用ロールにより表
面が規制されるためより表面平滑性の優れたフィルムを
製造できることを見い出した。なお、圧延時に液状潤滑
液を使用すればさらに効果的であるが必要条件ではない
。但し、ロール圧延は基本的にはフィルム長さ方向の分
子配向手段であるためテープ゛用途ではそのまま使用す
ることができるものの、フロッピーディスクの様に等方
性が要求される場合にはフィルム巾方向の分子配向も行
なう方が好ましく、その手段としては延伸が必要である
Further, the present inventors further investigated the improvement of surface smoothness, which is particularly important for a base film for perpendicular magnetization, and found that the roll rolling method is an extremely excellent method. That is, it has been found that in the case of stretching, the surface of the film is free, whereas in roll rolling, the surface is regulated by the application rolls, so that a film with better surface smoothness can be produced. Note that it would be more effective if a liquid lubricant was used during rolling, but this is not a necessary condition. However, since roll rolling is basically a means of orienting molecules in the length direction of the film, it can be used as is for tape applications, but in cases where isotropy is required, such as in floppy disks, it is necessary to orient the molecules in the film width direction. It is preferable to also carry out molecular orientation, and stretching is necessary as a means for this purpose.

また、テープ用途でもロール圧延だけでなく、フィルム
中方向に延伸し長さ方向にも延伸を加えれば、極めて高
度に分子配向したフィルムが得られるため薄肉化するこ
とができる。なお、いずれの場合でもロール圧延と延伸
との順序はどちらが先でも良い。圧延を行なうに際して
は加圧ロールの入側で少なくとも80#/cm2以上の
後方張力を付与しなければならない。
Furthermore, in tape applications, in addition to roll rolling, if the film is stretched in the direction of the film and also in the length direction, a film with extremely high molecular orientation can be obtained and the film can be made thinner. In any case, the order of rolling and stretching may be carried out first. When rolling, a rear tension of at least 80#/cm2 or more must be applied on the entry side of the pressure roll.

ここで後方張力とは繰出張力とも呼ばれるがフィルムの
進行方向に対し逆向きに作用する力のことであり80V
/cs+2 より低ければ加圧ロールにおける中立点(
最高圧力点)がロール入側に移行してくいこみ不良が発
生しやすくなり、安定加工が困難である。従って後方張
力は80即/Ca12以上付与することが必要である。
Here, the backward tension, also called the extending force, is a force that acts in the opposite direction to the direction in which the film travels, and is 80V.
/cs+2 If it is lower than the neutral point on the pressure roll (
The highest pressure point) shifts to the roll entry side, making it more likely that defects will occur, making stable machining difficult. Therefore, it is necessary to apply a rear tension of 80/Ca12 or more.

次に圧延温度に関しては、加圧ロールを80℃以上、1
40℃以−トの温度範囲、で任意に設定することができ
る。該温度域より低ければ、所望の圧延倍率を得るため
に多数の加圧ロール群を要することや、ロール間の加圧
に非常に大きな力を必要とし装置上問題を生ずると共に
設備的にも高価なものとなり、圧延の条件として不適切
である。逆に該温度域より高い場合は、圧延加工性は問
題ないが垂直磁化で重要な表面平滑性かや\悪くなるた
め好ましくない。
Next, regarding the rolling temperature, the pressure roll was heated to 80°C or higher for 1
It can be arbitrarily set within a temperature range of 40°C or higher. If the temperature is lower than this range, a large number of pressure rolls will be required to obtain the desired rolling ratio, and a very large force will be required to apply pressure between the rolls, which will cause equipment problems and be expensive in terms of equipment. This is inappropriate as a rolling condition. On the other hand, if the temperature is higher than this range, there is no problem in rolling workability, but surface smoothness, which is important for perpendicular magnetization, deteriorates somewhat, which is not preferable.

また線圧は10(A’/cm以上が必要であす100K
F/。
In addition, the linear pressure must be 10 (A'/cm or more) or 100K.
F/.

より低ければ十分に配向させることができない。If it is lower, sufficient orientation cannot be achieved.

以上の条件で1.5〜4倍に圧琴するが1.5倍以下の
場合は配向効果が不十分であり、また4倍以上に圧延す
ると破断が頻発し安定加工が困難となる。なお、これら
のことは延伸の場合も同様であり倍率としては1.5〜
4倍が良い。
Under the above conditions, the rolling strength is 1.5 to 4 times, but if it is less than 1.5 times, the orientation effect is insufficient, and if it is rolled more than 4 times, breakage occurs frequently and stable processing becomes difficult. In addition, these things are the same in the case of stretching, and the magnification is 1.5 to 1.5.
4 times better.

また延伸温度は120’C以上、200’C以下の範囲
で行なうことが必要である。該温度域より低ければ均一
な延伸ができず、厚み精度の著しく悪いフィルムとなり
、逆に該温度域より高ければ結晶化が進んで降伏応力が
高くなり延伸が困難となる。なお、フィルム長さ方向に
ついて圧延だけでなく延伸を併用する場合の延伸倍率は
安定加工性および配向効果の点から1゜1〜2倍が適当
である。さらに、ヒートセットに関しては250℃以上
融点以下で行なうが250℃より低ければ十分な寸法安
定性が得られない。
Further, the stretching temperature must be in the range of 120'C or higher and 200'C or lower. If the temperature is lower than this range, uniform stretching will not be possible, resulting in a film with extremely poor thickness accuracy.On the other hand, if the temperature is higher than this range, crystallization will proceed and the yield stress will increase, making stretching difficult. In addition, when not only rolling but also stretching is used in the length direction of the film, the appropriate stretching ratio is 1.degree. 1 to 2.times. from the viewpoint of stable processability and orientation effect. Further, heat setting is carried out at a temperature of 250°C or higher and lower than the melting point, but if the temperature is lower than 250°C, sufficient dimensional stability cannot be obtained.

以上により垂直磁化に適したベースフィルムが得られC
0−Cr合金、酸化鉄、Co−P合金、CoNi合金、
CoP Ni 合金等の磁性体を薄膜形成することがで
きる。薄膜形成手段としてはスパッタリング、真空蒸着
、イオンブレーティング、電気メッキ等が挙げられるが
、本発明のベースフィルムはいずれにも適用できるもの
である。
Through the above steps, a base film suitable for perpendicular magnetization can be obtained.
0-Cr alloy, iron oxide, Co-P alloy, CoNi alloy,
A thin film of a magnetic material such as a CoP Ni alloy can be formed. Thin film forming means include sputtering, vacuum evaporation, ion blating, electroplating, etc., and the base film of the present invention can be applied to any of them.

以下、実施例により本発明を具体的に示すが、本発明は
これらにより何んら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically illustrated by examples, but the present invention is not limited by these in any way.

実施例1〜2、比較例1〜3 ポリエーテルエーテルケトン(■C■製、45G)を3
00押出機を用いて400鴫巾の1゛ダイから押出すこ
とにより厚さ0.2tの原反フィルムを作成した。この
原反フィルムを直径2600、面長700 mの1対の
加圧ロールにより圧延し、さらにヒートセットを施した
。;0 、19fヤ製 5tylus tipを取り付
けて測定した。加工条件および最大表面粗さ測定結果を
表1に示す。
Examples 1 to 2, Comparative Examples 1 to 3 Polyether ether ketone (manufactured by ■C■, 45G) was
A raw film with a thickness of 0.2 t was prepared by extruding it from a 1'' die with a width of 400 mm using a 0.00 extruder. This raw film was rolled by a pair of pressure rolls with a diameter of 2600 m and a surface length of 700 m, and was further heat set. ;0, 19F Ya 5tylus tip was attached and measured. Table 1 shows the processing conditions and maximum surface roughness measurement results.

実施例3〜4、比較例4〜5 実施例1と同様にして作成した原反フィルムを圧延もし
くはタテ延伸し、さらに横延伸を行なった後、ヒートセ
ットを施した。得られたフィルムの最大表面粗さを実施
例1と同様の方法で測定した。加工条件および最大表面
粗さ測定結果を表1に示す。
Examples 3 to 4, Comparative Examples 4 to 5 Raw films prepared in the same manner as in Example 1 were rolled or stretched in the longitudinal direction, further stretched in the lateral direction, and then heat set. The maximum surface roughness of the obtained film was measured in the same manner as in Example 1. Table 1 shows the processing conditions and maximum surface roughness measurement results.

実施例5 実施例1と同様にして作成した原反フィルムを圧延し、
さらに横延伸およびタテ延伸を行なった後、ヒートセッ
トを施した。得られたフィルムの最大表面粗さを実施例
1と同様の方法で測定した。加工条件および最大表面粗
さ測定結果を表1に示す。
Example 5 A raw film prepared in the same manner as in Example 1 was rolled,
Further, after transverse stretching and longitudinal stretching, heat setting was performed. The maximum surface roughness of the obtained film was measured in the same manner as in Example 1. Table 1 shows the processing conditions and maximum surface roughness measurement results.

屹施例格 実施例3で得られたフィルムの両面にスパッタリング法
により軟磁性層として平均膜厚3000 Aのパーマロ
イを飛着させ、ついで同じくスパッタリング法により2
0%Cr CO合金を飛着させ、平均膜厚5ooo X
の垂直磁化膜を容易にかつ安定して形成することができ
た。
Permalloy with an average thickness of 3000 A was deposited as a soft magnetic layer on both sides of the film obtained in Example 3 by sputtering, and then 2
0% Cr CO alloy is deposited and the average film thickness is 5oooo
It was possible to form a perpendicularly magnetized film easily and stably.

比較例6 ポリエーテルエーテルケトンの50μの押出フィルムを
用いて実施例4と同様の方法にて、パーマロイおよび2
0 % Cr−Co合金の飛着を試みたが、スパッタリ
ングによりフィルムが変形し、良好な製品は得られなか
った。
Comparative Example 6 Permalloy and 2
An attempt was made to fly a 0% Cr-Co alloy, but the film was deformed by sputtering and a good product could not be obtained.

比較例7〜8 市販ポリエステルフィルム(東し、ルミラー■)50μ
品およびポリイミドフィルム(Dupont 、 Ka
pton■dタイプ)50μ品を用いて各々実施例4と
同様の方法にてパーマロイおよび20 % Cr−Co
合金の飛着を試みたが、ルミラー■は、耐熱性が低いた
め生産性は極めて悪く実用的ではなかった。
Comparative Examples 7-8 Commercially available polyester film (Toshi, Lumirror ■) 50μ
product and polyimide film (Dupont, Ka
Permalloy and 20% Cr-Co were prepared in the same manner as in Example 4 using 50μ products (pton d type).
Attempts were made to fly the alloy, but Lumirror ■ had low heat resistance, resulting in extremely low productivity and impractical use.

またKapton■については吸湿した水分により高真
空が得られず磁性層とフィルムとの密着性が悪く容易に
剥離してしまった。また剥離前の状態でも平面平滑性不
良で良好な製品は得られなかった。
Regarding Kapton (2), a high vacuum could not be obtained due to the absorbed moisture, and the adhesion between the magnetic layer and the film was poor and the film easily peeled off. Moreover, even before peeling, a good product could not be obtained due to poor surface smoothness.

Claims (5)

【特許請求の範囲】[Claims] (1) ポリエーテル円−テルケトンフィルムヲ分子配
向およびヒートセットしてなる、最大表面粗さが500
X以下である垂直磁化用ベースフィルム。
(1) Polyether circle-telketone film is molecularly oriented and heat set, with a maximum surface roughness of 500.
A base film for perpendicular magnetization that is less than or equal to X.
(2) ポリエーテルエーテルケトンフィルムに少くと
も80階/CI+’ 以上の後方張力を付与し80℃以
上140℃以下の温度範囲1にある対をなす加圧ロール
により少くと6100 Kf/ci+以上の線圧にて1
.5〜4倍にロール圧延し、250℃以上融点以下の温
度で熱固定することを特徴とする特許請求の範囲第(1
)項記載の垂直磁化用ベースフィルム。
(2) Apply a backward tension of at least 80 Kf/ci+' to the polyether ether ketone film, and apply a back tension of at least 6100 Kf/ci+ using a pair of pressure rolls in a temperature range 1 of 80°C to 140°C. 1 at linear pressure
.. Claim No. 1, characterized in that it is rolled 5 to 4 times and heat-set at a temperature of 250°C or higher and lower than the melting point.
Base film for perpendicular magnetization described in ).
(3) ポリエーテルニー・デルケトンフィルムに少く
とも80 欅/cm2以上の後方張力を付与し、80℃
以上140℃以下の温度範囲にある対をなす加圧ロール
により少くとも100?/3 以上の線圧にて1.5〜
4倍にロール圧延し、フィルム中方向書と120℃以上
200℃以下の温度で1.5〜4倍に延伸し、さら番ζ
250℃以上融点以下の温度で熱固定することを特徴と
する特許請求の範囲第(1)項記載の垂直磁化用ベース
フィルム。
(3) Apply a rear tension of at least 80 zelkova/cm2 or more to the polyether nee-derketone film and heat it at 80°C.
At least 100? 1.5~ at linear pressure of /3 or more
Roll rolled 4 times, stretched 1.5 to 4 times at a temperature of 120°C or higher and 200°C or lower with the direction in the film, and then flattened ζ.
The base film for perpendicular magnetization according to claim (1), which is heat-set at a temperature of 250° C. or higher and lower than the melting point.
(4) ポリエーテルエーテルケトンフィルムに少くと
680 砕、/am2以上の後方張力を付与し、80℃
以上14(7’(:以下の温度範囲にある対をなす加圧
ロールにより少くと61004/CI+以上の線圧にて
1.5〜4倍にロール圧延し、120℃以上、200℃
以下の温度でフィルム巾方向に1.5〜4倍、フィルム
長さ方向に1.1〜2倍それぞれ延伸し、さらに250
℃以上融点以下の温度で熱固定することを特徴とする特
許請求の範囲第(1)項記載の垂直磁化用ベースフィル
ム。
(4) Apply a rear tension of at least 680°/am2 to the polyetheretherketone film and heat it at 80°C.
Above 14 (7'
Stretch the film 1.5 to 4 times in the width direction and 1.1 to 2 times in the length direction at the following temperatures, and further stretch to 250
The base film for perpendicular magnetization according to claim 1, wherein the base film is heat-set at a temperature of not less than 0.degree. C. and not more than the melting point.
(5) ポリエーテルエーテルケトンフィルムを120
℃以上、200℃以下の温度でフィルム長さ方向および
/又はフィルム巾方向に1.5〜4倍にそれぞれ延伸し
、さらに250℃以上融点以下の温度で熱固定すること
を特徴とする特iff請求の範囲第(1)項記載の垂直
磁化用ベースフィルム。
(5) 120% polyetheretherketone film
A special feature characterized by stretching the film by 1.5 to 4 times in the length direction and/or film width direction at a temperature of not less than 200°C and not more than 200°C, and further heat-setting at a temperature of not less than 250°C and not more than the melting point. A base film for perpendicular magnetization according to claim (1).
JP58201833A 1983-10-26 1983-10-26 Polyether ether ketone film for vertical magnetization Granted JPS6093625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201833A JPS6093625A (en) 1983-10-26 1983-10-26 Polyether ether ketone film for vertical magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201833A JPS6093625A (en) 1983-10-26 1983-10-26 Polyether ether ketone film for vertical magnetization

Publications (2)

Publication Number Publication Date
JPS6093625A true JPS6093625A (en) 1985-05-25
JPH05767B2 JPH05767B2 (en) 1993-01-06

Family

ID=16447649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201833A Granted JPS6093625A (en) 1983-10-26 1983-10-26 Polyether ether ketone film for vertical magnetization

Country Status (1)

Country Link
JP (1) JPS6093625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095078A (en) * 1987-12-16 1992-03-10 Kureha Kagaku Kogyo K. K. Heat-resistant film and production process thereof
US5223585A (en) * 1987-12-16 1993-06-29 Kureha Kagaku Kogyo K. K. Heat-resistant film and production process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095078A (en) * 1987-12-16 1992-03-10 Kureha Kagaku Kogyo K. K. Heat-resistant film and production process thereof
US5223585A (en) * 1987-12-16 1993-06-29 Kureha Kagaku Kogyo K. K. Heat-resistant film and production process thereof

Also Published As

Publication number Publication date
JPH05767B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
EP0086302B1 (en) Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US4226826A (en) Method for manufacturing polyester films
US4539260A (en) Magnetic recording material
EP0090499B1 (en) Magnetic recording medium
US4835245A (en) Biaxially oriented polyoxymethylene film
JP4543395B2 (en) Film and magnetic recording medium using the same
US4617164A (en) Process for stretching polyester films
JP2000202904A (en) Polyester film and manufacture thereof
JPS6093625A (en) Polyether ether ketone film for vertical magnetization
JPS59127730A (en) Biaxially orientated polyethylene-naphthalate film
EP0174376B1 (en) Heat-resistant film or sheet
JPH0251463B2 (en)
JPS60150232A (en) Naphthalate polyester film for vertical magnetization
EP0155966A1 (en) Process for producing biaxially oriented polyester film
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
JPS6230897B2 (en)
JP2000336183A (en) Biaxially oriented polyester film and its production
KR0140300B1 (en) Process for preparing biaxially oriented polyester film
JP3048737B2 (en) Method for producing biaxially oriented polyethylene 2,6-naphthalate film
JPS60187928A (en) Magnetic recording material and its production
JPS5967015A (en) Preparation of biaxially stretched polyester film
KR0140309B1 (en) Process for preparing biaxially oriented polyester film
KR0140294B1 (en) Process for preparing biaxially oriented polyester film
JP3748165B2 (en) Polyester film and method for producing the same
JPH11302408A (en) Biaxially oriented polyester film