JPH01126412A - Manufacture of fiber reinforced resin made transmission pipe - Google Patents

Manufacture of fiber reinforced resin made transmission pipe

Info

Publication number
JPH01126412A
JPH01126412A JP28480487A JP28480487A JPH01126412A JP H01126412 A JPH01126412 A JP H01126412A JP 28480487 A JP28480487 A JP 28480487A JP 28480487 A JP28480487 A JP 28480487A JP H01126412 A JPH01126412 A JP H01126412A
Authority
JP
Japan
Prior art keywords
mandrel
tapered
fiber
pipe
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28480487A
Other languages
Japanese (ja)
Inventor
Hitoshi Murotani
室谷 均
Koji Yamatsuta
山蔦 浩治
Yoshifumi Nakanou
中納 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP28480487A priority Critical patent/JPH01126412A/en
Publication of JPH01126412A publication Critical patent/JPH01126412A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

PURPOSE:To improve the reliability of strength without any machining of tapered portion by using a mandrel with tapered portions and forming fiber reinforced layers on the outer periphery thereof. CONSTITUTION:Auxiliary mandrels 5 with tapers are fixed outwardly on both ends of a mandrel 4, and fiber or cloth impregnated with a resin is wounds and laminated on the periphery thereof, and then a FRP pipe 1 having tapered portions at both ends is manufactured through a hot hardening process. The pipe 1 and joint elements 2 are integrated at the tapered portion 3. Accordingly, the strength reliability of the tapered portions can be improved without any machining on tapered portions.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は車輌用等の繊維強化樹脂製伝動軸用パイプ(以
下FRP製パイプと称す)の製造方法に関するものであ
る。
The present invention relates to a method for manufacturing a fiber-reinforced resin transmission shaft pipe (hereinafter referred to as FRP pipe) for vehicles and the like.

【従来の技術】[Conventional technology]

車輌用等の伝動軸は一般に金属性中実棒または金属性中
空パイプの両端に金属性継手要素を接合したものが使用
されているが、近年車両の軽量化が要求されるようにな
り、強化繊維であるガラス繊維や炭素繊維等と合成樹脂
からなる繊維強化樹脂(以下FRPと称す)を用いた伝
動軸の開発が盛んになされている。 それはFRPの比強度(強度/比1i)と比弾性(弾性
率/比重)が鋼やアルミニウムなどの金属に比べてすぐ
れているので、軽量化以外に共振を避けながら高速回転
を達成することが可能になるからである。FRP製伝動
軸の場合、一般にFRPの中空パイプの両端には継手要
素を設けなければならず、そのためFRP製パイプと継
手要素を別々に準備し後で何らかの方法で接合すること
により製造されている。 そのような方法として例えば特開昭58−211011
号公報及び特開昭59−83620号公報において、F
RP製パイプの両端部に旋盤加工等の機械加工によリテ
ーパ部を設け、継手要素にもこれに合うテーパ部を設け
て該継手要素をパイプの両端テーパ部に接着剤で接合し
て伝動軸を製造する方法が提案されている。
Transmission shafts for vehicles are generally made of solid metal rods or hollow metal pipes with metal joint elements joined to both ends, but in recent years there has been a demand for lighter vehicles, so reinforcements are required. 2. Description of the Related Art Transmission shafts using fiber reinforced resin (hereinafter referred to as FRP), which is made of fibers such as glass fibers and carbon fibers and synthetic resins, are being actively developed. This is because the specific strength (strength/ratio 1i) and specific elasticity (elastic modulus/specific gravity) of FRP are superior to those of metals such as steel and aluminum, so in addition to being lightweight, it is also possible to achieve high-speed rotation while avoiding resonance. This is because it becomes possible. In the case of an FRP transmission shaft, it is generally necessary to provide a joint element at both ends of the FRP hollow pipe, so the FRP pipe and joint element are prepared separately and then joined by some method. . As such a method, for example, Japanese Patent Application Laid-Open No. 58-211011
No. 59-83620 and JP-A-59-83620, F
A re-tapered section is provided at both ends of the RP pipe by machining such as lathe processing, a matching taper section is provided on the coupling element, and the coupling element is bonded to the tapered section at both ends of the pipe with adhesive to form a transmission shaft. A method of manufacturing has been proposed.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかるにこれらのFRP製パイプの機械加工によるテー
パの形成は、応力集中の最も大きい部分の肉厚が薄く且
補強となるべき繊維が切断され、その部分の強度が相当
低下するという問題点を有する。とりわけ旋盤による切
削加工の場合板にFRP製パイプの外面をつかんで加工
しようとしたとき、外面の精度が悪いため芯出に長時間
を要する欠点がある。更にこのテーパ加工工程の追加は
製造コストを高くする問題がある。
However, forming a taper by machining these FRP pipes has the problem that the wall thickness is thin at the part where the stress concentration is greatest, and the fibers that should serve as reinforcement are cut, resulting in a considerable decrease in the strength of that part. Particularly in the case of cutting using a lathe, when an attempt is made to grip the outer surface of an FRP pipe with a plate, there is a drawback that centering takes a long time due to the poor precision of the outer surface. Furthermore, the addition of this taper processing step has the problem of increasing manufacturing costs.

【問題点を解決しようとする手段】[Means to try to solve the problem]

かかる事情に鑑み、本発明者らは機械加工によるテーパ
部分の強度低下、テーパ形成の煩雑さ等の問題を解決す
るため鋭意検討した結果、テーパ部の強度低下が無く、
且機械加工なしにパイプ形成と同時にテーパ形成が容易
に行えることを見出し本発明を完成するに至った。 すなわち、本発明は両端にテーパ部を有するマンドレル
を用い、その外周に繊維強化樹脂層を形成することを特
徴とする繊維強化樹脂製伝動軸用パイプの製造方法を提
供するものである。 以下、本発明を図面に基づいて詳細に説明する。 第1図はテーパ付補助マンドレルを外嵌させた本発明方
法を実施するに使用するマンドレルの一例の正面断面図
、第2図は第1図に示されるマンドレルを使用して得ら
れたテーパ付FRP製パイプと継手要素を一体化した伝
動軸の正面断面図を示す。 本発明は、例えば第1図に示すようにマンドレル4の両
端にテーパ付補助マンドレル5を外嵌させた両端にテー
パ部を有するマンドレルを用い、該マンドレルの周辺に
樹脂を含浸させた繊維もしくは織布を巻付は積層し、樹
脂を加熱硬化させた後、テーパ付補助マンドレル5、マ
ンドレル4の順に抜取ることにより両端にテーパ部を有
するFRP製パイプlを製造する。伝動軸は第2図に示
すようにFRP製バイブlと継手要素2をテーパ、部3
で一体化することにより製造される。一体化する方法と
しては接着等の周知の手段が採用される。 第3図は本発明の別の実施態様で使用される両端のテー
パが同一方向に向いたマンドレルの正面図であり、第4
図は第3図に示されるマンドレルを使用して得られたテ
ーパ付FRP製パイプと継手要素を一体化した伝動軸の
正面断面図である。 第3図に示されるマンドレルを用いて製造されるFRP
製パイプは前記と同様にテーパ付マンドレル6の周辺に
樹脂を含浸させた繊維もしくは織布を巻付は積層し、樹
脂を加熱硬化させた後、テーパ付マンドレル6を矢印A
の方向に抜取ることにより得られる。第2図と同様に伝
動軸は第4図に示すようにFRP製パイプ1゛と継手要
素2,2°をそれぞれテーパ部3.3“で一体化するこ
とにより製造される。 本発明において用いる樹脂および繊維もしくは繊布は特
に制限されるものではな(、樹脂としてエポキシ樹脂、
不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド
樹脂等の熱硬化性樹脂、ポリスルホン樹脂、ポリアミド
樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテ
ルケトン樹脂、ポリエーテルケトン樹脂、ポリカーボネ
イト樹脂等の熱可塑性樹脂が使用される。また繊維もし
くは織布として炭素繊維、黒鉛繊維、ガラス繊維、炭化
ケイ素繊維、アルミナ繊維、チタニア繊維、窒化硼素繊
維等の無機質繊維、芳香族ポリアミド繊維、芳香族ポリ
エステル繊維、ポリベンツイミダゾール繊維等の有機質
繊維が使用される。 さらに樹脂並びに繊維は必要に応じてそれぞれ2種以上
を組合わせることができる。 第1図に示すような両端のテーパ部が対向したマンドレ
ルを用いた場合、得られたFRP製パイプが抜取れなく
なるため、マンドレルの両端のテーパ部のうち少なくと
も一端が脱着できるものを使用する。またその脱着方法
は特に制限されるものではない、継手要素をFRP製パ
イプを一体化する際、軸方向に力が加えられるためマン
ドレルのテーパは115〜1/200の範囲が好ましい
。 マンルールの材質は特に制限されないが、取扱いの容易
さから鉄、鋼、アルミニウム等が用いられる。テーパ付
補助マンドレルの材質も特に制限されることなく、また
マンドレルと異なった材質であっても問題はない。
In view of these circumstances, the inventors of the present invention conducted extensive studies to solve problems such as a decrease in the strength of the tapered part due to machining and the complexity of forming the taper.
Furthermore, the present inventors have discovered that pipe formation and taper formation can be easily performed simultaneously without machining, and have completed the present invention. That is, the present invention provides a method for manufacturing a fiber-reinforced resin transmission shaft pipe, which is characterized by using a mandrel having tapered portions at both ends and forming a fiber-reinforced resin layer on the outer periphery of the mandrel. Hereinafter, the present invention will be explained in detail based on the drawings. Fig. 1 is a front sectional view of an example of a mandrel used to carry out the method of the present invention, in which a tapered auxiliary mandrel is fitted onto the outside, and Fig. 2 shows a tapered auxiliary mandrel obtained using the mandrel shown in Fig. 1. A front sectional view of a transmission shaft that integrates an FRP pipe and a joint element is shown. For example, as shown in FIG. 1, a mandrel 4 having tapered auxiliary mandrels 5 fitted onto both ends of the mandrel is used, and the periphery of the mandrel is made of fiber or fabric impregnated with resin. After wrapping and laminating the cloth and curing the resin by heating, the tapered auxiliary mandrel 5 and the mandrel 4 are pulled out in this order to produce an FRP pipe 1 having tapered portions at both ends. As shown in Fig. 2, the transmission shaft consists of an FRP vibrator 1 and a coupling element 2 with a tapered section 3.
It is manufactured by integrating with. Known means such as adhesion may be used as a method for integrating. FIG. 3 is a front view of a mandrel used in another embodiment of the present invention with tapers at both ends facing in the same direction;
The figure is a front sectional view of a power transmission shaft in which a tapered FRP pipe obtained using the mandrel shown in FIG. 3 and a joint element are integrated. FRP manufactured using the mandrel shown in Figure 3
The manufactured pipe is made by wrapping and laminating resin-impregnated fibers or woven cloth around the tapered mandrel 6 in the same way as above, and after curing the resin by heating, the tapered mandrel 6 is moved in the direction of arrow A.
It is obtained by pulling it out in the direction of. Similar to Fig. 2, the transmission shaft is manufactured by integrating the FRP pipe 1'' and the coupling elements 2, 2° at the tapered portions 3.3'', as shown in Fig. 4. Used in the present invention The resin and fiber or fabric are not particularly limited (e.g., epoxy resin,
Thermosetting resins such as unsaturated polyester resins, phenolic resins, and polyimide resins, thermoplastic resins such as polysulfone resins, polyamide resins, polyethersulfone resins, polyetheretherketone resins, polyetherketone resins, and polycarbonate resins are used. . In addition, fibers or woven fabrics include inorganic fibers such as carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, alumina fiber, titania fiber, and boron nitride fiber, and organic fibers such as aromatic polyamide fiber, aromatic polyester fiber, and polybenzimidazole fiber. fibers are used. Furthermore, two or more types of resins and fibers can be combined as necessary. If a mandrel with tapered portions at both ends facing each other as shown in FIG. 1 is used, the obtained FRP pipe cannot be removed, so at least one end of the tapered portions at both ends of the mandrel is removable. Further, the method of attachment and detachment is not particularly limited. Since force is applied in the axial direction when the coupling element is integrated with the FRP pipe, the taper of the mandrel is preferably in the range of 115 to 1/200. The material of the man rule is not particularly limited, but iron, steel, aluminum, etc. are used because of ease of handling. The material of the tapered auxiliary mandrel is not particularly limited, and there is no problem even if the material is different from that of the mandrel.

【実施例】【Example】

以下本発明を実施例によりさらに詳細に説明するが、本
発明はこれによって限定されるものではい。 実施例 テーパ1/lO、テーパ長さ85m5のアルミニウム製
補助マンドレルを第1図に示すように直径80m5+。 長さ1300IIIIlのアルミニウム製マンドレルの
両端に外嵌させた0次に該マンドレルにマトリックスと
なる樹脂を含浸させた繊維を使用して下記のように順次
フィラメントワインディング法により巻付けた。 マトリックスとして使用する樹脂はエポキシ樹脂スミエ
ポキシ0[!L^128(住人化学工業■製)100重
量部、エポキシ樹脂硬化剤HN3500 (日立化成工
業■製)85重量部、硬化反応促進剤スミキエアーのD
(住人化学工業■製)1重量部の混合物を使用した。 マンドレルの長手方向に対して90¥の巻付は角度でE
ガラス(日本板硝子■製)に上記の樹脂混合物を含浸さ
せた後約0.25mmの厚さになるまで巻付け、さらに
マンドレルの長手方向に対して20゜の巻付は角度で炭
素繊維マグナイト0^5−4(住化ハーキエレス■製)
に同じ樹脂混合物を含浸させた後約1.5s−の厚みに
巻付けた0次いでマンドレルの長手方向に対して90°
の巻付は角度で同じ樹脂混合物を含浸したEガラス(日
本板硝子■製)を約0.4ms巻付けFRPとして合計
的2.15龍の厚さとした。 樹脂で含浸した繊維をマンドレルに巻付けた後、さらに
離型フィルムを巻き、150°Cで2時間加熱し、樹脂
を硬化させ樹脂母材中に繊維を固定した。 硬化したFRPより補助マンドレル次いでマンドレルを
抜き取り、FRPの両端に不要部分を切断してテーパ付
FRP製パイプを形成した。 次いでFRP製パイプのテーパ部とスチール製継手要素
を接着剤で接着して伝動軸を得た。 該伝動軸を継手要素を支持して捩り試験機にかけたが、
380kg−mのトルクでも破壊することなく、とが判
った。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Example An auxiliary mandrel made of aluminum with a taper of 1/1O and a taper length of 85 m5 had a diameter of 80 m5+ as shown in FIG. Fibers impregnated with a resin serving as a matrix were sequentially wound by the filament winding method as described below, using fibers impregnated with a resin serving as a matrix. The resin used as the matrix is epoxy resin Sumi Epoxy 0 [! 100 parts by weight of L^128 (manufactured by Sumiki Chemical Industry ■), 85 parts by weight of epoxy resin curing agent HN3500 (manufactured by Hitachi Chemical Company ■), D of curing reaction accelerator Sumiki Air
(manufactured by Sumima Kagaku Kogyo ■) 1 part by weight of the mixture was used. Winding of 90 yen to the longitudinal direction of the mandrel is at an angle of E
After impregnating glass (manufactured by Nippon Sheet Glass) with the above resin mixture, it is wound to a thickness of approximately 0.25 mm, and the carbon fiber Magnite 0 is wound at an angle of 20° to the longitudinal direction of the mandrel. ^5-4 (manufactured by Sumika Harkieless ■)
The mandrel was impregnated with the same resin mixture and then wound to a thickness of about 1.5 seconds at an angle of 90° to the longitudinal direction of the mandrel.
E-glass (manufactured by Nippon Sheet Glass Co., Ltd.) impregnated with the same resin mixture was wrapped at an angle of about 0.4 ms to give a total thickness of 2.15 mm. After winding the resin-impregnated fibers around a mandrel, a release film was further wound around the mandrel and heated at 150°C for 2 hours to cure the resin and fix the fibers in the resin matrix. The auxiliary mandrel and then the mandrel were extracted from the cured FRP, and unnecessary portions were cut at both ends of the FRP to form a tapered FRP pipe. Next, the tapered part of the FRP pipe and the steel joint element were bonded together with an adhesive to obtain a transmission shaft. The transmission shaft was subjected to a torsion tester with the joint element supported, but
It was found that even a torque of 380 kg-m did not cause damage.

【発明の効果】【Effect of the invention】

以上、詳述したように本発明は継手要素と有効に一体化
するためのテーパ部を機械加工することなくパイプ形成
と同時にかつ容易に形成することができ、さらにテーパ
部の強度の信軌性が高いFRP製パイプを製造すること
ができ、その工業的価値は頗る大である。
As described in detail above, the present invention allows the tapered part to be effectively integrated with the coupling element to be formed easily at the same time as pipe formation without machining, and furthermore, the tapered part has high reliability and reliability. It is possible to manufacture FRP pipes with a high level of resistance, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテーパ付補助マンドレルを外嵌させた本発明方
法を実施するに使用するマンドレルの一一量面断面図、
第2図は第1図に示されるマンドレルを使用して得られ
たテーパ付FRP製パイプと継手要素を一体化した伝動
軸の正面断面図、第3図は本発明の別の実施様態で使用
される両端のテーパが同一方向に向いたマンドレルの正
面図、第4図は第3図に示されるマンドレルを使用して
得られたテーバ付FRP製パイプと継手要素を一体化し
た伝動軸の正面断面図である。 1.1゛  ・・・ FRP製パイプ 2.2° ・・・ 継手要素 3.3° ・・・ テーパ部 4  ・・・ マンドレル 5  ・・・ テーパ付補助マンドレル6  ・・・ 
テーパ付マンドレル 末3図 オ4図
FIG. 1 is a monolithic sectional view of a mandrel used to carry out the method of the present invention, in which a tapered auxiliary mandrel is fitted;
Fig. 2 is a front sectional view of a transmission shaft that integrates a tapered FRP pipe and a coupling element obtained using the mandrel shown in Fig. 1, and Fig. 3 is a front sectional view of a transmission shaft used in another embodiment of the present invention. Figure 4 is a front view of a mandrel with tapers at both ends facing in the same direction, and Figure 4 is a front view of a transmission shaft that integrates a tapered FRP pipe and a joint element obtained using the mandrel shown in Figure 3. FIG. 1.1゛ ... FRP pipe 2.2° ... Coupling element 3.3° ... Tapered part 4 ... Mandrel 5 ... Tapered auxiliary mandrel 6 ...
Tapered mandrel end 3 figure O 4 figure

Claims (1)

【特許請求の範囲】 1)両端にテーパ部を有するマンドレルを用い、その外
周に繊維強化樹脂層を形成することを特徴とする繊維強
化樹脂製伝動軸用パイプの製造方法 2)マンドレルのテーパのうち少なくとも一端が脱着可
能である特許請求の範囲第1項記載の製造方法
[Claims] 1) A method for manufacturing a fiber-reinforced resin transmission shaft pipe, characterized in that a mandrel having tapered portions at both ends is used, and a fiber-reinforced resin layer is formed on the outer periphery of the mandrel. The manufacturing method according to claim 1, wherein at least one end is removable.
JP28480487A 1987-11-10 1987-11-10 Manufacture of fiber reinforced resin made transmission pipe Pending JPH01126412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28480487A JPH01126412A (en) 1987-11-10 1987-11-10 Manufacture of fiber reinforced resin made transmission pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28480487A JPH01126412A (en) 1987-11-10 1987-11-10 Manufacture of fiber reinforced resin made transmission pipe

Publications (1)

Publication Number Publication Date
JPH01126412A true JPH01126412A (en) 1989-05-18

Family

ID=17683228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28480487A Pending JPH01126412A (en) 1987-11-10 1987-11-10 Manufacture of fiber reinforced resin made transmission pipe

Country Status (1)

Country Link
JP (1) JPH01126412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124196U (en) * 1991-04-26 1992-11-11 リヨービ株式会社 Laminated tube for rotating force transmission
JP2005024095A (en) * 2003-07-02 2005-01-27 Abb Res Ltd Shaft, method of manufacturing the shaft, and device for implementing the method
US10012117B2 (en) 2013-10-08 2018-07-03 Basf Se Structural oil pan
US10195770B2 (en) 2013-10-08 2019-02-05 Basf Se Method of forming a structural oil pan via lost core molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124196U (en) * 1991-04-26 1992-11-11 リヨービ株式会社 Laminated tube for rotating force transmission
JP2005024095A (en) * 2003-07-02 2005-01-27 Abb Res Ltd Shaft, method of manufacturing the shaft, and device for implementing the method
US10012117B2 (en) 2013-10-08 2018-07-03 Basf Se Structural oil pan
US10195770B2 (en) 2013-10-08 2019-02-05 Basf Se Method of forming a structural oil pan via lost core molding

Similar Documents

Publication Publication Date Title
US4185472A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by radial pin interlock
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
US4259382A (en) Fiber reinforced composite shaft with metal connector sleeves secured by adhesive
CA1148484A (en) Reinforced tubular structure and method of fabrication thereof
US5613794A (en) Bi-material tubing and method of making same
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
US4265951A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
US4348247A (en) Method of fabricating a reinforced tubular structure
US7731593B2 (en) Composite transmission shaft joint
US4279275A (en) Mechanical joinder of composite shaft to metallic end members
US4362521A (en) Power transmission shaft
GB2051303A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPH0365786B2 (en)
KR950012531B1 (en) Yarn winding apparatus
JPH01126412A (en) Manufacture of fiber reinforced resin made transmission pipe
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JPS5850356A (en) Composite gear
GB2406154A (en) Composite shaft with metal sleeve
JPS598568B2 (en) Vehicle drive propulsion shaft
JPH0818409B2 (en) Composite fiber reinforced vehicle drive shaft and method for manufacturing fiber reinforced vehicle drive shaft
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
JPS6091008A (en) Transmission shaft made of fiber reinforced plastics
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft