JPS6092383A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS6092383A
JPS6092383A JP20028183A JP20028183A JPS6092383A JP S6092383 A JPS6092383 A JP S6092383A JP 20028183 A JP20028183 A JP 20028183A JP 20028183 A JP20028183 A JP 20028183A JP S6092383 A JPS6092383 A JP S6092383A
Authority
JP
Japan
Prior art keywords
heat storage
amount
storage material
thermal energy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20028183A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Fumiko Yokoya
横谷 文子
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20028183A priority Critical patent/JPS6092383A/en
Publication of JPS6092383A publication Critical patent/JPS6092383A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal energy storage material which is immune from supercooling, shows minimized separation phenomenon and has constant storing and releasing property, prepd. by mixing sodium hydrogenphosphate into a sodium acetate-contg. aqueous soln. CONSTITUTION:Disodium hydrogenphosphate is mixed into an aqueous soln. which contains 50-60.28wt% sodium acetate pref. in an amt. of 0.5-20pts.wt. per 100pts.wt. aqueous soln. The resultant thermal energy storage material can be used in any applications where stored thermal energy is to be utilized, including air conditioning.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、0HsCO2Na・3H20を主成分とする
潜熱蓄熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat storage material containing 0HsCO2Na.3H20 as a main component.

従来例の構成とその問題点 蓄熱材には、物質の顕熱を利用したものと潜熱を利用し
たものが知られている。潜熱を利用した蓄熱材は、顕熱
を利用した蓄熱材と比較して、単位重量当り−まだ単位
体積当りの蓄熱量が大きい。
Conventional configurations and their problems There are known heat storage materials that utilize the sensible heat of substances and those that utilize latent heat. A heat storage material that uses latent heat has a larger amount of heat storage per unit weight than a heat storage material that uses sensible heat.

特に無機水利塩の融解潜熱を利用する蓄熱材は、単位重
量当り、単位体積当りの蓄熱量の大きなことが知られて
いる。
In particular, heat storage materials that utilize the latent heat of fusion of inorganic water salts are known to have a large amount of heat storage per unit weight and per unit volume.

ところで従来より、CH3GO2Na・3H20ii無
機水和塩の中でも、特に融解潜熱の大きな物質であるこ
とが知られている。しかしCHsCO2Na・3H20
1一度融解すると過冷却状態になりやすく、その融液は
O’Cまで冷却しても凝固しないことがある。
Incidentally, CH3GO2Na.3H20ii has been known to be a substance with a particularly large latent heat of fusion among inorganic hydrated salts. However, CHsCO2Na・3H20
1. Once melted, it tends to become supercooled, and the melt may not solidify even if it is cooled to O'C.

そして過冷却状態になると、融解潜熱を放出しないから
、潜熱を利用した蓄熱材にとって致命的欠点である。こ
の問題を解決するために、無水CH3CO2Naとこれ
ら以外のNa塩を添加する方法が提案されている0しか
しこの方法ではGH3CO2Na・3H20中に、無水
CH3CO2Naが加えられているので、蓄熱と放熱を
繰返すとともに無水のCjH3CO2Naがどんどん析
出する いわゆる相分離現象を加速的に進行し、蓄熱量
が減少してしまうと言う問題点を有していた。
When supercooled, the latent heat of fusion is not released, which is a fatal drawback for heat storage materials that utilize latent heat. In order to solve this problem, a method of adding anhydrous CH3CO2Na and other Na salts has been proposed. However, in this method, anhydrous CH3CO2Na is added to GH3CO2Na/3H20, so heat storage and heat radiation are repeated. At the same time, the so-called phase separation phenomenon in which anhydrous CjH3CO2Na rapidly precipitates progresses at an accelerated pace, resulting in a decrease in the amount of heat storage.

発明の目的 3・二′ 本発明は、過冷却が起こらず、しかも、相分離現象が小
さな安定した蓄熱、放熱特性を有する溜熱蓄熱材を提供
するものである。
Aim of the Invention 3.2' The present invention provides a heat storage material that does not cause supercooling and has stable heat storage and heat radiation characteristics with a small phase separation phenomenon.

発明の構成 本発明の特徴は、CH3CO2Naを重量百分率で50
wt%から60,28wt% (CH3CO2Na・3
H20の組成に相当)の範囲で含有する水溶液に、Na
2HPO4を加え混合することにある。望ましくは、酢
酸ナトリウム水溶液100重量部に対して、Na2)T
PO4が0.5重量部から20重量部の範囲にある場合
である。
Structure of the Invention The feature of the present invention is that CH3CO2Na is contained in a proportion of 50% by weight.
wt% to 60,28wt% (CH3CO2Na・3
(equivalent to the composition of H20).
2HPO4 is added and mixed. Desirably, Na2)T is added to 100 parts by weight of the aqueous sodium acetate solution.
This is the case when PO4 is in the range of 0.5 parts by weight to 20 parts by weight.

実施例の説明 市販の試薬のCHsCOzNa−sHzo及びNa2H
PO4゜それに蒸留水を用いて、第1表に示すように所
定量配合した○との配合した試料10ogをステンレス
鋼製のカプセル中に封入した。そしてそれぞれの試料の
蓄熱量を落下法を用いて測定した。寸ず試料を封入した
カプセルを約3時間ウォーターバス中で65℃に保持し
、CHsCOzNaをすべて融解した。その後、約40
℃の水の入った魔法びん特開昭Go−92383(2) の中に、カプセルを入れ、その時の水温の上昇から試料
蓄熱量をめた。その後、カプセルを再びウォーターバス
中に入れ、70℃と50”Cの間で加熱冷却を繰返した
。試料の温度はカプセル表面に張り付けた熱電対によっ
て測定した。この温度測定により、それぞれの試料の蓄
熱及び放熱の挙動が確認出来だ。5o回加熱、冷却を繰
返した時点で再び試料の蓄熱量を落下法を用いて測定し
た。
Description of Examples Commercially available reagents CHsCOzNa-sHzo and Na2H
Using PO4° and distilled water, 10 og of a sample mixed with O in a predetermined amount as shown in Table 1 was sealed in a stainless steel capsule. The amount of heat stored in each sample was then measured using the drop method. The capsule containing the sample was kept at 65° C. in a water bath for about 3 hours to melt all the CHsCOzNa. After that, about 40
The capsule was placed in a thermos flask (Japanese Patent Application Laid-Open No. 92383(2)) containing water at a temperature of 0.degree. C., and the amount of heat stored in the sample was determined from the rise in water temperature at that time. After that, the capsule was placed in the water bath again and heated and cooled repeatedly between 70°C and 50"C. The temperature of the sample was measured with a thermocouple attached to the surface of the capsule. Through this temperature measurement, each sample's The behavior of heat storage and heat radiation was confirmed. After heating and cooling were repeated 5 times, the amount of heat stored in the sample was measured again using the drop method.

それらの結果を第2表に示す。第2表には、評価として
加熱冷却を50回繰返した後の蓄熱量が65 ca#/
g以」二のものには○印を付して示しており、50〜5
5caβ/gのものはΔ印を、まだtsocal/g以
下のものには×印をそれぞれ付して示した。ところで当
然のことであるが、○印のものは、蓄熱量が大きく実用
化可能なものであり、△印は蓄熱量がそれほど大きくな
いが安定して動作するので十分実用化が可能であると考
えられるものである。
The results are shown in Table 2. Table 2 shows that the amount of heat storage after repeating heating and cooling 50 times is 65 ca#/
Items less than ``g'' are marked with a circle, and 50 to 5
Those with 5caβ/g are shown with a Δ mark, and those with tsocal/g or less are shown with an x mark. By the way, it goes without saying that the ones marked with ○ have a large amount of heat storage and can be put to practical use, and the ones marked with △ have a small amount of heat storage but operate stably, so they can be put into practical use. It is something that can be considered.

5・・ 己゛ 第1表 6ページ 第2表 第2表のデータを解析する。試料1から試料7は、Na
2HPOaの混合量をCH3CO2Na水溶液1oO7
ページ 重量部に対して2重量部と一定に保って、(H5CO2
Na水溶液の濃度を47.5 wt %から63wt%
の範囲で変化させたものである0試別1に1、CH3C
O2Naの濃度が47.5 wt %と低くため、蓄熱
量43cal/gと小さい。試料2では、CH3C0z
Naの濃度が50wt俤と試料1に比べて高濃度になる
ため蓄熱量もrsocal/gと大きくなる。そして試
料3,4.5とCH3CO5Jaの濃度の増加とともに
、蓄熱量もそれにともなって増加する0しかし試料6の
CH3CO2Naの濃度が60.28 wt%の水溶液
(CH3CO2Na・3H20に相当)の場合には第1
回目の蓄熱量が70cal/gと大きいが、60回加熱
及び冷却を繰返した後では、57 cal/gとなる。
5. Analyze the data in Table 1, page 6, Table 2, Table 2. Samples 1 to 7 are Na
The mixing amount of 2HPOa is CH3CO2Na aqueous solution 1oO7
(H5CO2
The concentration of Na aqueous solution was increased from 47.5 wt% to 63 wt%.
CH3C was varied within the range of 0 trials 1 to 1.
Since the concentration of O2Na is low at 47.5 wt %, the heat storage amount is small at 43 cal/g. In sample 2, CH3C0z
Since the concentration of Na is 50 wt, which is higher than that of sample 1, the amount of heat storage is also large, rsocal/g. As the concentration of samples 3, 4.5 and CH3CO5Ja increases, the amount of heat storage increases accordingly. 1st
The amount of heat storage is large at 70 cal/g, but after repeating heating and cooling 60 times, it becomes 57 cal/g.

これは無水のCl5COzNaの析出−いわゆる相分離
現象によるものであると考えられる。そして、CH3C
O2Naの濃度が63,0wt4の試料7では、相分離
現象がいちじるしいため、第1回目の蓄熱量が63 c
al/gと大きいが、50回加熱と冷却を繰返した後で
ki49cal/g・と大きく減少する。
This is considered to be due to the precipitation of anhydrous Cl5COzNa, a so-called phase separation phenomenon. And CH3C
In sample 7 with an O2Na concentration of 63.0 wt4, the phase separation phenomenon was remarkable, so the first heat storage amount was 63 c.
al/g is large, but after repeating heating and cooling 50 times, it significantly decreases to 49 cal/g.

試料8から試料14は、(H5CO2Ha水溶液の濃T
!ta昭GO−92383(3) 度を58wt%と一定に保って、Na2HPO4の混合
量を0HsQO2Na水溶液100重量部に対して、0
.1重量部から30重量部の範囲で変化させたものであ
る。Na2HPO4の混合量が0.1重量部の試料8で
は、温度測定から加熱、冷却を5回繰返した後、GHs
CO2Na会3H20が結晶化しなくなった。そのため
、第1回目の蓄熱量が68 cal/gと大きいが、加
熱、冷却を60回繰返した後の蓄熱量が13cal/g
と非常に小さくなった。Na 2HPO4の混合量が0
.5重量部の試料9では、50回の加熱と冷却に対して
、スムーズに蓄熱と放熱を繰返しだ。そして、試料1o
から試料14へとNa 2HPO4の混合量が増加する
と−それに従ってGH5CO2Na水溶液の割合が減少
して、蓄熱量も当然のことながら減少した。
Samples 8 to 14 are (concentrated T of H5CO2Ha aqueous solution)
! taSho GO-92383 (3) While keeping the degree constant at 58 wt%, the mixed amount of Na2HPO4 was 0 to 100 parts by weight of 0HsQO2Na aqueous solution.
.. The amount was varied within the range of 1 part by weight to 30 parts by weight. For sample 8 in which the mixed amount of Na2HPO4 was 0.1 parts by weight, after repeating temperature measurement, heating and cooling five times, GHs
CO2Nakai 3H20 no longer crystallizes. Therefore, the amount of heat stored in the first cycle is large at 68 cal/g, but the amount of heat stored after repeating heating and cooling 60 times is 13 cal/g.
It became very small. Mixed amount of Na2HPO4 is 0
.. Sample 9 containing 5 parts by weight was heated and cooled 50 times, and the heat was stored and released smoothly. And sample 1o
When the mixed amount of Na 2 HPO 4 increased from Sample 14 to Sample 14, the proportion of the GH 5 CO 2 Na aqueous solution decreased accordingly, and as a matter of course, the amount of heat storage also decreased.

Na2HPO4の混合量が30重量部の試料14では、
50回の加熱冷却を繰返した後の蓄熱量が48 cal
/gとなった。
In sample 14 where the mixed amount of Na2HPO4 was 30 parts by weight,
The amount of heat stored after repeating heating and cooling 50 times is 48 cal
/g.

以上水したように、CH3CO2Naを50wt%から
60.28 wt %の範囲で含有する水溶液にNa 
2HPO4を混合することによって、蓄熱及び放熱特性
の安9ページ 定した蓄熱材を得ることができる。その望ましいNa2
HPO4の混合量は、(J5CO2Na水溶液100重
量部に対して、0.5重量部から20重量部の範囲内に
ある場合である。
As mentioned above, Na is added to an aqueous solution containing CH3CO2Na in the range of 50 wt% to 60.28 wt%.
By mixing 2HPO4, a heat storage material with stable heat storage and heat radiation characteristics can be obtained. The desired Na2
The amount of HPO4 mixed is within the range of 0.5 parts by weight to 20 parts by weight based on 100 parts by weight of the J5CO2Na aqueous solution.

発明の効果 本発明は、上述のようにCH3CO2Naを50wt%
から80,28wt%の範囲で含有する水溶液に、GH
s002Na・3H20の結晶化を促進するために、N
a2HPO4を混合した蓄熱材であるので、過冷却現象
が起こらず、しかも相分離現象が小さく、安定した蓄熱
及び放熱特性を有する0したがって本発明は、空調用の
蓄熱装置をはじめとして、蓄熱を利用するあらゆる方面
に応用可能なものである。
Effects of the Invention The present invention provides CH3CO2Na at 50 wt% as described above.
In an aqueous solution containing GH in the range of 80.28 wt% from
In order to promote the crystallization of s002Na・3H20, N
Since it is a heat storage material mixed with a2HPO4, supercooling phenomenon does not occur, phase separation phenomenon is small, and it has stable heat storage and heat radiation characteristics. Therefore, the present invention is suitable for use in heat storage devices for air conditioning, etc. It can be applied in all areas.

Claims (2)

【特許請求の範囲】[Claims] (1)酢酸ナトリウム(CHsCO2Na) を50w
t%から60,28 wt %の範囲で含有する水溶液
に、リン酸水素2ナトリウム(Na 2HPO4)を加
え混合した蓄熱材。
(1) 50w of sodium acetate (CHsCO2Na)
A heat storage material made by adding and mixing disodium hydrogen phosphate (Na 2HPO4) to an aqueous solution containing in the range of t % to 60.28 wt %.
(2)酢酸す) IJウム水溶液100重量部に対して
、リン酸水素2ナトリウムが0.5重量部から20重量
部の範囲である特許請求の範囲第1項記載の蓄熱材。
(2) Acetic acid The heat storage material according to claim 1, wherein the amount of disodium hydrogen phosphate is in the range of 0.5 parts by weight to 20 parts by weight based on 100 parts by weight of the IJium aqueous solution.
JP20028183A 1983-10-26 1983-10-26 Thermal energy storage material Pending JPS6092383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20028183A JPS6092383A (en) 1983-10-26 1983-10-26 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20028183A JPS6092383A (en) 1983-10-26 1983-10-26 Thermal energy storage material

Publications (1)

Publication Number Publication Date
JPS6092383A true JPS6092383A (en) 1985-05-23

Family

ID=16421703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20028183A Pending JPS6092383A (en) 1983-10-26 1983-10-26 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS6092383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059013A1 (en) * 1997-06-19 1998-12-30 Unilever N.V. Non-corrosive coolant composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059013A1 (en) * 1997-06-19 1998-12-30 Unilever N.V. Non-corrosive coolant composition

Similar Documents

Publication Publication Date Title
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
JPS63101473A (en) Heat energy storage composition
Sastry et al. studies in lithium oxide systems: I, Li2O B2O3–B2O3
US4272392A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
US4402846A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
JPS6092383A (en) Thermal energy storage material
US4288338A (en) Static solar heat storage composition
JP3442155B2 (en) Heat storage material composition
JPH0215598B2 (en)
JPS617378A (en) Thermal energy storage material
JPS62109885A (en) Fluid heat-accumulation material composition
JPS6151079A (en) Thermal energy storage material
JPS6367837B2 (en)
JPS61197668A (en) Thermal energy storage material
JP2805968B2 (en) Latent heat storage material
JPH01292090A (en) Thermal energy storing material composition
JPS6251311B2 (en)
JPH02132181A (en) Latent thermal energy storing material
JP3440700B2 (en) Latent heat storage material
JPS6153386A (en) Heat-storing material
JPS58225181A (en) Heat storage material
JPS6197380A (en) Thermal energy storage material
SU867918A1 (en) Heat-accumulating material
JPS6121579B2 (en)
JPH0347888A (en) Heat-accumulating material