JPS6092403A - Iron oxide magnetic powder - Google Patents

Iron oxide magnetic powder

Info

Publication number
JPS6092403A
JPS6092403A JP58201529A JP20152983A JPS6092403A JP S6092403 A JPS6092403 A JP S6092403A JP 58201529 A JP58201529 A JP 58201529A JP 20152983 A JP20152983 A JP 20152983A JP S6092403 A JPS6092403 A JP S6092403A
Authority
JP
Japan
Prior art keywords
magnetic powder
iron oxide
oxide magnetic
cobalt
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201529A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58201529A priority Critical patent/JPS6092403A/en
Publication of JPS6092403A publication Critical patent/JPS6092403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide titled magnetic powder having a good magnetic characteristic and excellent thermal stability by forming magnetoplumbite type ferrite layer on the particle surface of iron oxide magnetic powder formed a solid solution of needlelike cobalt on the surface having triaxial anisotropy. CONSTITUTION:Salt of Ba, Sr, Pb, Ca, etc. and ferric salt are added and dissolved into an aq. dispersion of iron oxide magnetic powder formed a solid solution of needlelike cobalt on the surface to effect reaction and further the suspension is heated to grow the resulted product of reaction by which a magnetoplumbite type ferrite layer consisting of BaO.6Fe2O3, SrO.6Fe2O3, PbO.6Fe2O3, CaO. 6Fe2O3 or the like is formed on the particle surface of said magnetic powder preferably at about 3-15wt% by the weight of the iron oxide magnetic powder formed a solid solution of cobalt. Then the magnetoplumbite type ferrite of which the coercive force is increased with an increase in temp. improves the temp. dependency of the iron oxide magnetic powder solutionzied with cobalt by which the magnetic powder having excellent thermal stability is obtd.

Description

【発明の詳細な説明】 この発明は磁気記録媒体用として好適な三軸異方性を有
する酸化鉄磁性粉末に関し、その目的とするところは磁
気特性が良好で熱的安定性に優れた前記の三軸異方性を
有する酸化鉄磁性粉末を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to iron oxide magnetic powder having triaxial anisotropy suitable for use in magnetic recording media. An object of the present invention is to provide iron oxide magnetic powder having triaxial anisotropy.

一般に、コバルト含有酸化鉄磁性粉末は、従来の磁気記
録媒体の記録素子として汎用されている酸化鉄磁性粉末
に比べて高保磁力を有しているため、高性能磁気記録媒
体の記録素子として有用であり、なかでも酸化鉄磁性粉
末の粒子内部にコバルトを均一に固溶させたコバルト固
溶酸化鉄磁性粉末は、三軸性の磁気異方性を有し、これ
を用いて得られた磁気記録媒体はどの方向にも大きな磁
化を示すため垂直磁化成分を利用する高密度記録磁気記
録媒体用として極めて有用である。
In general, cobalt-containing iron oxide magnetic powder has a higher coercive force than iron oxide magnetic powder, which is commonly used as a recording element in conventional magnetic recording media, so it is useful as a recording element in high-performance magnetic recording media. In particular, cobalt-solid-solute iron oxide magnetic powder, in which cobalt is uniformly dissolved inside particles of iron oxide magnetic powder, has triaxial magnetic anisotropy, and magnetic recording obtained using it has triaxial magnetic anisotropy. Since the medium exhibits large magnetization in all directions, it is extremely useful for high-density recording magnetic recording media that utilize perpendicular magnetization components.

ところが、この種のコバルト固溶酸化鉄磁性粉末は、特
に垂直磁化成分を利用する高密度記録用として通した特
性を有する反面、保磁力の温度依存性が太き(、低温で
は高い保磁力を有していても高温になるほど保磁力が小
さくなり、熱的安定性に劣るという難点がある。
However, although this type of cobalt solid-solute iron oxide magnetic powder has characteristics that are suitable for high-density recording using a perpendicular magnetization component, its coercive force has a strong temperature dependence (it is difficult to maintain a high coercive force at low temperatures). Even if it has, the problem is that the coercive force decreases as the temperature rises, resulting in poor thermal stability.

この発明者は、かかる現状に鑑み種々検削を行った結果
、三輪異方性を有する針状のコバルト固溶酸化鉄磁性粉
末の粒子表面に、マグネットブランバイト型フェライト
層を被着形成すると、この粒子表面に形成されたマグネ
・7トプランハイト型フエライトが高温になるほど保磁
力が増加するというコバルト固溶酸化鉄磁性粉末とは逆
の温度依存性を有するため、これら両者の保磁力の温度
依存が相互的に作用してコバルト固溶酸化鉄磁性粉末の
保磁力の温度依存性が改善され、加熱減磁が減少して熱
的安定性が向上されることを見いだし、この発明をなす
に至った。
In view of the current situation, the inventor conducted various machining tests and found that when a magnetic brambite-type ferrite layer is deposited on the particle surface of acicular cobalt solid-solubilized iron oxide magnetic powder having three-ring anisotropy, Since the magneto-7 top plan height type ferrite formed on the particle surface has a temperature dependence opposite to that of the cobalt solid solution iron oxide magnetic powder, in which the coercive force increases as the temperature increases, the coercive force of both of them is temperature dependent. It was discovered that the temperature dependence of the coercive force of the cobalt-solid-solubilized iron oxide magnetic powder was improved through the mutual interaction of the two, and that thermal demagnetization was reduced and the thermal stability was improved, leading to the creation of this invention. Ta.

この発明において、コバルト固溶酸化鉄磁性粉末の粒子
表面に被着形成されるマグネットブランバイト型フェラ
イトは、マグネットブランバイト型の結晶構造を有し、
保磁力の温度依存性がコバルト固溶酸化鉄磁性粉末とは
逆で、高温になるほど保磁力が大きくなる。従って、こ
のような保磁力の温度依存性を有するマグネットブラン
バイト型フェライトNがコバルト固溶酸化鉄磁性粉末の
粒子表面に形成されると、コバル(・固溶酸化鉄磁性粉
末の高温になるほど小さくなる保磁力の温度依存性が、
マグネットブランバイト型フェライトによって?lli
われ、加熱減磁が減少して、保磁力の熱的安定性が向上
される。このようなマグネットプランハイ1−型フェラ
イトとじては、Ba0・6Fe203.、Sr0・6F
e203、PbO・6Fe203 、Ca0・6Fe2
03等の化学式で表されるバリウムフェライト、ストロ
ンチウムフェライト、鉛フェライト、カルシウムフェラ
イト等が好適なものとして使用される。コバルト固溶酸
化鉄磁性粉末の粒子表面へのこれらのマグネットブラン
バイト型フェライト層の形成は、コバルト固溶酸化鉄磁
性粉末の水分散液中に、バリウム、ストロンチウム、鉛
、カルシウム等の塩と第二鉄塩とを添加溶解して反応さ
せ、さらに加熱して反応生成物を成長させるなどの方法
で行われ、バリウムイオン、ストロンチウムイオン、鉛
イオン、カルシウムイオン等は大きいためコバルト固溶
酸化鉄磁性粉末の粒子内部にまで拡散されず、粒子表面
に被着されてマグネットブランバイト型フェライト層が
形成される。このようにしてコバルト固溶酸化鉄磁性粉
末の粒子表面にマグネットブランバイト型フェライト層
を形成した酸化鉄磁性粉末中におけるマグネットブラン
バイト型フェライトの含有量は、コバルト固溶酸化鉄磁
性粉末に対して3重量%より少ないとコバルト固溶酸化
鉄磁性粉末の保磁力の温度依存性が充分に改善されず、
多くなるほどコバルト固溶酸化鉄磁性粉末の保磁力の温
度依存性は改善されるが、15重量%より多くなると、
マグネソトプランハイト型フエライ(・が−軸異方性を
有していることからコバルト固溶酸化鉄磁性わ)末が有
する三軸異方性の寄与が小さくなって垂直磁化成分を利
用する高密度記録磁気記録媒体用として適さなくなるた
め、コバルト固溶酸化鉄磁性粉末に対して3〜15重量
%の範囲内であることが好ましく、保磁力への寄与割合
がコバルト固溶酸化鉄磁性粉末対マグネットブランバイ
I・型フコニライトにして5:5〜9:1の範囲内とな
るようにするのが好ましい。
In this invention, the magnetic brambite-type ferrite formed on the particle surface of the cobalt solid solution iron oxide magnetic powder has a magnetic brambite-type crystal structure,
The temperature dependence of coercive force is opposite to that of cobalt solid solution iron oxide magnetic powder, and the coercive force increases as the temperature increases. Therefore, when magnetic blanbite-type ferrite N, which has such temperature dependence of coercive force, is formed on the particle surface of cobalt solid-solute iron oxide magnetic powder, the cobal (solid-solute iron oxide magnetic powder) becomes smaller as the temperature increases. The temperature dependence of coercive force is
By magnet brambite type ferrite? lli
This reduces heating demagnetization and improves the thermal stability of coercive force. Such magnet plan high 1-type ferrite is Ba0.6Fe203. , Sr0・6F
e203, PbO・6Fe203, Ca0・6Fe2
Barium ferrite, strontium ferrite, lead ferrite, calcium ferrite, etc. represented by chemical formulas such as 03 are preferably used. The formation of these magnet branbite-type ferrite layers on the particle surfaces of cobalt solid-solubilized iron oxide magnetic powder is achieved by adding salts such as barium, strontium, lead, calcium, etc. to an aqueous dispersion of cobalt solid-solubilized iron oxide magnetic powder. This is done by adding and dissolving ferrous salts, causing a reaction, and further heating to grow the reaction product.Since barium ions, strontium ions, lead ions, calcium ions, etc. are large, cobalt solid solution iron oxide magnetism occurs. It is not diffused into the inside of the powder particles, but is deposited on the particle surfaces to form a magnetic brambite-type ferrite layer. The content of magnet branbite type ferrite in the iron oxide magnetic powder in which a magnet branbite type ferrite layer is formed on the particle surface of the cobalt solid solution iron oxide magnetic powder is as follows: If it is less than 3% by weight, the temperature dependence of the coercive force of the cobalt solid solution iron oxide magnetic powder will not be sufficiently improved.
The temperature dependence of the coercive force of the cobalt solid-soluble iron oxide magnetic powder is improved as the amount increases, but when the amount exceeds 15% by weight,
The contribution of the triaxial anisotropy of the magneto-sotoplanheit type ferrite powder (cobalt solid-solute iron oxide magnetism due to its -axis anisotropy) becomes smaller, and the magnetization using the perpendicular magnetization component is Since it becomes unsuitable for use in density recording magnetic recording media, it is preferably within the range of 3 to 15% by weight based on the cobalt solid solution iron oxide magnetic powder, and the contribution ratio to the cobalt coercive force is less than that of the cobalt solid solution iron oxide magnetic powder. It is preferable that the ratio is in the range of 5:5 to 9:1 for magnet branby type I fuconilite.

また、コバルト固溶酸化鉄磁性粉末は、粒子内部にコバ
ルトを均一に固溶した針状で三軸異方性を有するもので
あることが好ましく、コバルトの含有割合は、保磁力を
磁気記録媒体用として適度なものとするため鉄に対して
5〜25重量%の範囲内で含有させるのが好ましい。
In addition, the cobalt solid-dissolved iron oxide magnetic powder is preferably acicular and has triaxial anisotropy, with cobalt uniformly dissolved inside the particles, and the content ratio of cobalt is determined so that the coercive force is determined by the magnetic recording medium. In order to make the content suitable for use, it is preferable to contain it within a range of 5 to 25% by weight based on iron.

このようにコバルト固溶酸化鉄磁性粉末の粒子表面にマ
グネットブランバイト型フェライト層を設けてなる酸化
鉄磁性粉末は、温度依存性が改善され、加熱減磁が少な
くて熱的安定性が良く、従ってこの種の酸化鉄磁性粉末
を使用すれば、熱的安定性が良好で、垂直磁化成分を利
用する高密度記録に適した磁気記録媒体が得られる。
The iron oxide magnetic powder, which is formed by providing a magnetic brambite ferrite layer on the particle surface of the cobalt solid-solubilized iron oxide magnetic powder, has improved temperature dependence, less thermal demagnetization, and good thermal stability. Therefore, if this type of iron oxide magnetic powder is used, a magnetic recording medium with good thermal stability and suitable for high-density recording using a perpendicular magnetization component can be obtained.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 長軸径0.3μ、軸比(長軸径/短軸径)8の針状γ−
Fe203粉末1700gを12n(7)水に分散させ
た後、これに硫酸コハル)240gと硫酸第一鉄480
gとを加えて溶解させ、さらに苛性ソーダ1650gを
溶解した苛性ソーダ水溶液61を加えて攪拌しなから4
5°Cで8時間反応させた。反応終了後、水洗、脱水、
乾燥した後、空気中450℃で3時間加熱処理してコバ
ルト固溶酸化鉄磁性粉末を得た。このコバルト固溶酸化
鉄磁性粉末の保磁力は650エルステツドで、飽和磁化
量は73.2emu 7g 、角型は0.69であった
。次いで、このコバルト固f6#化鉄磁性粉末1000
gを77Iの水に分散させ、これに塩化バリウム38g
と塩化第二鉄507gとを加えて熔解させ、さらに苛性
ソーダ800gを溶解した苛性ソーダ水溶液31を加え
てffi (’I’しながら90°Cで3時間反応させ
た。反応終了後、水洗、脱水、乾燥した後、空気中70
0°Cで3時間加熱処理して粒子表面にバリウムフェラ
イト丙が被着形成されたコバルI・固溶酸化鉄磁性粉末
を得た。このようにして得られた酸化鉄磁性粉末の温度
20℃での保磁力は880エルステツドで、飽和磁化量
は68.2emu/g 、角型は0.71であった。
Example 1 Acicular γ- with a major axis diameter of 0.3μ and an axial ratio (major axis diameter/minor axis diameter) of 8
After dispersing 1700 g of Fe203 powder in 12N (7) water, 240 g of ferrous sulfate) and 480 g of ferrous sulfate were added to this.
Add and dissolve 1,650 g of caustic soda, then add 61 aqueous solution of caustic soda containing 1,650 g of caustic soda and stir.
The reaction was carried out at 5°C for 8 hours. After the reaction is complete, wash with water, dehydrate,
After drying, it was heat-treated in air at 450° C. for 3 hours to obtain cobalt solid-dissolved iron oxide magnetic powder. This cobalt solid solution iron oxide magnetic powder had a coercive force of 650 oersted, a saturation magnetization of 73.2 emu 7 g, and a square shape of 0.69. Next, this cobalt solid F6 iron magnetic powder 1000
g is dispersed in 77I of water, and 38 g of barium chloride is added to this.
and 507 g of ferric chloride were added and melted, and an aqueous solution 31 of caustic soda containing 800 g of caustic soda was added and reacted at 90°C for 3 hours with ffi ('I'). After the reaction, washing with water, dehydration, 70 in the air after drying
Heat treatment was performed at 0°C for 3 hours to obtain Kobal I solid solution iron oxide magnetic powder with barium ferrite C adhered to the particle surface. The thus obtained iron oxide magnetic powder had a coercive force of 880 oersteds at a temperature of 20°C, a saturation magnetization of 68.2 emu/g, and a square shape of 0.71.

実施例2 実施例1において、コバルト固溶酸化鉄磁性粉末を分散
した水分散液中に加える塩化バリウムを38gから67
gに変更し、また塩化第二鉄を507gから890gに
変更し、さらに苛性ソーダを800’gから850gに
変更した以外は実施例1と同様にして粒子表面にバリウ
ムフェライト層が被着形成された。:1パルI・固溶酸
化鉄磁性粉末を得た。このよ・)にし−r(υられた酸
化鉄磁性粉末の温度20℃での保磁力は1120エルス
テツドで、飽和磁化量は(i6.4emu 7g 、角
型は0,72であっ〕こ。
Example 2 In Example 1, barium chloride was added from 38 g to 67 g to an aqueous dispersion in which cobalt solid-dissolved iron oxide magnetic powder was dispersed.
A barium ferrite layer was formed on the particle surface in the same manner as in Example 1, except that the amount of ferric chloride was changed from 507 g to 890 g, and the amount of caustic soda was changed from 800 g to 850 g. . :1 Pal I solid solution iron oxide magnetic powder was obtained. The coercive force of this iron oxide magnetic powder at a temperature of 20° C. is 1120 oersted, and the saturation magnetization is (i6.4 emu 7 g, square shape is 0.72).

比較例1 長軸径0.3μ、軸比(長軸径/短軸径)8の針状r−
Fe203粉末1200gを9βの水に分散させた後、
これに硫酸コバル)314gと硫酸第一鉄622gとを
加えて溶解させ、さらに苛性ソーダ1390gを溶解し
た苛性ソーダ水溶液51を加えて攪拌しなから45゛C
で8時間反応さ−Uた。反応終了後、水洗、脱水、乾燥
した後、空気中450℃で3時間加熱処理してコバルト
固溶酸化鉄磁性粉末を得た。このコバルト固溶酸化鉄磁
性粉末の温度20℃での保磁力は890エルステツドで
、飽和磁化量は73.4emu 7g 、角型は0.7
1であった。
Comparative Example 1 Acicular r- with a major axis diameter of 0.3μ and an axial ratio (major axis diameter/minor axis diameter) of 8
After dispersing 1200g of Fe203 powder in 9β water,
To this, 314 g of cobal sulfate) and 622 g of ferrous sulfate were added and dissolved, and then an aqueous solution of caustic soda 51 in which 1390 g of caustic soda was dissolved was added and heated to 45°C without stirring.
The reaction was carried out for 8 hours. After the reaction was completed, the product was washed with water, dehydrated, dried, and then heat-treated in air at 450° C. for 3 hours to obtain cobalt solid-dissolved iron oxide magnetic powder. This cobalt solid solution iron oxide magnetic powder has a coercive force of 890 oersteds at a temperature of 20°C, a saturation magnetization of 73.4 emu 7g, and a square shape of 0.7
It was 1.

各実施例および比較例で得られた酸化鉄磁性粉末につい
て、保磁力の温度依存性および加熱減磁を調べた。保磁
力の温度依存性は20℃における保磁力(llc2(+
)と60℃における保磁力(llc6(1)とを測定し
、その変化率(IIC2゜−11c6゜/l1c2゜)
からめた。また、加熱減磁は、円筒状容器に充填した酸
化鉄磁性粉末を10KOeの磁場で飽和磁化して飽和残
留磁化量σsrを測定し、次に、この試料を60°Cで
2時間保存した後、再び室温で残留磁化量σrを測定し
て、このときの残留磁化量の減少割合(σS「−σr/
σsr)をめて行った。
The temperature dependence of coercive force and heating demagnetization were investigated for the iron oxide magnetic powders obtained in each Example and Comparative Example. The temperature dependence of the coercive force is the coercive force (llc2(+
) and the coercive force (llc6(1)) at 60°C, and the rate of change (IIC2°-11c6°/l1c2°)
Tangled. In addition, thermal demagnetization was performed by saturated magnetizing iron oxide magnetic powder filled in a cylindrical container in a magnetic field of 10 KOe and measuring the saturation residual magnetization σsr, and then storing this sample at 60°C for 2 hours. , measure the residual magnetization amount σr again at room temperature, and calculate the reduction rate of the residual magnetization amount (σS ``−σr/
σsr).

下表はその結果である。The table below shows the results.

表 上表から明らかなように、実施例1および2で得られた
酸化鉄磁性わ)末は比較例1で得られたコバルト含有酸
化鉄磁性わ)末に比し、保磁力の温度依存性が小さくて
加熱M(II、が少なく、このことからこの発明によっ
て得られる酸化鉄磁性粉末は加熱減磁が少なくて熱的安
定性に優れていることががわかる。
As is clear from the above table, the iron oxide magnetic powder obtained in Examples 1 and 2 has a higher temperature dependence of coercive force than the cobalt-containing iron oxide magnetic powder obtained in Comparative Example 1. is small and the heating M(II) is small, which indicates that the iron oxide magnetic powder obtained by the present invention suffers little heating demagnetization and has excellent thermal stability.

特許出願人 日立マクセル株式会社 、・ご−ニi′Patent applicant: Hitachi Maxell, Ltd. ,・Goni i'

Claims (1)

【特許請求の範囲】[Claims] 1、三軸異方性を有する針状のコバルト固溶酸化鉄磁性
粉末の粒子表面に、マグネットブランバイト型フェライ
ト層を形成してなる酸化鉄磁性粉末
1. Iron oxide magnetic powder formed by forming a magnet brambite type ferrite layer on the particle surface of acicular cobalt solid solution iron oxide magnetic powder having triaxial anisotropy.
JP58201529A 1983-10-27 1983-10-27 Iron oxide magnetic powder Pending JPS6092403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201529A JPS6092403A (en) 1983-10-27 1983-10-27 Iron oxide magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201529A JPS6092403A (en) 1983-10-27 1983-10-27 Iron oxide magnetic powder

Publications (1)

Publication Number Publication Date
JPS6092403A true JPS6092403A (en) 1985-05-24

Family

ID=16442551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201529A Pending JPS6092403A (en) 1983-10-27 1983-10-27 Iron oxide magnetic powder

Country Status (1)

Country Link
JP (1) JPS6092403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197805A (en) * 1984-10-18 1986-05-16 バスフ アクチェン ゲゼルシャフト Ferri magnetic particle and making thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197805A (en) * 1984-10-18 1986-05-16 バスフ アクチェン ゲゼルシャフト Ferri magnetic particle and making thereof

Similar Documents

Publication Publication Date Title
US3425666A (en) Process for producing ferrimagnetic materials
US6599608B2 (en) Media employing substantially spherical magneto-plumbite ferrite particles
JPS6092403A (en) Iron oxide magnetic powder
JPH0544163B2 (en)
JPH0719363B2 (en) Magnetic recording medium
US3065182A (en) Low flux density ferromagnetic material
JPS62108738A (en) Production of ferromagnetic iron oxide powder
JPS6242858B2 (en)
JPS5860624A (en) Ferromagnetic powder and its preparation
JPS5939814B2 (en) Method for manufacturing magnetic recording media
JPS6334609B2 (en)
US4268540A (en) Particles for magnetic recording
JPS60255629A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
US2982607A (en) Lanthanum manganese hexaferrites
JPS6310094B2 (en)
JPS60157718A (en) Magnetic recording medium
JPS5847846B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder for perpendicular magnetic recording
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPH0485722A (en) Magnetic recording medium
JPH0545529B2 (en)
JPH01159826A (en) Ferromagnetic powder
JPS607105A (en) Manufacture of magnetic powder
JPS6046525B2 (en) Method for producing granular magnetite particle powder containing high coercive force and magnetic stability
JPS60115024A (en) Magnetic recording medium and its production
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom