JPS6091196A - Air preheater - Google Patents

Air preheater

Info

Publication number
JPS6091196A
JPS6091196A JP19834783A JP19834783A JPS6091196A JP S6091196 A JPS6091196 A JP S6091196A JP 19834783 A JP19834783 A JP 19834783A JP 19834783 A JP19834783 A JP 19834783A JP S6091196 A JPS6091196 A JP S6091196A
Authority
JP
Japan
Prior art keywords
tube
flat
air preheater
heat transfer
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19834783A
Other languages
Japanese (ja)
Inventor
Ko Yonehara
米原 洸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YONAGO SEIKOSHO KK
Original Assignee
YONAGO SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YONAGO SEIKOSHO KK filed Critical YONAGO SEIKOSHO KK
Priority to JP19834783A priority Critical patent/JPS6091196A/en
Publication of JPS6091196A publication Critical patent/JPS6091196A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To remarkably reduce the size of an air preheater by forming the sectional shape of a heat transfer tube in a flat state, bringing the long diameter direction of the flat section in coincidence with the passing direction of the outer fluid of the tube, thereby mounting many tubes in the same area without decreasing the capacity. CONSTITUTION:The long diameter of a flat heat transfer tube 7 coincides with the direction of an arrow C passing the outer fluid of the tube. The shape of the tube 7 is, for example, in a flat shape by pressing the circular steel pipe having 45mm. of diameter so that the short diameter (g) is 14mm., the long diameter (f) is 62.65mm., and the peripheral length is 141.3mm.. The number of the tubes is 14 rows per one tube group and 28 rows of two groups, 38 rows of the direction perpendicular to the 28 rows, totally to 1,064. The size of the gap between the tubes 7 is 20mm. in the long diameter direction, and 15mm. in the short diameter direction (n). The total value of the size (n) is 15mm.X39=585mm., thereby maintaining the exhaust gas side pressure loss to the prescribed value or lower.

Description

【発明の詳細な説明】 本発明は、工業用燃焼設備の排熱回収用対流型多管式空
気予熱器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a convection type multitubular air preheater for exhaust heat recovery of industrial combustion equipment.

ここに言う空気予熱器は、日本工業規格JISB841
1r空気予熱器性能試験方法」の適用範囲に属する空気
予熱器を意味するが、この装置によって加熱される気体
は、通7irは燃焼用空気であるが、気体燃料を使用す
る工業用燃焼設備にあっては、この装置によって、燃料
ガスを加熱することもある。
The air preheater mentioned here complies with Japanese Industrial Standard JISB841.
This refers to an air preheater that falls within the scope of the ``1r Air Preheater Performance Test Method.'' The gas heated by this device is combustion air, but it is not suitable for industrial combustion equipment that uses gaseous fuel. This device may also heat the fuel gas.

空気予熱器には、対流型と輻射型と対流11j¥i射複
合型の二型があり、対流型には多管式とフィンチューブ
式の二式がある。フィンチューブ式は管外流体の流れに
直交して多数の鋳造フィンチューブを並べたものである
。フィンチューブは、例えば特公昭40〜24424号
、特公昭43−5349号公報等に見られるごとく、長
円形の断面を有し、さらに管の内外に多数のフィンを形
成した鋳造管である。フィンチューブ式はこのように特
殊な鋳造管を使用するため生産効率が悪く、また鋳造管
は断面寸法をある程度大きくしなけれはならないから伝
熱効率にも限界があった。多管式はフィンチューブ式の
こ九ら問題点を解決するために作られたもので、第1図
に示すごとく管外流体の流れに直交して多数の円形鋼製
パイプを並べたものが一般的である。
There are two types of air preheaters: a convection type, a radiation type, and a combined convection type, and two types of convection types: a multi-tube type and a fin-tube type. The fin tube type has a large number of cast fin tubes arranged perpendicular to the flow of extratubular fluid. A finned tube is a cast tube having an oval cross section and a large number of fins formed inside and outside the tube, as seen in, for example, Japanese Patent Publication No. 40-24424 and Japanese Patent Publication No. 43-5349. The fin-tube type has low production efficiency because it uses a special cast tube, and because the cross-sectional size of the cast tube must be increased to a certain extent, there is a limit to its heat transfer efficiency. The multi-tube type was created to solve the problems of the fin-tube type, and as shown in Figure 1, a large number of circular steel pipes are arranged perpendicular to the flow of extra-tubular fluid. Common.

しかし近年さらに11G性能でコンパクトな空気予熱2
gの要望が高まっている。本発明はこの要望にこたえ、
対流型多管式空気予熱器において、従来の円形鋼製バイ
ブを使用するものと比較し、同一能力においてより少な
い答情しか占有しない空気予熱器をiSることを目的と
している。
However, in recent years, compact air preheating 2 with 11G performance has been added.
Demand for g is increasing. The present invention meets this need,
In a convection type multi-tube air preheater, the purpose is to create an air preheater that occupies less space at the same capacity compared to that using a conventional circular steel vibrator.

本発明においては、この目的を達成するために、従来使
用していた円形鋼製パイプの代りに、伝熱管の横断面形
状を扁平状としたものを使用し、該扁平状11’jr面
の長径方向と・1a外流体の通過方向とを一致せしめ、
空気予熱器の使用条件に対応する適切な伝熱管配置を行
って、空気予熱器を構成するものである。
In order to achieve this object, in the present invention, a heat exchanger tube with a flat cross-sectional shape is used instead of the conventionally used circular steel pipe, and the flat 11'jr surface is The major axis direction and the passage direction of the fluid outside 1a are made to match,
The air preheater is configured by appropriately arranging heat transfer tubes corresponding to the usage conditions of the air preheater.

フィンチューブ式においては壱の横断面形状を扁平状と
すること、および該扁平状断面の長径方向と管外流体の
通過方向を一致せしめる構成はすでに行なわれているが
、これは大きな径を余儀なくする鋳造管の伝熱効率を向
」ニさせるためで、後述する本発明の技術思想とは全く
族なるのであり、多管式における本発明の構成および効
果は未だかつて全く認識されていなかったのである。
In the fin-tube type, the cross-sectional shape of the first tube is made flat, and the long axis direction of the flat cross section is made to coincide with the passage direction of the extratubular fluid. However, this requires a large diameter. The purpose of this invention is to improve the heat transfer efficiency of cast tubes, which are completely different from the technical idea of the present invention described later, and the structure and effects of the present invention in multi-tube systems have not been recognized at all. .

以下、本発明の構成等を図面を参照しながら詳細に説明
する。
Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings.

第1〜3図は比較例たる従来の対流型多情式空気予熱器
2を、第・1〜0図は木兄1!I」の第1実施例たる空
気予熱2:ζGを示す。第1図において、煙道1を流」
する排ガスは矢印Aの方向に移動する。煙道1内に設置
された空気予熱器2の伝熱面を形成する円形鋼製パイプ
3は、4組の管群をなし、排ガスと直交して設置されて
いる。その中を、空気は、矢印Bの方向に移動してゆく
Figures 1 to 3 show a conventional convection type air preheater 2, which is a comparative example, and Figures 1 to 0 show a conventional convection type air preheater 2. Air preheating 2: ζG, which is the first embodiment of "I", is shown. In Figure 1, flow through flue 1.
The exhaust gas moves in the direction of arrow A. The circular steel pipes 3 forming the heat transfer surface of the air preheater 2 installed in the flue 1 form four groups of pipes and are installed perpendicular to the exhaust gas. Air moves through it in the direction of arrow B.

第3図は、第1図におけるX−X切断面の一部を拡大し
て示す略断面図で円形鋼製パイプ3の配置状況を示す。
FIG. 3 is a schematic cross-sectional view showing an enlarged part of the section taken along the line XX in FIG. 1, and shows how the circular steel pipe 3 is arranged.

スリットプレート4は、小形平鋼よりなる断面十字形の
部材で、伝熱効率を増大する目的で、円形鋼製パイプ3
のほぼ全長にわたって挿入されている。伝熱管である円
形鋼製パイプ3の外径aは451Xm、周囲長は141
.3顧である。伝熱管の本数は、排ガス通過方向(矢印
入方向)に−1管群当り14列、4管群にて56列、こ
れと直角の方向には19列、従って総本数はI、(J6
4本である。円形鋼製パイプ3の相互のすきま寸法(並
び(−1周縁部とのすきま寸法)bは20Mである。こ
の寸法は、排ガスの通路固結を確保することにより一部
ガス側圧力損失の値が一定値以下になるように、定めら
れたものである。管群の平面寸法は、排ガス通過方向の
1管群当り長さC’= (45iz X 14本) +
 (2C1#X]−5個所〕=930続、金管群の長さ
4 X C=3,720M、これと1直角方向の長さd
 −(4,57g1X 19本)十(20MX20個所
) =]、255mである。伝熱管の長さeは、2,7
00wtrである。伝熱管3の外面表面枯の合計値は、
0.1413 m X 2.7 m X 1,064X
””405.927’であり、着・群の容積合計は、3
.72 mX 1.255 mX 2.7 In、 =
 12ら05m3である。
The slit plate 4 is a member made of small flat steel and has a cross-shaped cross section.
It is inserted over almost the entire length of the The outer diameter a of the circular steel pipe 3, which is a heat transfer tube, is 451Xm, and the peripheral length is 141Xm.
.. This is my third opinion. The number of heat transfer tubes is 14 rows per -1 tube group in the exhaust gas passing direction (direction of arrow entry), 56 rows in 4 tube groups, and 19 rows in the direction perpendicular to this, so the total number is I, (J6
There are 4 pieces. The mutual gap dimension (gap dimension with the alignment (-1 peripheral edge) b) of the circular steel pipes 3 is 20M.This dimension is determined in part by the value of the gas side pressure loss by ensuring the passage solidification of the exhaust gas. is determined so that it is below a certain value.The planar dimensions of the tube group are the length per tube group in the exhaust gas passage direction C' = (45iz x 14 tubes) +
(2C1#X] - 5 points) = 930 continuations, length of brass group 4
- (4,57g1X 19 pieces) 10 (20MX20 places) =], 255m. The length e of the heat exchanger tube is 2,7
00wtr. The total value of the outer surface dryness of the heat exchanger tube 3 is:
0.1413 m x 2.7 m x 1,064 x
""405.927', and the total volume of the arrival and group is 3
.. 72 mX 1.255 mX 2.7 In, =
It is 1205m3.

第4図において、煙道5を流れる排ガスは、矢印Cの方
「h]に移動する。煙道5内に設置さ」tた空気予熱器
6の伝熱面を形成する扁平状伝熱管7は、2組の管群を
なし、排ガスと直交して設置さ」tている。その中を、
空気は、矢印りの方向に移動してゆく。
In FIG. 4, the exhaust gas flowing through the flue 5 moves in the direction of arrow C. Flat heat exchanger tubes 7 form the heat transfer surface of the air preheater 6 installed in the flue 5. The pipes form two sets of pipes and are installed perpendicular to the exhaust gas. Inside it,
Air moves in the direction of the arrow.

第6図は、第4図におけるY −Y切断面の一部を拡大
して示す略11Ji而図で、扁平状伝熱管7の形状並び
に配列を示すものである。扁平状伝熱管7の長径方向は
管外流体の通過方向すなわち矢印C方向と一致している
。扁平状伝熱管7の形状は、比較例における直径45納
の円形鋼製パイプを押圧して扁平状となし、短径gの寸
法を14Mにした11.lIに現わり、る形状と同一で
あり、長径「の寸法は62.65納周囲長は、比較例の
周囲長と同じ< 、 1413ytmである。
FIG. 6 is an enlarged view of a portion of the Y-Y cross section in FIG. 4, and shows the shape and arrangement of the flat heat exchanger tubes 7. The long diameter direction of the flat heat exchanger tube 7 coincides with the passage direction of the extratubular fluid, that is, the direction of arrow C. 11. The shape of the flat heat exchanger tube 7 was made by pressing the circular steel pipe with a diameter of 45 mm in the comparative example to make it flat, and the short axis g was 14M. The shape is the same as that shown in II, and the major axis is 62.65 ytm, and the circumference is 1413 ytm, which is the same as the circumference of the comparative example.

伝熱管の本数は、排ガス通過方向(矢印C方向)に、1
管群当り14列、2慎群にて28列、これと直角の方向
には38列、総本数は1,064本である。扁平状伝熱
管7の相互のすきま寸法(並O・に、周縁部とのすきま
寸法)は、長径方向すきま寸法mが20H)1.短径方
向づ−きま寸法nが15′Mである。この短径方向すき
ま寸法1]の合計値、15MX39個所=585mは、
排ガスが空気予熱器6を通過する時に、排ガス側圧力損
失を一定値以下にするために必要な寸法である。比較例
におけるすきま寸法すは20刷で、あるが、その合計値
は2o ytm X 20個所=、100層であり、第
1実施例の585朝の方が広くなっている。管群の平面
寸法は、排ガス通過方向(矢印C方向〕の1管群当り長
さp二(6265黙X14本) + (20ygzX1
5個所) = 1,177.1 ytm、金管群の長さ
2 X I) = 2,354..2藺、これと直角方
向の長さq= (liX38本) +(15#X39個
所) = 1.117#Iである。伝熱管7の長さCは
、2.700Mであり、比較例における円形俸]製バイ
ブ3の長さと同一である。伝熱管7の外面表面積の合i
t−値は、0.1413 m X 2.7m X L0
64本= 405.92−W、管群の容積合計は、2.
3542 m Xl、117 m×2.7m =7.’
JOOm3である。
The number of heat transfer tubes is 1 in the exhaust gas passage direction (arrow C direction).
There are 14 rows per tube group, 28 rows in two tube groups, and 38 rows in the direction perpendicular to this, for a total number of 1,064 tubes. The mutual clearance between the flat heat exchanger tubes 7 (the clearance between the flat heat exchanger tubes 7 and the peripheral edge) is such that the long diameter direction clearance m is 20H)1. The width n in the minor axis direction is 15'M. The total value of this minor diameter direction clearance dimension 1], 15MX 39 locations = 585 m, is:
This dimension is necessary to keep the pressure loss on the exhaust gas side below a certain value when the exhaust gas passes through the air preheater 6. The gap size in the comparative example is 20 prints, but the total value is 2 o ytm x 20 places = 100 layers, which is wider in the 585th layer of the first example. The planar dimensions of the tube group are: length p2 (6265 mm x 14 pieces) + (20ygz x 1) per tube group in the exhaust gas passage direction (arrow C direction)
5 locations) = 1,177.1 ytm, length of brass group 2 x I) = 2,354. .. 2, the length q in the direction perpendicular to this is = (liX38 lines) + (15#X39 locations) = 1.117#I. The length C of the heat exchanger tube 7 is 2.700M, which is the same as the length of the vibrator 3 made by Circular Shape in the comparative example. Total i of the outer surface area of the heat exchanger tube 7
The t-value is 0.1413 m x 2.7 m x L0
64 pipes = 405.92-W, the total volume of the tube group is 2.
3542 m Xl, 117 m x 2.7 m = 7. '
This is JOOm3.

比較例と本発明第1実施例を比較対照するためそれぞれ
の使用条件を第1表に、仕様を第2表にまとめて以下に
示す。
In order to compare and contrast the comparative example and the first embodiment of the present invention, the usage conditions and specifications are summarized in Table 1 and Table 2, respectively, and are shown below.

第1表 空気予熱器の使月]条件として与えられる数値のうち基
本的なものは第1表に示すとこ−ろの、(イ)排ガスの
入口温度、(ロ)排ガスの流量、(ハ)排ガス側圧力4
ハ失(」二限値9、(ニ)空気の入口温度、(ホ)空気
の出IZJ ’lrA度、(へ)空気の流量、(ト)空
気側圧力損失(上限値)の7種である。
Table 1 Months of use of air preheater] The basic values given as conditions are shown in Table 1: (a) exhaust gas inlet temperature, (b) exhaust gas flow rate, and (c) Exhaust gas side pressure 4
(d) Air inlet temperature, (e) Air outlet IZJ 'lrA degree, (f) Air flow rate, (g) Air side pressure loss (upper limit). be.

2つの構成の異った空気予熱器においてこの7種の数値
がそれぞれで、5しけれは、この2つの空気予熱器は基
本的に同一の能力を有するものということができる。第
1表において比較例と第1実施例の使用条件を比較ずれ
ば、(ハ)排ガス側圧力損失、(ホ)空気の出口温度、
(ト)空気側圧力損失において、やや第1実施例が勝さ
っているものの、両名はほとんど同じ能力を有するとい
うことができる。次に第2表において両者の仕様を比較
する。伝熱管の総本数、長さおよび外向表面積はすべて
等しいにもかかわらず、佑群の平面寸法および容積はi
f実施例の方が占−シ<小さな値となっており、容積比
をとれは比較例を100 %とすると第]実施例は56
3係にすぎない。すなわち第1実施例の空気予熱器は比
恢例に比べて能力をいささかも低下させることなく約4
0%の小型化を実現している。これは伝熱包・の横断面
形状を扁平状となし、該扁平状断面の長径方向と管外流
体の通過方向を一致せしめたため、同じ周囲長を有する
円形バイブに比べ、同一長さの区間に多数の伝熱管を配
置でき、その上管イ目互のすきまの数も増加するため、
排ガス側圧力jtj失を増加させることなく、短径方向
のすきま寸法をも小さくすることができることによる。
If these seven types of numerical values are different for the two air preheaters with different configurations, it can be said that the two air preheaters have basically the same ability. If we compare the usage conditions of the comparative example and the first example in Table 1, we can see that (c) exhaust gas side pressure loss, (e) air outlet temperature,
(g) Although the first embodiment is slightly superior in terms of pressure loss on the air side, it can be said that both have almost the same ability. Next, Table 2 compares the specifications of both. Although the total number, length, and outward surface area of the heat exchanger tubes are all equal, the planar dimensions and volume of the group are i
Example f has a smaller value, and if the volume ratio is taken as 100% for the comparative example, Example 56.
It's just the third section. In other words, the air preheater of the first embodiment has a capacity of approximately
Achieved 0% miniaturization. This is because the cross-sectional shape of the heat transfer envelope is flat, and the long axis direction of the flat cross section matches the passage direction of the extratubular fluid. A large number of heat transfer tubes can be placed in the tube, and the number of gaps between the tubes also increases.
This is because the gap size in the short diameter direction can also be reduced without increasing the exhaust gas side pressure loss.

さらに扁平状伝熱管は管外流体の速度、管内流体の速度
等の条件が同一の場合、円形パイプより高い伝熱係数を
而するので一層有利となる。
Furthermore, when conditions such as the velocity of the fluid outside the tube and the velocity of the fluid inside the tube are the same, a flat heat transfer tube has a higher heat transfer coefficient than a circular pipe, so it is more advantageous.

本分1シ」における伝熱j′Hの扁平状断面形状の例と
して第6図に示すものの他に、第7図の如く内面に対向
J−る伝熱フィン8を有するもの、第8図の如く内面に
交互に伝熱フィン9を有J−るもの、第9図の如く内外
面が波状を呈するもの■が含まhる。第7〜9図の形状
のものは第6図のものに比較し、同一長径、短径の場合
、伝熱面積が増加すると同局に伝熱係数も増加するので
、本発明の目的を一層谷易に達成し得る。
In addition to the flat cross-sectional shape of the heat transfer j'H shown in FIG. 6, there are also examples of the flat cross-sectional shape of the heat transfer j'H in "Main 1"; These include those with alternating heat transfer fins 9 on the inner surface, as shown in FIG. 9, and those with wavy inner and outer surfaces as shown in FIG. The shapes shown in Figures 7 to 9 are compared with those shown in Figure 6, and when the major axis and minor axis are the same, as the heat transfer area increases, the heat transfer coefficient also increases at the same point, so the object of the present invention is further reduced. easily achieved.

扁平状伝熱管の製造は、鋼製の場合、従来の熱間押出製
賃設備によってすべて可能である。更に第6図および第
9図に示すものは従来の電縫管設備Jを利用し、成形工
程において図の如く成形することによって製造ijJ能
である。冷間加工の可能な材負のものは円形管より冷間
加工によっても製造し得る。セラミック製の場合は、自
由に成形できる。
In the case of steel, flat heat exchanger tubes can be manufactured using conventional hot extrusion manufacturing equipment. Further, the products shown in FIGS. 6 and 9 can be manufactured by using conventional electric resistance welding pipe equipment J and forming the pipes as shown in the figures in the forming process. Materials that can be cold worked can also be produced from circular tubes by cold working. If it is made of ceramic, it can be molded freely.

第10図および第11図は本発明の第2実施例たる対流
型多管式空気予熱器11を示す。伝熱管12の横断面形
状を扁平状とし、扁平状断面の長径方向と管外流体(排
ガス〕の通過方向(煙道10において矢印]うで示され
る)とを一致せしめである。伝熱9312は、第10図
の如く、側面図においてU字形の形状をなし、空気は矢
印Fの方向に移動してゆく。第2実施例は第1実施例に
比ベイh1造が簡単で、かつ、伝熱管の熱膨張による影
響が少ない。
10 and 11 show a convection type multi-tube air preheater 11 according to a second embodiment of the present invention. The cross-sectional shape of the heat transfer tube 12 is flat, and the long axis direction of the flat cross section is made to coincide with the passage direction of the extra-tube fluid (exhaust gas) (indicated by an arrow in the flue 10).Heat Transfer 9312 As shown in FIG. 10, it has a U-shape in a side view, and the air moves in the direction of arrow F.The second embodiment has a simpler bay h1 construction than the first embodiment, and Less affected by thermal expansion of heat exchanger tubes.

第12図および第13図は、本発明の第3実施例たる対
流型多管式空気予熱器14を示す。伝熱管15の横断面
形状を扁平状とし、扁平状W11fuの長径方向と管外
流体(排ガス)の通過方向(煙道13において矢印Gで
示される)とを一致せしめである。伝熱管15は、第1
3図の如く、正面図においてU字形の形状をなし、空気
は矢印ト■の方向に移動してゆく。第3実施例は、第1
実施例に比べ構造がP31単で、かつ。
12 and 13 show a convection type multi-tube air preheater 14 according to a third embodiment of the present invention. The cross-sectional shape of the heat exchanger tube 15 is flat, and the longer diameter direction of the flat shape W11fu is made to coincide with the passage direction of extratubular fluid (exhaust gas) (indicated by arrow G in the flue 13). The heat exchanger tube 15 is the first
As shown in Fig. 3, it has a U-shape in front view, and air moves in the direction of arrow ①. The third embodiment is based on the first
Compared to the example, the structure is only P31, and.

伝熱管の熱膨張による影響が少なく、また、9↓2実施
例に比べ餉製伝熱管ノシ形曲げ加工が容易である。
The effect of thermal expansion of the heat exchanger tube is small, and it is easier to bend the porcelain heat exchanger tube into a slotted shape compared to the 9↓2 embodiment.

第14図および第15図は、本発明の第4実施例たる対
流型多管式空気予熱器17を示す。伝熱管18の横断面
形状を扁平状とし、扁平状断面の長径方向と管外流体(
空気)の通過方向(矢印Jで示される)とを一致せしめ
て刈1第4実施例においては、煙道16を流れる排ガス
は矢印■の方向に動き、伝熱管8の内部を流れる。管外
流体である空気は、矢印Jの方向に移動し、バッフルボ
ードJ9により誘導されながら、扁平状伝熱1’−’;
’ 18に直角に、かつ扁平状断面の長径方向に動いて
ゆく。第4実施例は排ガス中のダストが多い場合にも使
用し得る。
14 and 15 show a convection multi-tube air preheater 17 according to a fourth embodiment of the present invention. The cross-sectional shape of the heat exchanger tube 18 is flat, and the longitudinal direction of the flat cross section and the extra-tubular fluid (
In the fourth embodiment, the exhaust gas flowing through the flue 16 moves in the direction of the arrow (■) and flows inside the heat exchanger tube 8. Air, which is an extratubular fluid, moves in the direction of arrow J and is guided by baffle board J9, causing flat heat transfer 1'-';
' It moves at right angles to 18 and in the major axis direction of the flat cross section. The fourth embodiment can also be used when there is a lot of dust in the exhaust gas.

なお、各実施例とも、空気の流動方向を反対にして使用
することもできる。
In addition, each embodiment can also be used with the air flow direction reversed.

本発明は伝熱管の横断1fii形状を扁平状となし、該
扁平状断面の長径方向と管外流体の通過方向とを一致せ
しめることにより、ilf来品に比べ、能力をいささか
も低下させることなく、同−面積中に同−外面周囲長を
持つ伝熱管をより多数配置し、としい小型化を実現する
ものであり、本発明品を煙道に設置することにより煙道
空間を著しく省略し、設備費用およびスペースの低減が
i■能となる。このような本発明の産業上貢献1−ると
ころは太きい。
In the present invention, the transverse 1fii shape of the heat transfer tube is made into a flat shape, and by making the long axis direction of the flat cross section coincide with the passage direction of the fluid outside the tube, there is no reduction in performance compared to ILF products. By arranging a larger number of heat exchanger tubes with the same outer circumference in the same area, a significant reduction in size can be realized, and by installing the product of the present invention in the flue, the flue space can be significantly omitted. , equipment costs and space can be reduced. The industrial contribution of the present invention is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較例たる従来の多管式空気予熱器の使用状態
を示す略側面図、第2図は同じく略正面図、第3図は第
1図におけるX 7 X切断面の一部を拡大して示す略
断面図、第4図は第1実施例たる空気予熱器の使用状態
を示す略側面図、第5図は同じく略止面図、第6図は第
4図におけるY−Y切断面の−g1≦を拡大して示す略
断面図、第7〜9図は伝熱管の横断面形状を示す断面図
、第10図は第2実施例たる空気予熱器の使用状態を示
す略側面図、第11図は同じく略止面図、第12図は第
3実施例たる空気予熱器の使用状態を示す略側面図、第
13図は同じく略正面図、第14図は第4実施例たる空
気予熱器の使用状態を示A−路側面図、第15図は同じ
く略平面図である。 ■、5、l0113.16・・・煙道、2.6−11.
14.17・・・空気予熱器、3.7= 12.15.
18・・・伝熱管特許出願人 株式会社米子裳鋼所 代理人弁理士 神 戸 真 第5図 旦 第9図 手続補正書 昭和59年3月23日 特許庁長官 若 杉 和 夫殿 1、事件の表示 昭和58年特 許 願第198347号2・発明の名称
 空気予熱器 3、 補正をする者 事件との関係 特許出願人 4、代理人 6 補正により増加する発明の数 0 7、補正の対象 明細化の発明の詳細な説明の41&・Iおよび図面8、
補正の内容 (1)明細書9′う3貞第17 fj 11「および」
を「および」に補正する。 (2)明細書第6頁第9#″JIkl 「62.65關
周囲長」を1−62.65ya、周囲長」に補正する。 (3) 明細書第8頁第5行1−1「排ガス側圧力損失
(paHg)コをF排ガス側片力損失(献1−j2o)
J(二打n圧する。 (4)明細州第8負−第91」” 11F空気側圧力損
失(uni Hg )Jを「空気側圧力損失(/MRH
,、o) Jに物補正する。 (5)明細書第8頁第5熱管11「伝熱管8」を「伝熱
管18」に補正する。 (6) 第1図を別紙のごとく補正する。 (7) 第4図を別紙のごとく補正する。 (8)第14図を別紙のごとく袖jJEする。 (9)第15図を別紙のととく補正する。 蘇 寸 座 1 μ】 悴
Fig. 1 is a schematic side view showing how a conventional multi-tubular air preheater is used as a comparative example, Fig. 2 is a schematic front view of the same, and Fig. 3 shows a part of the X 7 FIG. 4 is a schematic side view showing how the air preheater of the first embodiment is used, FIG. 5 is a schematic top view, and FIG. A schematic cross-sectional view showing an enlarged view of −g1≦ of the cut plane, FIGS. 7 to 9 are cross-sectional views showing the cross-sectional shape of the heat exchanger tube, and FIG. 10 is a schematic view showing how the air preheater of the second embodiment is used. 11 is a schematic top view, FIG. 12 is a schematic side view showing how the air preheater of the third embodiment is used, FIG. 13 is a schematic front view, and FIG. 14 is a schematic diagram of the fourth embodiment. FIG. 15 is a side view of A-road showing the usage state of an example air preheater, and FIG. 15 is a schematic plan view. ■, 5, l0113.16...flue, 2.6-11.
14.17...Air preheater, 3.7= 12.15.
18... Heat exchanger tube patent applicant Makoto Kobe, patent attorney representing Yonago Shoko Co., Ltd. Figure 5 Dan Figure 9 Procedural amendment document March 23, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, case Display of 1983 Patent Application No. 198347 2 Title of the invention Air preheater 3 Relationship with the case of the person making the amendment Patent applicant 4, agent 6 Number of inventions increased by the amendment 0 7, Subject of the amendment 41&.I of the detailed description of the invention in the specification and drawing 8,
Contents of amendment (1) Specification 9' U3 Tei No. 17 fj 11 "and"
is corrected to "and". (2) Specification, page 6, #9 #"JIkl "62.65 ya, circumference" is corrected to 1-62.65 ya, periphery". (3) Specification page 8, line 5 1-1 “Exhaust gas side pressure loss (paHg)
J (2 strokes n pressure. (4) Specification 8th negative - 91st) 11F air side pressure loss (uni Hg) J is ``air side pressure loss (/MRH
,,o) Correct the object to J. (5) On page 8 of the specification, 5th heat tube 11 "heat exchanger tube 8" is corrected to "heat exchanger tube 18". (6) Revise Figure 1 as shown in the attached sheet. (7) Revise Figure 4 as shown in the attached sheet. (8) Extract Figure 14 as shown in the attached sheet. (9) Correct the information in Figure 15 on a separate sheet. Susunza 1 μ] Tsune

Claims (1)

【特許請求の範囲】[Claims] 工業用燃焼設備の排熱回収用対流型多管式空気予熱器に
おいて、伝熱管の横断面形状を扁平状となし、該扁平状
断面の長径方向と管外流体の通過方向とを一致せしめて
なる空気予熱器
In a convection multitubular air preheater for exhaust heat recovery of industrial combustion equipment, the cross-sectional shape of the heat transfer tube is flat, and the major axis direction of the flat cross section is made to coincide with the passage direction of the fluid outside the tube. air preheater
JP19834783A 1983-10-25 1983-10-25 Air preheater Pending JPS6091196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19834783A JPS6091196A (en) 1983-10-25 1983-10-25 Air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19834783A JPS6091196A (en) 1983-10-25 1983-10-25 Air preheater

Publications (1)

Publication Number Publication Date
JPS6091196A true JPS6091196A (en) 1985-05-22

Family

ID=16389605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19834783A Pending JPS6091196A (en) 1983-10-25 1983-10-25 Air preheater

Country Status (1)

Country Link
JP (1) JPS6091196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4425115Y1 (en) * 1966-12-26 1969-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4425115Y1 (en) * 1966-12-26 1969-10-22

Similar Documents

Publication Publication Date Title
US7011150B2 (en) Tube structure of multitubular heat exchanger
JPH06300473A (en) Flat refrigerant pipe
US6155338A (en) Heat exchanger
CN104896977A (en) Integrated primary surface micro-channel compact heat exchanger
US5706885A (en) Heat exchanger
WO2018141245A1 (en) Plate-type gas-to-gas heat exchanger
CN110822942B (en) Three-dimensional cobweb laminated tube type heat exchanger based on bionics
US3403727A (en) Crossflow countercurrent heat exchanger with inner and outer-tube sections made up of closely packed coaxially nested layers of helicoidally wound tubes
US10094626B2 (en) Alternating notch configuration for spacing heat transfer sheets
US3166122A (en) Plate type heat exchangers with pairs of spaced plates and corrugated inserts
CA1069883A (en) Compact primary surface heat exchanger
US2532288A (en) Heat exchange unit
JPS6091196A (en) Air preheater
US20200149824A1 (en) Heat transfer sheet assembly with an intermediate spacing feature
JPH11183062A (en) Double piped heat exchanger
US3814171A (en) Stationary heat exchanger
JP3939090B2 (en) Multi-tube heat exchanger
ATA911198A (en) TURBULENCE GENERATOR FOR A HEAT EXCHANGER
JPS62112997A (en) Heat exchanger
JPS59195096A (en) Multilayer annular type heat exchanger
JPS616590A (en) Finned heat exchanger
JPH02166394A (en) Heat exchanger with fin
JPS63267889A (en) Heat transfer element block for crossflow type heat exchanger
US2780446A (en) Heat exchangers
US6209630B1 (en) Heat exchanger