JPS609236B2 - Sensible heat recovery method for melt water using laminar flow - Google Patents

Sensible heat recovery method for melt water using laminar flow

Info

Publication number
JPS609236B2
JPS609236B2 JP52002767A JP276777A JPS609236B2 JP S609236 B2 JPS609236 B2 JP S609236B2 JP 52002767 A JP52002767 A JP 52002767A JP 276777 A JP276777 A JP 276777A JP S609236 B2 JPS609236 B2 JP S609236B2
Authority
JP
Japan
Prior art keywords
heat
cooling plate
heat recovery
molten slag
sensible heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52002767A
Other languages
Japanese (ja)
Other versions
JPS5387994A (en
Inventor
一宏 西野
昭男 横山
洋光 高橋
友久 陣野
勉 藤田
博行 山本
洋一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP52002767A priority Critical patent/JPS609236B2/en
Publication of JPS5387994A publication Critical patent/JPS5387994A/en
Publication of JPS609236B2 publication Critical patent/JPS609236B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は薄層流による熔達顕熱回収方法に係り、特に溶
淫の薄層流により、その鏡射熱と伝導熱とを同時に有効
に回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of recovering sensible heat of melting using a laminar flow, and more particularly to a method of effectively collecting reflected heat and conductive heat simultaneously using a laminar flow of melting fluid.

一般に高炉樺を中心とする製鉄スラグを処理する方法と
して水窪法とドライビット法とがある。水律法は溶律を
大量の流水中に流して急冷砕化する方法で溶律の有する
頭熱は全く利用されないのみならず、水淫されたスラグ
の用途も極めて狭い範囲に限定される欠点がある。また
ドライビット法においても従来、綾律の有する顕熱は徒
らに大気中に放散されるのみで、これを工業的に回収利
用された例は極めて少し、。しかし、溶律の温度は通常
ドライビットまで輸送された時点で、なお約1200o
0の高温を有するのでその顕熱を回収利用することは熱
経済上極めて重要である。本発明者らは一連のドライビ
ット方式による溶律の顕熱回収方法およびその装置につ
いて研究し、ある程度有効にその顕熱を回収することが
できた。ドライビットに排淫される落盤の熱量は鰭射熱
によって主として大気中に放散される熱量と、伝導によ
って床面を通じて失われる熱量に大別されるが、通常ド
ライビット方式によって回収される熱量は前者の頚射熱
のみであって、床面からの熱回収は通常のドライビット
では9E淫が多層に行われる関係上きわめて困難である
とともに、その熱伝導率も非常に4・こい。本発明の目
的は溶樺の有する熱量を大気中に放散される頚射熱と、
床面に伝導される伝導熱を同時に有効に回収することの
できる溶連の顕熱回収方法を提供することにある。
Generally, there are the Misakubo method and the Dryvit method as methods for treating iron slag made mainly from blast furnace birch. The water method is a method in which molten slag is rapidly cooled and pulverized by pouring it into a large amount of running water, and the disadvantage is that the head heat of molten slag is not utilized at all, and the use of the slag that has been soaked in water is limited to an extremely narrow range. There is. Furthermore, in the Dryvit method, the sensible heat possessed by Ayanori was only wasted and dissipated into the atmosphere, and there are very few examples of this being recovered and used industrially. However, the melting temperature is usually still around 1200o when transported to the dry bit.
Since it has a high temperature of 0, it is extremely important from a thermoeconomic perspective to recover and utilize that sensible heat. The present inventors have researched a series of methods and devices for recovering melt-tempered sensible heat using the Dryvit method, and have been able to recover the sensible heat to some extent effectively. The amount of heat absorbed by Dryvit from a cave-in can be roughly divided into the amount of heat dissipated into the atmosphere through fin radiation, and the amount of heat lost through the floor surface by conduction, but normally the amount of heat recovered by the Dryvit method is The former is only radiated heat from the neck, and it is extremely difficult to recover heat from the floor surface in a normal dry bit because 9E heat is applied in multiple layers, and its thermal conductivity is also extremely high. The purpose of the present invention is to convert the amount of heat possessed by molten birch into radiation heat dissipated into the atmosphere,
It is an object of the present invention to provide a sensible heat recovery method for welding that can effectively recover conductive heat conducted to the floor surface at the same time.

本発明は熱媒体供給管を内蔵した冷却板を熔融連の供給
側から排出側に向って傾斜させて設けると共に、該冷却
板の上方に熱媒体供給管と反射板からなる熱交換器を前
記冷却板と平行に傾斜させて設け、前記傾斜した冷却板
上に溶融淫を流して薄層を形成せしめ、該薄層を冷却凝
固させて塊状で破砕除去したのち、前記冷却坂上に再び
熔融連を流して薄層を形成する工程を繰り返し行って溶
融漣の顕熱を回収することを特徴とする薄層流による熔
律の顕熱回収方法である。
In the present invention, a cooling plate having a built-in heat medium supply pipe is provided so as to be inclined from the supply side to the discharge side of the melting chain, and a heat exchanger consisting of a heat medium supply pipe and a reflection plate is installed above the cooling plate. The molten liquid is poured onto the inclined cooling plate to form a thin layer, and the thin layer is cooled and solidified to be crushed and removed in lumps, and then the molten liquid is poured onto the cooling slope again. This is a method for recovering the sensible heat of a melt using a thin laminar flow, which is characterized by collecting the sensible heat of the molten ripple by repeatedly performing the step of flowing a thin layer to form a thin layer.

本発明者らの実験によると、一旦凝固したスラグの熱伝
導率が小さく、また溶律が凝固によって収縮するので、
冷却板と凝固律との間に空気層が形成され、凝固律の上
に更に溶連を流しても冷却板に伝導される熱量が極めて
少ないことが判明したので、本発明によって港律の顕熱
を上面よりの頚射熱と、床面よりの伝導熱の双方を有効
に回収しようとする場合には、一度溶律を流して熱回収
を終えた凝固連は、その都度破砕除去し、常に新しい溶
樺を単層流として、熱回収を行うことが、伝導熱の回収
を最も効果的にする方法であることが判明した。
According to the experiments conducted by the present inventors, the thermal conductivity of the slag once solidified is low, and the melting temperature shrinks due to solidification.
It was discovered that an air layer is formed between the cooling plate and the solidification law, and that even if welding wire is flowed above the solidification law, the amount of heat conducted to the cooling plate is extremely small. When attempting to effectively recover both the radiation heat from the top surface and the conductive heat from the floor surface, the solidification chain must be crushed and removed each time after the melting process has been applied and heat recovery has been completed. It has been found that performing heat recovery using a single-layer flow of constantly fresh molten birch is the most effective way to recover conductive heat.

従って本発明においては溶律を薄層流として、その上部
に熱交換器を設け、下部には冷却板を設けて、各々内部
に設けられた曲折したパイプに水、空気等の熱媒体を流
してその加熱により溶律の顕熱を回収するようにした。
従って本発明による装置は、鶏射熱回収装置として反射
板を有する複数個の熱交換器と、伝導熱回収装置として
内部に曲折したパイプを有する冷却板と、凝固達破砕装
置とを有して成るものであって、凝固樺破砕装置として
は、例えば熱交換器の下部に高圧水噴射装置もしくは複
数個の冷却板がそれぞれアームによって連動して煩動す
ることにより、各冷却板上の凝固律を破砕できるように
した装置が望ましい。本発明の実施例を添附図面を参照
して説明する。
Therefore, in the present invention, the melt flow is made into a laminar flow, a heat exchanger is provided at the top, a cooling plate is provided at the bottom, and a heat medium such as water or air is passed through bent pipes provided inside each. The sensible heat of the melting principle was recovered by the heating.
Therefore, the apparatus according to the present invention includes a plurality of heat exchangers having reflective plates as a radiation heat recovery device, a cooling plate having an internally bent pipe as a conductive heat recovery device, and a solidification and crushing device. The coagulation birch crushing apparatus is, for example, a high-pressure water injection device at the bottom of a heat exchanger, or a plurality of cooling plates that are moved in conjunction with each other by arms, thereby adjusting the coagulation rate on each cooling plate. It is desirable to have a device that is capable of crushing. Embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には、本発明の適用される溶達顕熱回収装置の模
式断面図が示されている。図において高炉等より溶連鍋
に積載して輸送されてきた溶律1は溶蓬樋2等により傾
斜した樋となる冷却板3上に流される。
FIG. 1 shows a schematic cross-sectional view of a sensible heat recovery device to which the present invention is applied. In the figure, melt 1 loaded in a welding ladle and transported from a blast furnace or the like is flowed by a melting gutter 2 or the like onto a cooling plate 3 which becomes an inclined gutter.

冷却板3の上部には複数個の熱交換器4が設けられてい
る。熱交換器4は第1図に示す如く下部に曲折したパイ
プ5と、その上部にパイプ5に近接して反射板6が設け
られていて、冷却板3上を流れる落盤1の鰭射熱を補捉
してパイプ5を流れる水等の熱媒体を加熱する。一方冷
却板3上を流れる溶律1の伝導熱は冷却板3の内部に設
けられた曲折したパイプ中を流れる水等の熱媒体を加熱
する。冷却板3は第3図に示す如く、内部に曲折したパ
イプ16を有する鋳鉄板が望ましい。又熱交換器4は第
2図に示す如く、その一辺に蝶番を有し、支柱7上のロ
ーラ8を経由するワイヤ9によって巻取機10の作動、
その他適当な方法で額動自在となっている。
A plurality of heat exchangers 4 are provided above the cooling plate 3. As shown in FIG. 1, the heat exchanger 4 includes a bent pipe 5 at the bottom and a reflector plate 6 provided at the top of the pipe 5 in close proximity to the pipe 5 to absorb the fin radiation heat from the rockfall 1 flowing on the cooling plate 3. The heat medium such as water captured and flowing through the pipe 5 is heated. On the other hand, the conductive heat of the melt 1 flowing on the cooling plate 3 heats a heat medium such as water flowing in a bent pipe provided inside the cooling plate 3. As shown in FIG. 3, the cooling plate 3 is preferably a cast iron plate having a bent pipe 16 inside. The heat exchanger 4 has a hinge on one side, as shown in FIG.
The forehead can be moved freely by other suitable methods.

これは、熱交換器4の修理もしくは凝固淫の除去時の便
に備えたものである。熱交換後の凝固律をその都度破砕
除去するため凝固樺破砕装置を備えている。凝固連破砕
装置としては、次の如き装置が望ましい。すなわち、熱
交換器4の下面に、凝固律を塊状で破砕除去し、かつ熱
回収後の低温のスラグの冷却を促進するため高圧水の噴
射ノズル11を設けるか、もしくは第4図および第5図
に示す如く冷却板3が複数個に分割されていて「各冷却
板は段付きスカーフ接合となっていて、その端緑が斜に
重なり合っており、溶律1の流れる方向と直角の両端に
回転軸12を有し、各回転軸12は、それぞれ額動アー
ム13を有し、煩動アーム13は油圧シリンダー14も
し〈はモーターに結合されたロッド15に連結されてお
り、ロッド15が第4図において右から左へ平行移動す
ると、各冷却板3は煩動アーム13に運動して矢印方向
に回転することにより、冷却板3上に凝固したスラグを
破砕するようにした凝固藻の破砕装置を設けてもよい。
次に本発明の適用される溶蓬顕熱回収装置の熱媒体とな
る水等の流体供給経路の一例は第6図に示すとおりであ
る。すなわち、流体は供給源から先づドラム21に一時
貯蔵され、ポンプ22を通じて本発明による熱交換器4
および冷却板3に直列又は並列に供給される。熱回収を
終えた流体は再びドラム21に集合され、必要に応じて
対象設備に蒸気もしくは蒸気と温水との混合した気液混
合体として供給される。従って操業初期には、常温の流
体が本発明による熱回収装置に入るが、継続して運転さ
れる場合、ドラム21には熱回収後の蒸気もしくは温水
が集合されるのでドラム内の流体の温度が常温以上に高
くなる。このドラム内の温水を更に供給水としてポンプ
22を通じて次の熱回収作業に循環するので熱回収後の
流体は、ほとんど蒸気化されて順次ドラム21に入り、
前述の如く必要に応じて蒸気もしくは温水利用先に供給
される。従って常温の供V給水はドラム21の液面を一
定にするための補給水となる。以上は流体による本発明
の適用される溶蓬趣尾熱回収装置の操業の一例であって
温水もしくは蒸気として回収する具体的方法としては第
6図に掲げた方法以外に種々あることは自明のとおりで
ある。
This is for convenience when repairing the heat exchanger 4 or removing coagulated dirt. It is equipped with a coagulation birch crushing device to crush and remove the coagulation law each time after heat exchange. As the continuous solidification and crushing device, the following devices are desirable. That is, a high-pressure water injection nozzle 11 is provided on the lower surface of the heat exchanger 4 in order to crush and remove the coagulation law in the form of lumps and promote cooling of the low-temperature slag after heat recovery, or As shown in the figure, the cooling plate 3 is divided into a plurality of pieces, and each cooling plate has a stepped scarf joint, with the green ends diagonally overlapping each other, and both ends perpendicular to the flow direction of the melt 1. It has a rotating shaft 12, each rotating shaft 12 has a respective moving arm 13, and the moving arm 13 is connected to a rod 15 connected to a hydraulic cylinder 14 or a motor. When moving in parallel from right to left in Figure 4, each cooling plate 3 is moved by the moving arm 13 and rotated in the direction of the arrow, thereby crushing the slag solidified on the cooling plate 3. A device may also be provided.
Next, an example of a fluid supply path for water or the like serving as a heat medium in the melting sensible heat recovery apparatus to which the present invention is applied is as shown in FIG. That is, the fluid is first temporarily stored in the drum 21 from the supply source and then passed through the pump 22 to the heat exchanger 4 according to the present invention.
and is supplied to the cooling plate 3 in series or in parallel. The fluid that has undergone heat recovery is collected again in the drum 21, and is supplied to the target equipment as required as steam or a gas-liquid mixture of steam and hot water. Therefore, at the beginning of operation, fluid at room temperature enters the heat recovery device according to the present invention, but when the operation continues, steam or hot water after heat recovery is collected in the drum 21, so that the temperature of the fluid in the drum increases. becomes higher than normal temperature. Since the hot water in this drum is further circulated as supply water to the next heat recovery operation through the pump 22, most of the fluid after heat recovery is vaporized and enters the drum 21 one after another.
As mentioned above, steam or hot water is supplied to the user as needed. Therefore, the normal temperature V supply water serves as make-up water for keeping the liquid level in the drum 21 constant. The above is an example of the operation of a fluid-based heat recovery device to which the present invention is applied, and it is obvious that there are various methods other than those shown in Figure 6 as specific methods for recovering hot water or steam. That's right.

第7図は給水ドラムよりの約30ooの給水温度の水A
の熱回収後の温度の推移を示すグラフであって、蒸気も
しくは温水Bとして回収される流水の温度は、100o
〜150こ0であって、この気液混合体の温度の山は
、新たな溶達の薄層流によって鍵熱の回収を行った時の
最高温度である。
Figure 7 shows water A at a temperature of approximately 30 oo from the water supply drum.
This is a graph showing the change in temperature after heat recovery, and the temperature of the flowing water recovered as steam or hot water B is 100o
~150°C, and the temperature peak of this gas-liquid mixture is the highest temperature when the key heat is recovered by a laminar flow of new melt.

本発明の適用される溶律顕熱回収装置は、落籍を単層の
薄層流として冷却板上を流し、上部に熱回収装置を設け
て溶蓬の韓射熱を回収し、又溶建を冷却板上に流すこと
によって溶連の伝導熱をも有効に回収することができ、
また凝固樺の破砕装置を設けて冷却板上に凝固したスラ
グを破砕して能率的に除去し、次の熱回収作業の開始を
容易として熱回収作業の作業効率を高くすることができ
る等の副次的効果もある。
The melt-temperature sensible heat recovery device to which the present invention is applied, flows a single-layered thin flow over a cooling plate, and a heat recovery device is installed on the top to recover heat from the melt. By letting the heat flow through the cooling plate, the conductive heat of the weld can be effectively recovered.
In addition, a solidified birch crushing device is installed to crush and efficiently remove the slag solidified on the cooling plate, making it easier to start the next heat recovery operation and increasing the work efficiency of the heat recovery operation. There are also side effects.

かくの如く本発明によれば、従来ほとんど未回収であっ
た高炉蓬等の磯熱を効率的に回収することができるほか
、熱媒体として純水を使用した場合には用途目的に応じ
て温水または蒸気として回収することができる。
As described above, according to the present invention, it is possible to efficiently recover ocean heat from blast furnace mugwort, etc., which was almost unrecovered in the past, and when pure water is used as a heat medium, hot water can be used depending on the purpose of use. Or it can be recovered as vapor.

蒸気として回収する場合は、場内の蒸気系統に統合する
ことにより、ボイラーで使用する燃料を大幅に削減する
ことができ省エネルギーならびに環境対策に著しく寄与
することができる等の効果を有する。
If it is recovered as steam, it can be integrated into the on-site steam system, which has the effect of significantly reducing the amount of fuel used in the boiler and significantly contributing to energy conservation and environmental measures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用される薄層流による港律顕熱回収
装置の一実施例を示す断面図、第2図は本発明に使用す
る熱交換器の懐動機横の実施例を示す正面図、第3図は
第1図に示す実施例に使用する冷却板を示す断面図、第
4図は本発明の他の実施例を示す断面図、第5図は第4
図のA部の拡大図、第6図は本発明における熱媒体の流
体循環経路の一実施例を示す系統図、第7図は本発明実
施時の流体の供給温度および熱回収時の気液混合体温度
の変動経過の一例を示すグラフである。 1・・・・・・溶律、3・・・・・・冷却板、4…・・
・熱交換器、5,16・・・・・・パイプ、6・・…・
反射板、11・・・・・・高圧水ノズル、12・・・・
・・冷却板回転軸、13・・・・・・煩動アーム、14
・・・・・・油圧シリンダー、15・・・・・・ロツド
。 第1図 第2図 第3図 第4図 第5図 第6図 第T図
Fig. 1 is a sectional view showing an embodiment of a port-controlled sensible heat recovery device using laminar flow to which the present invention is applied, and Fig. 2 is a cross-sectional view showing an embodiment of the heat exchanger used in the present invention next to the pocket machine. 3 is a sectional view showing a cooling plate used in the embodiment shown in FIG. 1, FIG. 4 is a sectional view showing another embodiment of the present invention, and FIG.
An enlarged view of part A in the figure, FIG. 6 is a system diagram showing an embodiment of the fluid circulation path of the heat medium in the present invention, and FIG. 7 is a diagram showing the fluid supply temperature and gas-liquid during heat recovery when the present invention is implemented. It is a graph which shows an example of the fluctuation course of mixture temperature. 1... Melting principle, 3... Cooling plate, 4...
・Heat exchanger, 5, 16...Pipe, 6...
Reflector, 11... High pressure water nozzle, 12...
・・Cooling plate rotation axis, 13 ・・・・・・Frustration arm, 14
...Hydraulic cylinder, 15... Rod. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure T

Claims (1)

【特許請求の範囲】[Claims] 1 熱媒体供給管を内蔵した冷却板を、溶融滓の供給側
から排出側に向って傾斜させて設けると共に、該冷却板
の上方に熱媒体供給管と反射板からなる熱交換器を前記
冷却板と平行に傾斜させて設け、前記傾斜した冷却板上
に溶融滓を流して薄層を形成せしめ、該薄層を冷却凝固
させて塊状で破砕除去したのち、前記冷却板上に再び溶
融滓を流して薄層を形成する工程を繰り返し行って溶融
滓の顕熱を回収することを特徴とする薄層流による溶滓
の顕熱回収方法。
1. A cooling plate with a built-in heat medium supply pipe is provided to be inclined from the supply side of the molten slag to the discharge side, and a heat exchanger consisting of a heat medium supply pipe and a reflection plate is installed above the cooling plate for cooling the molten slag. The molten slag is poured onto the inclined cooling plate to form a thin layer, and the thin layer is cooled and solidified to be crushed and removed in lumps, and then the molten slag is poured onto the cooling plate again. A method for recovering sensible heat from molten slag using a thin laminar flow, characterized in that the process of forming a thin layer by repeatedly performing the process of flowing molten slag to collect sensible heat from the molten slag.
JP52002767A 1977-01-13 1977-01-13 Sensible heat recovery method for melt water using laminar flow Expired JPS609236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52002767A JPS609236B2 (en) 1977-01-13 1977-01-13 Sensible heat recovery method for melt water using laminar flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52002767A JPS609236B2 (en) 1977-01-13 1977-01-13 Sensible heat recovery method for melt water using laminar flow

Publications (2)

Publication Number Publication Date
JPS5387994A JPS5387994A (en) 1978-08-02
JPS609236B2 true JPS609236B2 (en) 1985-03-08

Family

ID=11538479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52002767A Expired JPS609236B2 (en) 1977-01-13 1977-01-13 Sensible heat recovery method for melt water using laminar flow

Country Status (1)

Country Link
JP (1) JPS609236B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155475A (en) * 1988-12-07 1990-06-14 Hitachi Ltd Power converter
JPH0448704U (en) * 1990-08-31 1992-04-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155475A (en) * 1988-12-07 1990-06-14 Hitachi Ltd Power converter
JPH0448704U (en) * 1990-08-31 1992-04-24

Also Published As

Publication number Publication date
JPS5387994A (en) 1978-08-02

Similar Documents

Publication Publication Date Title
CN104482790A (en) Phase change heat storage device and method utilizing engine waste gas waste heat
JPS609236B2 (en) Sensible heat recovery method for melt water using laminar flow
CN2650052Y (en) Apparatus for recovering high temperature radiation waste heat with intermittent discharge
CN207521576U (en) A kind of thin wall type metal tube thermalization pipe-expanding device
CN110184400A (en) The board-like plug high-temperature slag dry granulation of one kind and residual neat recovering system
CN104911296A (en) Converter coal gas treatment method and system
CN206347910U (en) A kind of waste heat recovery device of encapsulating material production line
CN203866339U (en) High temperature slag heat recovering device
CN207615382U (en) A kind of metal wire fast cooling painting tin device
CN110440232A (en) A kind of carbon steel process waste recovery method
CN113280638A (en) Combined cooling, heating and power system for recycling waste heat of molten magnesium lead
CN110353601A (en) Dish-washing machine
CN218954874U (en) Heating furnace for copper plate welding
JPS6126334Y2 (en)
JP3052609U (en) Ground-mounted sprinkling snow melting equipment
JPS6025382B2 (en) Slag solidification mold
JPS5594405A (en) Waste heat recovery apparatus of slag
CN206875396U (en) A kind of waste heat boiler
JPH0525705Y2 (en)
JPS58677Y2 (en) Preheating device for hot blast furnace combustion air using blast furnace slag
JPS59204684A (en) Drying process for coal
JPS5934418B2 (en) Granulation and heat recovery equipment for metallurgical slag
JPH0210358B2 (en)
JPS57102600A (en) Method for reducing energy of blowing and heat recovery in low temperature range
JPH0854111A (en) Method and apparatus for recovering heat from fluidized bed furnace