JPS6091826A - Industrial high frequency power source with automatic resetting circuit - Google Patents

Industrial high frequency power source with automatic resetting circuit

Info

Publication number
JPS6091826A
JPS6091826A JP58199709A JP19970983A JPS6091826A JP S6091826 A JPS6091826 A JP S6091826A JP 58199709 A JP58199709 A JP 58199709A JP 19970983 A JP19970983 A JP 19970983A JP S6091826 A JPS6091826 A JP S6091826A
Authority
JP
Japan
Prior art keywords
frequency power
high frequency
power source
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58199709A
Other languages
Japanese (ja)
Other versions
JPH0261220B2 (en
Inventor
己抜 篠原
清水 美章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP58199709A priority Critical patent/JPS6091826A/en
Publication of JPS6091826A publication Critical patent/JPS6091826A/en
Publication of JPH0261220B2 publication Critical patent/JPH0261220B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は工業用、特に高周波スパッタリングやドライ・
エツチング等の低圧ガス放電作業に適する高周波電力源
を得ることを目的としている。
[Detailed Description of the Invention] The present invention is applicable to industrial applications, particularly high frequency sputtering and dry sputtering.
The purpose is to obtain a high-frequency power source suitable for low-pressure gas discharge work such as etching.

上記低圧ガス中で高周波放電を行うときにはターゲツト
面の異常により、突発的に加工器内にアーク放電などが
起ることがある。このとき、高周波電力を停Wせしめな
いと、電力源や試料を破損させるために、通常は負荷か
らの反射電力が過大となったことを何らかの方法で検出
しこれによって高周波電源を停止させている。
When high-frequency discharge is performed in the above-mentioned low-pressure gas, arc discharge or the like may suddenly occur within the processing tool due to an abnormality on the target surface. At this time, if the high-frequency power is not stopped, the power source and the sample will be damaged, so usually some method is used to detect that the reflected power from the load has become excessive, and then the high-frequency power supply is stopped. .

然し、多くの場合に、このような現象は高周波電力の印
加の初期に起るが、短時間に加1器内の真空度が回復し
、最悪でも数回の放電で、以後は異常なく作業できるこ
とが多い。
However, in many cases, such a phenomenon occurs at the beginning of the application of high-frequency power, but the degree of vacuum inside the heater is restored in a short time, and at worst, after a few discharges, the work can be continued without abnormalities. There are many things you can do.

このために−回めアーク放電などで、高周波電力源を停
止させ、短時間後に再起動させるようなことでは、作業
能率が低下し、また作業員も常に緊張していなければな
らず、自動化装置では運転ができない。
For this reason, if a high-frequency power source is stopped due to circular arc discharge or the like and then restarted after a short period of time, work efficiency decreases, workers must be constantly nervous, and automated equipment I can't drive.

然し、このような場合も異常現象は短時間に回復するこ
とから、本発明では高周波電力源を完全に停止せしめる
のでなく、一時高周波出力電力を低下させ、一定時間経
過後に自動的に高周波電力レベルをもとに戻すようにし
た。また、もしも数回同様の現象を起しても回復するこ
とが多いが、負荷の種類によって程度が異なるので、本
発明では設定時間内に設定回数以上の異常現象を起すと
きに始めて高周波電力源を完全に停止せしめることとし
、自動化運転を可能とした。
However, since the abnormal phenomenon recovers in a short time even in such cases, the present invention does not completely stop the high-frequency power source, but temporarily lowers the high-frequency output power and automatically adjusts the high-frequency power level after a certain period of time. I set it back to its original state. Furthermore, even if the same phenomenon occurs several times, it often recovers, but the degree differs depending on the type of load. The decision was made to completely stop the system, making automated operation possible.

第1図は本発明実施例の系統図を示している。FIG. 1 shows a system diagram of an embodiment of the present invention.

lは高周波電力源、2はその電源部、3は負荷、4は反
射波検出部で、非整合に基づく負荷からの反射波成分を
検出している。この検出部は通常の方向性結合器などを
使えばよい。この検出部の検波出力電圧は比較器6に入
るが、設定電圧発生器5の電圧と比較され、この設定電
圧よりも検波出力電圧が高くなったときのみ、比較器6
に出力電圧が現われる。この出力電圧は電源部2、ゲー
ト電圧発生回路7.ゲート回路8に入る。電源部2は比
較器6の出力電圧#lが入力されると、高周波出力を低
減させるように働く、即ち負荷の異常によって高周波出
力を低減させるレベルの設定は設定電圧発生器5の出力
電圧で任意に設定できる。
1 is a high-frequency power source, 2 is a power supply section thereof, 3 is a load, and 4 is a reflected wave detection section, which detects reflected wave components from the load based on mismatching. A normal directional coupler or the like may be used as this detection section. The detected output voltage of this detection section enters the comparator 6, but it is compared with the voltage of the set voltage generator 5, and only when the detected output voltage becomes higher than this set voltage, the comparator 6
The output voltage appears at . This output voltage is applied to the power supply section 2, gate voltage generation circuit 7. Enter gate circuit 8. When the output voltage #l of the comparator 6 is input, the power supply section 2 works to reduce the high frequency output. In other words, the level at which the high frequency output is reduced due to load abnormality is set by the output voltage of the set voltage generator 5. Can be set arbitrarily.

電源部2の出力低減回路は後述のような方法で、復帰時
間に時定数を持たせであるので、一定時間の経過によっ
て、正規の動作状態に戻り正規の高周波電力が負荷に加
えられることになる。ここでまた異常放電が起れば、再
び、高周波出力が低減され、また一定時間経過後に正常
状態に戻る。
The output reduction circuit of the power supply unit 2 has a time constant for the recovery time using the method described below, so that after a certain period of time it returns to the normal operating state and normal high-frequency power is applied to the load. Become. If abnormal discharge occurs again, the high frequency output is reduced again, and the normal state is restored after a certain period of time has elapsed.

このとき比較器6の出力電圧がゲート電圧発生回路7に
入ると、ゲート電圧を発生し、このゲート電圧でゲート
回路8のゲートを開く。そこで、このゲートの開かれて
いる時間内の比較器6の動作回数は計数回路9で数えら
れ、設定回数を超過すれば電源2を完全に停止させるよ
うにしておく。
At this time, when the output voltage of the comparator 6 enters the gate voltage generation circuit 7, a gate voltage is generated, and the gate of the gate circuit 8 is opened with this gate voltage. Therefore, the number of times the comparator 6 operates while the gate is open is counted by a counting circuit 9, and if the number of times the comparator 6 operates exceeds a set number of times, the power supply 2 is completely stopped.

出力電子管の高周波出力を低減させるためには種々の方
法があるが、このうち、陽極電圧を低下させては制御電
力が大きくなるので、第2格子電圧を一時低下させる例
を第2図に揚げた。第2図で、10は出力電子管、11
は陽極電源で、寒流線輪12を通して陽極電圧が出力電
子管lOの陽極に加えられている。高周波出力はコンデ
ンサ13を通して、整合回路(不図示)から負荷に加え
られる。前段からの励振信号は結合コンデンサ20を経
て、出力電子管lOの第1格子に加えられる。このとき
、第2格子電源14の出力電圧は抵抗器15とコンデン
サ16の回路を経て、出力電子管lOの第2格子に加え
られる。このコンデンサ16の両端にはスイッチ17が
取付けであるが、これは通常のリレーでもまたSORな
どの電子管リレーでもよい、このスイッチが比較器6の
出力電圧#lで閉じられると、出力電子管lOの第2格
子電圧が低下するので、高周波出力レベルは低減される
There are various methods to reduce the high frequency output of the output electron tube, but among these, reducing the anode voltage increases the control power, so an example of temporarily reducing the second grid voltage is shown in Figure 2. Ta. In Figure 2, 10 is the output electron tube, 11
is an anode power source, and an anode voltage is applied to the anode of the output electron tube 10 through the cold flow coil 12. The high frequency output is applied to the load from a matching circuit (not shown) through a capacitor 13. The excitation signal from the previous stage is applied to the first grid of the output electron tube IO via the coupling capacitor 20. At this time, the output voltage of the second grid power supply 14 is applied to the second grid of the output electron tube IO via a circuit including a resistor 15 and a capacitor 16. A switch 17 is attached to both ends of this capacitor 16, but this may be a normal relay or an electron tube relay such as SOR. When this switch is closed by the output voltage #l of the comparator 6, the output electron tube lO As the second grid voltage is reduced, the high frequency output level is reduced.

高周波出力電力が低下すると、これにつれて、反射波レ
ベルも低下するので、反射波検出回路の出力電圧が低下
し、比較器6の出力電圧は消えてしまう。
When the high frequency output power decreases, the reflected wave level also decreases, so the output voltage of the reflected wave detection circuit decreases and the output voltage of the comparator 6 disappears.

そこで、スイッチ17が開かれ、コンデンサ16は第2
格子電源14によって充電されるが、この場合は抵抗1
5の抵抗値とコンデンサ16の静電容量値の積に基づく
時定数によって上昇速度が決定される。従って、この時
定数が適当になるように選定しておけば、希望の上昇速
度で正常状態に戻ることになる。
The switch 17 is then opened and the capacitor 16 is connected to the second
charged by the grid power supply 14, in this case resistor 1
The rate of rise is determined by a time constant based on the product of the resistance value of 5 and the capacitance value of capacitor 16. Therefore, if this time constant is selected appropriately, the normal state will be returned at the desired rate of rise.

第2図の回路で、出力電子管lOの第1格子には、塞流
線輪18を通してバイアス電圧−Ec。
In the circuit of FIG. 2, a bias voltage -Ec is applied to the first grid of the output electron tube lO through the blocking coil 18.

が加えられているが、第2格子電圧を変化させる代りに
、このバイアス電圧を深くすることで高周波出力を低下
させることもできる。第3図はこの状態を示しており、
バイアス電源19は、比較器6の出力電圧#1によって
バイアス電圧を深くする。これは通常の電子管回路で容
易に実現できる。またこの場合も第2図と同様な回路で
復帰に適当な時定数を持たすことができる。
However, instead of changing the second grid voltage, the high frequency output can be lowered by deepening this bias voltage. Figure 3 shows this state,
The bias power supply 19 deepens the bias voltage based on the output voltage #1 of the comparator 6. This can be easily realized using a normal electron tube circuit. Also in this case, a circuit similar to that shown in FIG. 2 can provide an appropriate time constant for recovery.

なおこの回帰時定数としては0.1乃至1秒程度が適当
であった。
Note that approximately 0.1 to 1 second was appropriate as this regression time constant.

またこれらの高周波出力低減は前段などの励振回路に同
様回路で応用しても、同様の効果を得ることができる。
Furthermore, similar effects can be obtained by applying these high frequency output reductions to the excitation circuit in the previous stage using a similar circuit.

以上詳述したように、本発明によれば、異状現象が発生
したときは先ず高周波電力の供給を低下させ、この異状
現象が設定時間内に設定回数以上発生したときに高周波
電力を完全に停止させるようにしたから、作業能率の低
ドをきたすことなく電力源や試ネlの破損を確実に防止
することができる。また、作業員に緊張感を与えること
なく自動化運転できる等の効果が得られる。
As detailed above, according to the present invention, when an abnormal phenomenon occurs, the supply of high frequency power is first reduced, and when this abnormal phenomenon occurs more than a set number of times within a set time, the high frequency power is completely stopped. This makes it possible to reliably prevent damage to the power source and the test tube without reducing work efficiency. Furthermore, effects such as automated operation can be obtained without causing tension to the workers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図、第2図は第2格
子電圧による高周波出力低減回路図、第3図は第1格子
電圧による同様の高周波出力低減回路図である。 ■は高周波電力源、2は電源部、3は負荷、4は反射波
検出器、5は設定電圧発生器、6は比較器、7はゲート
電圧発生器、8はゲート回路、9は計数回路、ioは出
力電子管、11は陽極電源、12.18は塞流線輪、1
3.16.20はコンデンサ、14は第2格子電源、1
5は時定数用抵抗器、17はスイッチ、19は第1格子
電源。 第2図 第3図 第1図
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a high frequency output reduction circuit diagram using a second grid voltage, and FIG. 3 is a similar high frequency output reduction circuit diagram using a first grid voltage. ■ is a high frequency power source, 2 is a power supply section, 3 is a load, 4 is a reflected wave detector, 5 is a set voltage generator, 6 is a comparator, 7 is a gate voltage generator, 8 is a gate circuit, 9 is a counting circuit , io is the output electron tube, 11 is the anode power supply, 12.18 is the blocking wire, 1
3.16.20 is a capacitor, 14 is a second grid power supply, 1
5 is a time constant resistor, 17 is a switch, and 19 is a first grid power source. Figure 2 Figure 3 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)工業用に高周波電力を供給する電力源において、
電源と負荷回路の間に反射波電力検出器を設け、かつ電
源部もしくは励振段に適当な時定数を持つ出力低減回路
を置き、負荷からの反射電力か設定値以上に増大した場
合に高周波電力の供給を低下させる如くし、瞬間的な異
常に際しては一定時間経過後に再び正常な高周波電力を
供給し、設定時間内に設定回数以上の同一現象を発生す
ることによって、始めて高周波電力の完全な供給停止を
行う自動復帰回路を有する工業用高周波電力源。
(1) In a power source that supplies high frequency power for industrial use,
A reflected wave power detector is installed between the power supply and the load circuit, and an output reduction circuit with an appropriate time constant is placed in the power supply section or excitation stage, and high frequency power is detected when the reflected power from the load increases beyond a set value. In the event of a momentary abnormality, normal high-frequency power is supplied again after a certain period of time has elapsed, and the complete supply of high-frequency power is achieved only when the same phenomenon occurs a set number of times or more within a set time. An industrial high frequency power source with an automatic return circuit that performs a stop.
JP58199709A 1983-10-25 1983-10-25 Industrial high frequency power source with automatic resetting circuit Granted JPS6091826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199709A JPS6091826A (en) 1983-10-25 1983-10-25 Industrial high frequency power source with automatic resetting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199709A JPS6091826A (en) 1983-10-25 1983-10-25 Industrial high frequency power source with automatic resetting circuit

Publications (2)

Publication Number Publication Date
JPS6091826A true JPS6091826A (en) 1985-05-23
JPH0261220B2 JPH0261220B2 (en) 1990-12-19

Family

ID=16412301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199709A Granted JPS6091826A (en) 1983-10-25 1983-10-25 Industrial high frequency power source with automatic resetting circuit

Country Status (1)

Country Link
JP (1) JPS6091826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541931A (en) * 2010-10-05 2013-11-14 アドバンスト フュージョン システムズ エルエルシー High voltage and large current adjustment circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049154A1 (en) * 2019-09-11 2021-03-18 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541931A (en) * 2010-10-05 2013-11-14 アドバンスト フュージョン システムズ エルエルシー High voltage and large current adjustment circuit

Also Published As

Publication number Publication date
JPH0261220B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US4422049A (en) Gain control circuit
EP1003357A1 (en) Discharge lamp igniting apparatus
US4323853A (en) Circuit for protecting traveling-wave tubes against faults of a power supply
US20100141149A1 (en) Fault protection methods and apparatus for cold cathode fluorescent lamps
JPS6091826A (en) Industrial high frequency power source with automatic resetting circuit
EP0552941A1 (en) Signal line pulse enhancing circuit for integrated circuits
JP3660012B2 (en) DC power supply for vacuum equipment
CN114646873A (en) GaN switch stress test system and electronic equipment
US6590446B2 (en) Amplifier circuit and electronic apparatus using the same
EP0161403A1 (en) Protective relay for a power system
JP2004194420A (en) Power supply, power supply system, power supply for sputtering, and sputtering apparatus
JPS61116934A (en) Instantaneous voltage drop compensator
JPH05258837A (en) Life recognizing method for triggered spark gap
JPH0755060B2 (en) Inverter retry controller
US2851598A (en) Circuit for gating in response to time duration
US6097583A (en) Rapid short circuit protection for a multiple output power supply
JPH0258418A (en) Latch up detecting circuit for cmos lsi
JPS5947929A (en) Automatic power factor controller
JPH09130963A (en) Power factor improving unit
JPH0746749A (en) Line-to-ground fault detector
JPH02136024A (en) Service interruption detection circuit
JPS59119423A (en) Gate controlling system of thyristor switch for opening and closing capacitor
JP2629413B2 (en) Electromagnetic coil abnormality detector for switchgear
KR950001176B1 (en) Power transistor detect circuit and method with direct peak current
JPH03284888A (en) Excimer laser