JPS6091214A - Method for measuring flow rate of solid in descending stream by gravity - Google Patents

Method for measuring flow rate of solid in descending stream by gravity

Info

Publication number
JPS6091214A
JPS6091214A JP58199190A JP19919083A JPS6091214A JP S6091214 A JPS6091214 A JP S6091214A JP 58199190 A JP58199190 A JP 58199190A JP 19919083 A JP19919083 A JP 19919083A JP S6091214 A JPS6091214 A JP S6091214A
Authority
JP
Japan
Prior art keywords
solid
flow
pipe
flow rate
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58199190A
Other languages
Japanese (ja)
Inventor
Takashi Moriyama
森山 峻
Tadashi Matsuyama
正 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP58199190A priority Critical patent/JPS6091214A/en
Publication of JPS6091214A publication Critical patent/JPS6091214A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7082Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To compute the flow rate of solid, by providing two acoustic detectors in the direction of the axis of a vertical pipe at a specified interval, and obtaining the flow speed of the solid from the mutual correlation of the signal outputs of both detectors. CONSTITUTION:A solid flow-rate measuring apparatus is composed of a pressurizing tank 1 having a fluid bed, a pressurizing gas source 3, a distribution discharge pipe 4, a transport valve 5, a vertical descending pipe 6, a horizontal pipe 8, a nozzle 9, a carrier-gas blowing device 11, and the like. Then, two acoustic detectors 13a and 13b are provided on the vertical descending pipe 6 with a specified interval L being provided. Sampling devices 15, an operating circuit 14 having a correlator 16, and a solid flow-speed regulator 17 are provided. The detected signals from both detectors 13a and 13b are processed in the sampling devices and the operating circuit, and an average moving speed Vs is computed. the flow rate of the solid is computed by the solid flow-speed regulator 17, and the amount of discharge can be controlled.

Description

【発明の詳細な説明】 この発明は、管内における粉粒体の重力下降流の質世流
量全計測する方法に関するものであって。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the total flow rate of a gravitational downward flow of powder or granular material in a pipe.

垂直配管の管軸方向に2個以上の振動又は音響検出器を
固設し、雨検出器の信号出力の相互相関関数をめること
により外部からの暗騒音の影響を除去し更に移動粒子の
周期的変動分全除去して二点間平均移動速度をめて流量
を知るようにしたことを特徴とするものである。
By installing two or more vibration or acoustic detectors in the axial direction of the vertical pipe and calculating the cross-correlation function of the signal output of the rain detectors, the influence of background noise from the outside can be removed and the influence of moving particles can be further reduced. This system is characterized in that the flow rate can be determined by removing all periodic fluctuations and calculating the average moving speed between two points.

重力下降流の質量流量を音響的に検出した信号からめう
ろことは公知である。
Meuro is known from the acoustically detected signal of the mass flow rate of the downward gravity flow.

即ち、固体粒子(粉粒体)が輸送管中を流れるとき衝突
音と摩擦音が発生する(粒子前)こと及びこれらの発生
音(雑音)は粒子の衝突回数(流速と濃度に比例)に基
くものであり従ってこれの統計的平均?求めて流速及び
流量をることか知られている。しかしながらこの発生雑
音は種々の波数例えば1.KHz −8KHzの特定周
波数全観測対象とすることによっても集用上充分な程度
に除去することが可能である。
In other words, when solid particles (powder) flow through a transport pipe, collision and friction sounds are generated (before the particles), and these generated sounds (noise) are based on the number of particle collisions (proportional to flow velocity and concentration). What is the statistical average of this? It is known to determine the flow rate and flow rate. However, this generated noise has various wave numbers, for example 1. It is also possible to remove the noise to a sufficient extent by making all the specific frequencies of kHz to 8 kHz to be observed.

この方法は当然のことながらオクターブフィル置しその
検出信号の相互相関関数金求めるものである。
This method naturally places an octave fill and determines the cross-correlation function of the detected signal.

本発明を第1図について説明する。粉粒体が移動層と同
程度の濃度で垂直下降管(6)中音流れているものとす
る。
The invention will be described with reference to FIG. It is assumed that the granular material is flowing through the vertical downcomer pipe (6) at a concentration similar to that of the moving layer.

検出器(13a−)(13b)は同一特性のものであっ
て距離しくτに相当する距離)全おいて一方が可変的に
設けられている。これらの検出器は配管内でも管外壁で
も工い。
The detectors (13a-) and (13b) have the same characteristics, and one of them is variably provided at a distance corresponding to τ. These detectors can be installed both inside the pipe and on the outside wall of the pipe.

各検出器からの検出信号は時間関数として演算回路αa
に入力され図の如き演算処理が悔されて最終的に統計的
平均移動速度τSが得られる。
The detection signal from each detector is processed as a time function by the arithmetic circuit αa.
The statistical average moving speed τS is finally obtained after the arithmetic processing shown in the figure is input.

即ち検出器(13a)(13b)からの検出信号はサン
プリング装置Q鵠にエヵ所定時間内の瞬時値全時系列(
t =0+L2 ・= n秒)として読みとりU+(’
)+U2(t)全得、これを相関器θ0の入力信号とす
る。
That is, the detection signals from the detectors (13a) and (13b) are sent to the sampling device Q to extract the entire time series of instantaneous values within a predetermined time (
Read as U+('
)+U2(t) total gain, which is taken as the input signal of the correlator θ0.

時間差τについての相互相関関数φ12(τ)は盈φ1
2=OのときUl(t)とU、(t+r)Q)ピーク力
dτ 一致することが知られているからその時のτからυ5−
7としてυがめられる。
The cross-correlation function φ12(τ) for the time difference τ is
When 2=O, Ul(t) and U, (t+r)Q) Peak force dτ It is known that they match, so from τ at that time, υ5−
υ is considered as 7.

流量は流速の関数であり従ってこの流速から管内の固体
流量が知られるのである。
The flow rate is a function of the flow rate and from this flow rate the solids flow rate in the pipe is known.

第2図は本発明の実施例装置の概略構成図であって演算
器からの出力τによって固体流速調節計(lηの測定値
全変更することによってノズル(9)から(4)は分配
切出管、(5)は輸送弁、(7)は屈曲部、(8)は水
平管路、αQは高温高圧の供給端、αυは輸送気体吹込
装置である。
FIG. 2 is a schematic diagram of the apparatus according to the embodiment of the present invention, in which the nozzles (9) to (4) can be cut out by changing the measured value of the solid flow rate controller (lη) according to the output τ from the computing unit. The pipe, (5) is a transport valve, (7) is a bent part, (8) is a horizontal pipe, αQ is a high temperature and high pressure supply end, and αυ is a transport gas blowing device.

彦お検出器(13aH13b)は管軸に対称の一対の検
出器であってもよい。
The Hiko detectors (13aH13b) may be a pair of detectors symmetrical about the tube axis.

本発明に計測時の雑音となる暗騒音全相殺しうることか
ら検出器の遮へいは理論的には不要であるが相関の軸度
を向上させるためと信号周波数が低い場合にも適用でき
るように音響的に遮へいして取付るのが工い。
Since the present invention can completely cancel out the background noise that becomes noise during measurement, it is theoretically unnecessary to shield the detector, but in order to improve the axis of correlation, it can be applied even when the signal frequency is low. The trick is to install it with acoustic shielding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の要部構成図、第2図は適用装置の実施
例概略構成図である。 (13a)(13b)は検出器、(F51はサンプリン
グ装置(161は相関器 特許出願人 fケコ衾qリング・株式会社才 1!!! 才 2 図
FIG. 1 is a block diagram of a main part of the present invention, and FIG. 2 is a schematic block diagram of an embodiment of an applied device. (13a) (13b) are the detectors, (F51 is the sampling device (161 is the correlator patent applicant) fkeko 衾qRING・SAI Co., Ltd. 1!!! Sai 2

Claims (1)

【特許請求の範囲】[Claims] 粉粒体固体が移動層と同程度の質量流量比で下降する管
路の管軸方向に所定距離をおいて固設された複数の振動
又は音響検出器の相互相関関数からめられる固体流速に
基いて固体流f’に算出すること全特徴とする重力下降
流の固体流量計測法。
Based on the solid flow velocity determined from the cross-correlation function of multiple vibration or acoustic detectors fixed at a predetermined distance in the pipe axis direction of the pipe in which the granular solid descends at a mass flow rate similar to that of the moving bed. A solid flow measurement method for gravity downward flow, which is characterized by calculating the solid flow f'.
JP58199190A 1983-10-26 1983-10-26 Method for measuring flow rate of solid in descending stream by gravity Pending JPS6091214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199190A JPS6091214A (en) 1983-10-26 1983-10-26 Method for measuring flow rate of solid in descending stream by gravity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199190A JPS6091214A (en) 1983-10-26 1983-10-26 Method for measuring flow rate of solid in descending stream by gravity

Publications (1)

Publication Number Publication Date
JPS6091214A true JPS6091214A (en) 1985-05-22

Family

ID=16403635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199190A Pending JPS6091214A (en) 1983-10-26 1983-10-26 Method for measuring flow rate of solid in descending stream by gravity

Country Status (1)

Country Link
JP (1) JPS6091214A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075070A (en) * 1973-11-02 1975-06-20
JPS57125319A (en) * 1981-01-27 1982-08-04 Fuji Electric Co Ltd Device for measuring flow rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075070A (en) * 1973-11-02 1975-06-20
JPS57125319A (en) * 1981-01-27 1982-08-04 Fuji Electric Co Ltd Device for measuring flow rate

Similar Documents

Publication Publication Date Title
Huber et al. Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems
KR100808729B1 (en) Simultaneous determination of multiphase flowrates and concentrations
EP0122704B1 (en) Pipeline pig tracking
JPH0760160B2 (en) Fluid velocity measuring device
KR100863109B1 (en) Method and device for monitoring a mass flow in a pneumatic pipeline
CA2209789A1 (en) Process and apparatus for ultrasound flow rate measurement
US4114557A (en) Particle monitoring system
Anderson et al. Particle motion in the stagnation zone of an impinging air jet
GB1372724A (en) Detection of velocities of fluids in conduits
JPH06507724A (en) Methods and apparatus for measuring gas flow velocities and/or quantities derived from these velocities
US4212190A (en) Acoustical particle detector and method
EP2391873B1 (en) Applications for real-time mass ratio, mass flow and particle size measurement of particle laden flows
JPS6091214A (en) Method for measuring flow rate of solid in descending stream by gravity
JP3268699B2 (en) Method and apparatus for measuring the flow of particles flowing in a pipe
AU639054B2 (en) Ultrasonic mass flow meter
EP0254882B1 (en) Particle detector
WO1994009342A1 (en) Acoustic flowmeter
Zhu et al. Measurement of velocity of particles in a dense suspension by cross correlation of dual laser beams
JPH0527054B2 (en)
JP2627943B2 (en) Method and apparatus for measuring flow rate of granular material
JPS5760215A (en) Method and device for measuring flow rate of solid particle
JPH04505965A (en) buffer volume
JPH0376690B2 (en)
WO2000046575A1 (en) Ultrasonic flow metering system
JPH0527053B2 (en)