JPS6091008A - Transmission shaft made of fiber reinforced plastics - Google Patents

Transmission shaft made of fiber reinforced plastics

Info

Publication number
JPS6091008A
JPS6091008A JP58198271A JP19827183A JPS6091008A JP S6091008 A JPS6091008 A JP S6091008A JP 58198271 A JP58198271 A JP 58198271A JP 19827183 A JP19827183 A JP 19827183A JP S6091008 A JPS6091008 A JP S6091008A
Authority
JP
Japan
Prior art keywords
frp
sleeve
cylindrical pipe
fiber
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58198271A
Other languages
Japanese (ja)
Other versions
JPH0742974B2 (en
Inventor
Masataka Kumada
熊田 正隆
Kazuo Emori
江森 和男
Masahito Mimori
三森 正仁
Ichiro Kobayashi
一朗 小林
Tadashi Hayashida
林田 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yokohama Rubber Co Ltd
Original Assignee
Honda Motor Co Ltd
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yokohama Rubber Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58198271A priority Critical patent/JPH0742974B2/en
Publication of JPS6091008A publication Critical patent/JPS6091008A/en
Publication of JPH0742974B2 publication Critical patent/JPH0742974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To enhance torsional fatigue strength of a fiber reinforced plastic (FRP) cylindrical pipe, by forming the FRP cylindrical pipe, having metallic sleeves, to be laminated so that the fiber material in its plastic may be wound at an angle of + or -25 deg.-+ or -35 deg. with respect to an axial direction of the pipe. CONSTITUTION:A fiber reinforced plastic (FRP) cylindrical pipe 1 is laminated on the periphery of a paper sleeve 2 and its both end metallic sleeves 3, 3. The metallic sleeve 3, providing on its internal surface a spline groove 3a, couples by a spline to a yoke 4 or the like. The sleeve 3, using an adhesive agent 5 to be applied onto its external surface, is adhesively mounted to the FRP cylindrical pipe 1. The cylindrical pipe 1 is formed by a fiber material so that it may be wound at an angle theta of + or -25 deg.-+ or -35 deg. with respect to an axial direction of the pipe. In this way, residual stress inside an FRP is reduced by equalizing a coefficient of thermal expansion of the FRP almost to that of metal so as to decrease tensile stress between the sleeve 3 and the cylindrical pipe 1 when they are molded to be cooled.

Description

【発明の詳細な説明】 本発明は、例えば前置エンジン前輪駆動車のような小型
軽量車両のドライブシャフトに適する繊維強化プラスチ
ック(以下、FRPと略称する)製伝動軸に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission shaft made of fiber-reinforced plastic (hereinafter abbreviated as FRP), which is suitable for a drive shaft of a small, lightweight vehicle such as a front-engine front-wheel drive vehicle.

従来、車両用伝動軸としては鋼製のもめが一般的に用い
られてきたが、近年、振動や騒音をより少なくするとと
もに、軽量化して燃料消費量の低減を図るために、軽量
で振動減衰特性に優れたFRP製伝動軸の採用が検討さ
れるようになってきている。そして、FRP製の円筒管
の捩り強度は、その繊維体の巻き角度を円筒管の軸方向
に対して±45度としたときが最も大きくなるというこ
とが知られている。そこで、FRP製伝動軸としては、
通常、捩り強度の最も大きい±45度の巻き角度で繊維
体を巻いたものが最も良いとされている。
Traditionally, steel shafts have been commonly used as transmission shafts for vehicles, but in recent years, lightweight, vibration-damping materials have been developed to reduce vibration and noise, as well as reduce weight and fuel consumption. The use of FRP transmission shafts with excellent characteristics is being considered. It is known that the torsional strength of a cylindrical tube made of FRP is greatest when the winding angle of the fiber body is ±45 degrees with respect to the axial direction of the cylindrical tube. Therefore, as an FRP transmission shaft,
Generally, it is considered best to wind the fibrous body at a winding angle of ±45 degrees, which has the highest torsional strength.

ところで、伝動軸は一端側から他端側へ回転力を伝達す
るものであるから、その両端には他の伝動部品が接続さ
れ、一体回転されるようにする必要がある。そのために
は、FRP製伝動軸においてもその両端部に金属部を設
け、他の伝動部品と溶接結合、ボルト結合、あるいはス
プライン結合等ができるようにすることが必要となって
いる。そのような金属部は、FRP製円製管筒管着剤に
より接着することによって取り付けられる。
By the way, since the transmission shaft transmits rotational force from one end side to the other end side, it is necessary to connect other transmission parts to both ends thereof so that they can rotate together. To this end, it is necessary to provide metal parts at both ends of the FRP transmission shaft so that it can be joined by welding, bolting, or spline to other transmission parts. Such a metal part is attached by adhering to the FRP circular tube with a tube adhesive.

このようにFRP製円製管筒管属部を接着する場合、そ
の金属部をスリーブとし、その外面に熱硬化型の接着剤
を塗布してマンドレルに嵌め込み、その上に熱硬化性樹
脂を含浸させた繊維体を巻き付けて加熱することにより
、熱硬化性樹脂を硬化させてFRP製円製管筒管形する
と同時に、その円筒管と金属製スリーブとを加熱接着さ
せるようにすれば、その接着が強固となるとともに、そ
の作業性も極めて良くなる。
When bonding a circular FRP pipe tube fitting part in this way, the metal part is used as a sleeve, a thermosetting adhesive is applied to the outer surface of the sleeve, the sleeve is fitted onto a mandrel, and a thermosetting resin is impregnated on top of the sleeve. By wrapping the fibrous body and heating it, the thermosetting resin is cured to form a circular FRP tube-tube tube, and at the same time, the cylindrical tube and the metal sleeve are bonded by heating. becomes stronger and its workability is also extremely improved.

そこで、本発明者等は、このようにして製造したFRP
製伝動軸について捩り試験を行った。その結果、FRP
製伝動軸は、その円筒管の中央部が破壊する前に、両端
部の金属製スリーブに隣接するFRP部分が破壊されて
しまうことが判明した。特に、捩り疲労試験のデータに
よると、繊維体の巻き角度が145度のFRP製伝動軸
では、第4図に示すように疲労性の点で実用上問題があ
るという結論が得られた。
Therefore, the present inventors developed the FRP manufactured in this way.
A torsion test was conducted on the manufactured power transmission shaft. As a result, FRP
It has been found that the FRP parts adjacent to the metal sleeves at both ends of the manufactured power transmission shaft are destroyed before the central part of the cylindrical tube is destroyed. In particular, according to the data of the torsional fatigue test, it was concluded that an FRP power transmission shaft with a fibrous body wrapped at an angle of 145 degrees has a practical problem in terms of fatigue resistance, as shown in FIG. 4.

本発明者等は、このような試験結果に基づき、金属製ス
リーブに隣接する部分のFRPの強度を高めるべく研究
を重ねたが、その結果、FRPの中の繊維体の巻き角度
を変えることによって、その捩り強度が高められること
を見出した。これは、その捩り強度低下の原因が、構造
上の問題のほかに、金属製スリーブと接する部分のFR
P内部の残留応力にあるためであると考えられる。FR
Pの加熱硬化と同時に金属製スリーブとFRP製円製管
筒管接着を行う方法で製造したFRP製伝動軸において
は、FRPの加熱硬化後、冷却されるときに、金属とF
HPとの熱膨張率の差によって、金属製スリーブに接す
る部分のFRPが引張され、その歪がFRP内部に残留
して、FHP中で引張応力として作用する。そのために
、その部分のFRPの捩り強度が低下する。
Based on these test results, the present inventors conducted research to increase the strength of the FRP in the area adjacent to the metal sleeve, and as a result, they found that by changing the winding angle of the fibers in the FRP, It has been found that the torsional strength can be increased. This is because the cause of the decrease in torsional strength is not only structural problems but also the FR of the part in contact with the metal sleeve.
This is thought to be due to residual stress inside P. F.R.
In an FRP transmission shaft manufactured by a method of bonding a metal sleeve and an FRP circular tube-tube at the same time as heating hardening of P, metal and F
Due to the difference in coefficient of thermal expansion with the HP, the portion of the FRP in contact with the metal sleeve is tensed, and the strain remains inside the FRP and acts as tensile stress in the FHP. Therefore, the torsional strength of the FRP in that portion decreases.

本発明は、このような試験研究の結果なされたものであ
って、その目的は、上述のような作業性の良い方法で製
造されるFRP製伝動軸でありながら、その捩り強度、
特に捩り疲労強度が伝動軸として十分な強さまで高めら
れるようにすることである。
The present invention was made as a result of such test research, and its purpose is to provide an FRP power transmission shaft manufactured by the above-mentioned method with good workability, while improving its torsional strength and
In particular, the torsional fatigue strength should be increased to a level sufficient for use as a power transmission shaft.

この目的を達成するために、本発明では、FHP中の繊
維が、円筒管の軸方向に対して±25度〜±35度の巻
き角度となるように積層されたFRP製円製管筒管いて
いる。
In order to achieve this objective, the present invention provides a circular FRP tube in which the fibers in the FHP are laminated at a winding angle of ±25 degrees to ±35 degrees with respect to the axial direction of the cylindrical tube. I'm there.

以下、図面及び実施例により、本発明を更に詳しく説明
する。
Hereinafter, the present invention will be explained in more detail with reference to drawings and examples.

第1図あるいは第2図に示すように、FRP製円筒管l
は、紙製スリーブ2及びその両端の金属製スリーブ3.
3の外周に積層され、その内径及び外径が均一となるよ
うにされている。
As shown in Figure 1 or Figure 2, the FRP cylindrical tube l
, a paper sleeve 2 and metal sleeves 3 at both ends thereof.
The inner diameter and the outer diameter are made to be uniform.

このFRP製円筒管lは、何本かの繊維を束ねて、その
繊維体に熱硬化性樹脂を含浸させ、円筒状に巻き伺けて
成形される。テープ状、リボン状のプリプレグとして巻
き伺ける方法も作業性の面で優れているが、いずれにし
ても、そのm錐体の巻き角度Oが、成形後のFRP製円
筒管lの軸方向に対して±25度〜±35度となるよう
にする。FRPの補強繊維としては、炭素繊維、ガラス
繊維、シリコンカー/曳イド繊維、ポロン繊維、有機高
弾性繊維のような高強度、高弾性率のものが、単独又は
複合して用いられるが、なかでも炭素繊維が有利と考え
られる。補強繊維の熱硬化性樹脂に対する割合は、体積
率で40〜70%である。
This FRP cylindrical tube 1 is formed by bundling several fibers, impregnating the fiber body with a thermosetting resin, and rolling it into a cylindrical shape. The method of winding the prepreg in the form of a tape or ribbon is also excellent in terms of workability, but in any case, the winding angle O of the m pyramid is in the axial direction of the FRP cylindrical tube l after forming. The angle should be between ±25 degrees and ±35 degrees. As reinforcing fibers for FRP, high-strength, high-modulus fibers such as carbon fiber, glass fiber, silicon car/dried fiber, poron fiber, and organic high-modulus fiber are used singly or in combination. However, carbon fiber is considered advantageous. The ratio of the reinforcing fiber to the thermosetting resin is 40 to 70% by volume.

紙製スリーブ2は、硬質紙を材料とするものであって、
第1図に示すような均一の内径と外径とを有するものの
ほか、第2図に示すように内面に切り欠き2aを有する
ものとすること力くできる。この切り欠き2aの深さ、
間隔、幅等は適宜に選定される。
The paper sleeve 2 is made of hard paper,
In addition to having uniform inner and outer diameters as shown in FIG. 1, it is also possible to have a notch 2a on the inner surface as shown in FIG. The depth of this notch 2a,
The spacing, width, etc. are selected as appropriate.

金属製スリーブ3には、その内面にスプライン溝3aが
設けられており、このスプライン溝3aによってヨーク
4等がスプライン結合されるようになっている。金属製
スリーブ3の外面には熱硬化型接着剤5が塗布され、そ
の接着剤5によってFRP製円製管筒管1着されるよう
になっている。この接着剤5としては、エポキシ系接着
剤が好適である。金属製スリーブ3Jしては、第1図の
ように紙製スリーブ2と接する側の端部に中心側から外
周側へ向かうテーノ・を形成したものと、第2図のよう
にそのようなテーパのないものとを例示したが、その他
の形状であってもよい。しカルながら、第1図に示した
ようなテーパ伺きの金属製スリーブ3を用いた場合には
、その金属製スリーブ3に回転力が加えられたとき、F
RP製円製管筒管1面における剪断応力の分1g l)
<第3図に実線で示すようになり、FRPに加わる応力
が軸方向に滑らかに増加していくことになる。したがっ
て、第2図に示したような金hIS製スリーブ3を用い
た場合の第3図に点線で示す応力分布のように。
The metal sleeve 3 is provided with a spline groove 3a on its inner surface, and the yoke 4 and the like are spline-coupled by the spline groove 3a. A thermosetting adhesive 5 is applied to the outer surface of the metal sleeve 3, and a circular FRP tube is attached to the metal sleeve 3 by the adhesive 5. As this adhesive 5, an epoxy adhesive is suitable. The metal sleeve 3J includes one in which a taper is formed at the end in contact with the paper sleeve 2, extending from the center to the outer circumference, as shown in FIG. Although the example is shown as having no shape, other shapes may be used. However, when a tapered metal sleeve 3 as shown in Fig. 1 is used, when a rotational force is applied to the metal sleeve 3, F
1g of shear stress on one side of the RP circular tube tube l)
<As shown by the solid line in Figure 3, the stress applied to the FRP increases smoothly in the axial direction. Therefore, the stress distribution shown by the dotted line in FIG. 3 is obtained when the gold hIS sleeve 3 as shown in FIG. 2 is used.

極端な応力変化部分が生ずることがなくなるので、FR
Pの寿命の点では第1図のようなテーパを形成した金属
製スリーブ3が有利である。
FR
In terms of the lifespan of P, a tapered metal sleeve 3 as shown in FIG. 1 is advantageous.

また、金属製スリーブ3の内径及び外径は、紙製スリー
ブ2の内径及び外径と等しくさせておくと、繊維体を巻
S付ける面が平坦となるので、作業性が良くなるととも
に、加熱硬化、加熱接合したときのFRPと金属製スリ
ーブ3との一体化も強固なものとすることができる。し
かも、成形後のFRP製円筒管lは、金属製スリーブ3
が取り付けられているにもかかわらず、内、外径とも均
一のものとなるので、段差による極端な応力変化部分の
発生を避けることができ、捩り強度の大きいものとする
ことができる。
In addition, if the inner and outer diameters of the metal sleeve 3 are made equal to the inner and outer diameters of the paper sleeve 2, the surface on which the fiber body is wound S will be flat, improving workability and heating. The integration of the FRP and the metal sleeve 3 when they are cured and bonded by heating can also be made strong. Moreover, the FRP cylindrical tube l after molding has a metal sleeve 3.
Even though the inner and outer diameters are uniform, it is possible to avoid the occurrence of extreme stress change areas due to steps, and it is possible to achieve high torsional strength.

このようなFRP製伝動軸を製造するときには、紙製ス
リーブ2と金属製スリーブ3とをマンドレルに嵌め込み
、その上から熱硬化性樹脂を含浸させた繊維体を所定の
巻き角度で巻き付ける。このとき金属製スリーブ3の外
周面には熱硬化型接着剤5を塗布しておく。そして、こ
れを加熱炉中で加熱して、樹脂及び接着剤を硬化させる
。このようにして、金属製スリーブ3とFRP製円筒管
lとは、FRPの加熱硬化と同時に強固に接着される。
When manufacturing such an FRP power transmission shaft, a paper sleeve 2 and a metal sleeve 3 are fitted onto a mandrel, and a fibrous body impregnated with a thermosetting resin is wound thereon at a predetermined winding angle. At this time, a thermosetting adhesive 5 is applied to the outer peripheral surface of the metal sleeve 3. Then, this is heated in a heating furnace to harden the resin and adhesive. In this way, the metal sleeve 3 and the FRP cylindrical tube l are firmly bonded together at the same time as the FRP is heated and cured.

加熱温度及び時間は樹脂の種類に応じて定められ、加熱
温度を段階的に上昇させるようなことも適宜行われる。
The heating temperature and time are determined depending on the type of resin, and the heating temperature may be increased in stages as appropriate.

硬化が終了すれば加熱を止め、冷却後、マンドレルを引
き抜いて、金属製スリーブ3の両端からはみ出したFR
Pを切断除去し、製品とするにのように、金属製スリー
ブ3とFRP製円製管筒管1互いに接着された後に冷却
されるが、FJ’IP製円筒管Iは、そのwJm体の巻
き角度が軸方向に対して±2511[〜±35度となる
ようにされており、それによってFRPが金属とほぼ同
等の熱膨張率をもつようになるので、その冷却時に金属
製スリーブ3とFRP製円製管筒管1間に働く引張応力
は極めて小さくなる。したがって、FRP内部の残留応
力が小さくなり、捩り強度、特に捩り疲労強度が著しく
向上する。
When curing is completed, stop heating, and after cooling, pull out the mandrel and remove the FR protruding from both ends of the metal sleeve 3.
The metal sleeve 3 and the FRP circular tubular tube 1 are bonded together and then cooled, as in the case of cutting and removing P to make a product, but the FJ'IP cylindrical tube I is The winding angle is set to ±2511[~±35 degrees with respect to the axial direction, and as a result, FRP has a coefficient of thermal expansion almost equal to that of metal, so when it is cooled, it is The tensile stress acting between the FRP circular tubular tubes 1 becomes extremely small. Therefore, the residual stress inside the FRP is reduced, and the torsional strength, especially the torsional fatigue strength, is significantly improved.

実施例 径35mmの金属製マンドレルに、厚さ4.5m+nの
第1図に示すような筒状紙製スリーブを嵌め込み、その
両端に、エポキシ系接着剤を表面に塗布したテーパ付き
スチール製スリーブを嵌め込んだ。繊維体として東邦ベ
スロン社製の炭素繊維゛ベスファイト(登録前枠)ST
 −1−7”を用イ、EiOOO本を単位として、5単
位を同時に、エポキシ樹脂を含浸させながらスチール製
スリーブ及び紙製スリーブの表面に巻き付【すた。その
際の巻き角度は、金属製マンドレルの軸方向(成形後の
FRP製円製管筒管方向と同じ)に対して±30度とな
るようにした。炭素繊維のエポキシ樹脂に対する容量比
は60%、巻層は14層で、合計厚みは3.5mmであ
る。これを加熱炉内において120℃で3時間、次イ”
C’ +eo’cテ3時rfJI加熱し、FRPを硬化
成形するとともに、スチール製スリーブのFRPへの接
合を完了した。
Example: A cylindrical paper sleeve with a thickness of 4.5 m+n as shown in Fig. 1 was fitted onto a metal mandrel with a diameter of 35 mm, and a tapered steel sleeve with an epoxy adhesive applied to the surface was attached to each end of the sleeve. Inserted. Carbon fiber Vesphite (pre-registration frame) ST manufactured by Toho Veslon Co., Ltd. is used as the fiber body.
-1-7'' is used to wrap 5 units at the same time on the surface of steel sleeves and paper sleeves while impregnating them with epoxy resin.The winding angle at this time is The angle was set at ±30 degrees with respect to the axial direction of the mandrel (same as the direction of the FRP circular tube tube after molding).The volume ratio of carbon fiber to epoxy resin was 60%, and the number of winding layers was 14. , the total thickness is 3.5 mm. This was heated in a heating furnace at 120°C for 3 hours, and then heated to the next step.
C'+eo'cTe 3 o'clock rfJI heating was performed to harden and mold the FRP, and the joining of the steel sleeve to the FRP was completed.

自然冷却後、マンドレルを抜き取り、スチール製スリー
ブの両端からはみ出したFRPを切断除去して製品とし
た。製品の全長は272amであった。
After natural cooling, the mandrel was removed, and the FRP protruding from both ends of the steel sleeve was cut and removed to obtain a product. The total length of the product was 272 am.

上記実施例と同じ<FRPの厚み3.5■で#!1!a
tの巻き角度のみを変えたもの、及びFRPの厚みを2
.5■として繊維の巻き角度をも変化させたものを作り
、それについて捩り疲労データをめた結果を第1表に示
す。それをグラフで表したものが第4図である。
Same as the above example <FRP thickness 3.5cm #! 1! a
The one where only the winding angle of t was changed and the thickness of FRP was changed to 2
.. Table 1 shows the results of torsional fatigue data obtained for the fiber wrapping angles of 5.5 and 5.5. Figure 4 shows this in graph form.

lJ 1− 9番 −− n=1 条件:±80kg−m両振り、2Hz 〜4Hz第1表
及び第4図から明らかなように、巻き角度±25度〜±
35度のものは、その他のものに比して捩り疲労強度に
おいて著しく優れている。すなわち、スチール製スリー
ブとFRPとの接合部における破壊に対する寿命は、巻
き角度±45度のものに比してFRP厚さ 2.5mm
(1)もノテは約10倍、FRP厚さ 3.5mmのも
のでは約 100倍となっている。
lJ 1- No. 9 -- n=1 Conditions: ±80kg-m double swing, 2Hz to 4Hz As is clear from Table 1 and Figure 4, winding angle ±25 degrees to ±
The 35 degree angle is significantly superior to other types in terms of torsional fatigue strength. In other words, the lifespan against fracture at the joint between the steel sleeve and FRP is longer when the FRP thickness is 2.5 mm than when the winding angle is ±45 degrees.
(1) is also about 10 times larger for Note, and about 100 times larger for FRP with a thickness of 3.5 mm.

このように、繊維体の巻き角度を±30(±5)度とす
ると、破断までの繰り返し回数Nfがほぼ106以上と
なり、安全性を見込んでも、伝動軸として十分実用可能
なものとなる。なお、この巻き角度のものは、動的な捩
り疲労強度が向上するばかりでなく、静的な片振り捩り
強度も向上することが確認できた。
In this way, if the winding angle of the fiber body is ±30 (±5) degrees, the number of repetitions Nf until breakage will be approximately 106 or more, and even with safety in mind, it will be sufficiently practical as a power transmission shaft. In addition, it was confirmed that with this winding angle, not only the dynamic torsional fatigue strength was improved, but also the static oscillation torsional strength was improved.

以上の説明から明らかなように、本発明によれば、軽量
で、ミッションからのギヤ音やうなり音、タイヤからの
騒音等の吸収特性、振動の低減特性に優れ、しかも、捩
り強度、特に捩り疲労強度の大きいFRP製伝動軸を、
作業性の良い製造方法によって得ることができる。
As is clear from the above description, the present invention is lightweight, has excellent absorption characteristics such as gear noise and whining noise from the transmission, noise from tires, etc., and vibration reduction characteristics, and has excellent torsional strength, especially torsional strength. FRP transmission shaft with high fatigue strength,
It can be obtained by a manufacturing method with good workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるFRP製伝動軸の一実施例を示
す切り欠き正面図、 第2図は、他の実施例を示す切り欠き正面図、 第3図は、金属製スリーブの形状と円筒管上面における
応力分1(iとの対応関係を示す説明図、 第4図は、繊維体の巻き角度と捩り疲労強度との関係の
試験結果を示すグラフであ る。 1・・・FRP製円製管筒管2・・・紙製スリーブ3・
・・金属製スリーブ 5・・・接着剤出願人 本田技研
工業株式会社 出願人 横浜ゴム株式会社 代理人 弁理士 森 下 端 侑
Fig. 1 is a cutaway front view showing one embodiment of an FRP power transmission shaft according to the present invention, Fig. 2 is a cutaway front view showing another embodiment, and Fig. 3 is a diagram showing the shape and shape of a metal sleeve. An explanatory diagram showing the correspondence relationship with the stress component 1 (i) on the upper surface of the cylindrical tube. FIG. 4 is a graph showing the test results of the relationship between the winding angle of the fibrous body and the torsional fatigue strength. 1... Made of FRP Circular pipe tube 2...Paper sleeve 3.
...Metal sleeve 5...Adhesive applicant Honda Motor Co., Ltd. applicant Yokohama Rubber Co., Ltd. agent Patent attorney Yu Morishita Hajime

Claims (1)

【特許請求の範囲】 樹脂を含浸させた繊維体を巻き付けて形成される繊維強
化プラスチツク製円筒管と、この円筒管の両端部内側に
それぞれ配置され、外面に塗布された接着剤により、前
記繊維強化プラスチツク製円筒管の加熱成形時に前記円
筒管に加熱接合される金属製スリーブとを有し、 前記繊維強化プラスチツク中の繊維体が、前記円筒管の
佃1方向に対して±25度〜±35度の巻き角度になる
ように積層されていることを特徴とする、 繊維強化プラスチツク製伝動軸。
[Claims] A cylindrical tube made of fiber-reinforced plastic formed by winding a fiber body impregnated with resin, and an adhesive applied to the outer surface of the cylindrical tube, which is placed inside both ends of the cylindrical tube, allows the fibers to be bonded. a metal sleeve that is heat-bonded to the cylindrical tube during thermoforming of the reinforced plastic cylindrical tube, and the fiber body in the fiber-reinforced plastic is tilted at an angle of ±25 degrees to ±± with respect to one direction of the cylindrical tube. A transmission shaft made of fiber-reinforced plastic, characterized by being laminated to form a winding angle of 35 degrees.
JP58198271A 1983-10-25 1983-10-25 Manufacturing method of transmission shaft made of fiber reinforced plastic Expired - Lifetime JPH0742974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198271A JPH0742974B2 (en) 1983-10-25 1983-10-25 Manufacturing method of transmission shaft made of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198271A JPH0742974B2 (en) 1983-10-25 1983-10-25 Manufacturing method of transmission shaft made of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPS6091008A true JPS6091008A (en) 1985-05-22
JPH0742974B2 JPH0742974B2 (en) 1995-05-15

Family

ID=16388354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198271A Expired - Lifetime JPH0742974B2 (en) 1983-10-25 1983-10-25 Manufacturing method of transmission shaft made of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JPH0742974B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267317A (en) * 1985-09-20 1987-03-27 Honda Motor Co Ltd Fiber reinforced synthetic resin pipe
GB2455785A (en) * 2007-12-21 2009-06-24 Rolls Royce Plc An annular non-metallic component comprising a bore with a sleeve
US10012263B2 (en) 2012-09-28 2018-07-03 Abb Research, Ltd Rotors for rotating machines with hollow fiber-reinforced composite shaft
CN113152794A (en) * 2021-03-26 2021-07-23 青岛理工大学 Connecting device and method for metal reinforcement and non-metal reinforcement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344794B2 (en) * 2016-11-18 2019-07-09 Dana Automotive Systems Group, Llc Open composite shaft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378530A (en) * 1976-12-22 1978-07-12 Toray Ind Inc Automotive propeller shaft
DE3143485A1 (en) * 1981-11-03 1983-05-11 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Drive shaft having a tubular shaft piece of fibre-reinforced plastic and fittings firmly bonded onto the ends

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378530A (en) * 1976-12-22 1978-07-12 Toray Ind Inc Automotive propeller shaft
DE3143485A1 (en) * 1981-11-03 1983-05-11 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Drive shaft having a tubular shaft piece of fibre-reinforced plastic and fittings firmly bonded onto the ends

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267317A (en) * 1985-09-20 1987-03-27 Honda Motor Co Ltd Fiber reinforced synthetic resin pipe
GB2455785A (en) * 2007-12-21 2009-06-24 Rolls Royce Plc An annular non-metallic component comprising a bore with a sleeve
GB2455785B (en) * 2007-12-21 2009-11-11 Rolls Royce Plc Annular component
US8109719B2 (en) 2007-12-21 2012-02-07 Rolls-Royce Plc Annular component
US10012263B2 (en) 2012-09-28 2018-07-03 Abb Research, Ltd Rotors for rotating machines with hollow fiber-reinforced composite shaft
US10634188B2 (en) 2012-09-28 2020-04-28 Abb Schweiz Ag Rotors for rotating machines with hollow fiber-reinforced composite shaft
CN113152794A (en) * 2021-03-26 2021-07-23 青岛理工大学 Connecting device and method for metal reinforcement and non-metal reinforcement

Also Published As

Publication number Publication date
JPH0742974B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
US3553978A (en) Composite propeller shaft construction and method of making
JP3020222B2 (en) Golf club shaft and method of manufacturing the same
US4348247A (en) Method of fabricating a reinforced tubular structure
US4605385A (en) Fibre reinforced plastics power transmission shaft
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
US3592884A (en) Composite propeller shaft construction and method of making
JPS6352251B2 (en)
US4854988A (en) Process for the production of a fiber-reinforced synthetic resin container
JPH05269868A (en) Production of perforated hollow composite material
JPS6091008A (en) Transmission shaft made of fiber reinforced plastics
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP2007271079A (en) Torque transmission shaft
KR20090016805A (en) Fabrication process of hybrid driveshaft based on composite materials
JPH04347006A (en) Fiber reinforced plastic driving shaft
JPH08103965A (en) Frp cylinder and manufacture thereof
JPS63139733A (en) Manufacture of drive shaft made of frp
JPH0587118A (en) Compound power transmitting shaft
KR20170031926A (en) Hybrid Propeller Shaft and Method for Manufacturing Thereof
JPH03254926A (en) Driving force transmission shaft made of fiber-reinforced resin
JPS598568B2 (en) Vehicle drive propulsion shaft
JPH04301437A (en) Shaft made of fiber-reinforced resin for transmitting driving force
JPS6071231A (en) Manufacture of transmission shaft made of fiber- reinforced plastic
JPH01126412A (en) Manufacture of fiber reinforced resin made transmission pipe