JPS609094B2 - Raw materials for ferroalloys - Google Patents

Raw materials for ferroalloys

Info

Publication number
JPS609094B2
JPS609094B2 JP56098212A JP9821281A JPS609094B2 JP S609094 B2 JPS609094 B2 JP S609094B2 JP 56098212 A JP56098212 A JP 56098212A JP 9821281 A JP9821281 A JP 9821281A JP S609094 B2 JPS609094 B2 JP S609094B2
Authority
JP
Japan
Prior art keywords
chromium
weight
raw material
ferroalloy
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56098212A
Other languages
Japanese (ja)
Other versions
JPS581054A (en
Inventor
弘之 柏瀬
金吾 竹内
宗雄 三田
栄 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP56098212A priority Critical patent/JPS609094B2/en
Publication of JPS581054A publication Critical patent/JPS581054A/en
Publication of JPS609094B2 publication Critical patent/JPS609094B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は合金鉄用原料、特にクロム鉱石からクロム酸ソ
ーダを製造する際に創生する含クロム鉱樺に化学的処理
を加えたものをクロム含有合金鉄製造用の原料として有
効利用することに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses raw materials for ferroalloys, particularly chromium-containing birch produced when producing sodium chromate from chromium ore, to which chemical treatment is applied. Concerning effective use as raw materials.

一般に、クロム酸ソーダの工業的な製造は、クロム鉱石
にソーダ灰苛性ソーダなどのアルカリ剤を配合し、さら
に必要に応じて石灰や不活性充填剤などを添加した混合
物を高温で酸化煩擁し、次いで悟焼物を水で浸水するこ
とによってクロム酸ソーダ水溶液として得る方法が採ら
れる。一方、この際多量の含クロム浸出残澄である含ク
ロム鉱連が劉生し、その成分組成は煩焼条件、鉱石の種
類あるいは石灰添加の有無等により相違するが多くの場
合次の範囲に含まれる。重量% これらのうちCr203成分は主として3価クロムとし
て存在するが、6価クロムも3,000〜15,000
脚程度含まれている。
In general, industrial production of sodium chromate involves blending chromium ore with an alkaline agent such as soda ash and caustic soda, and further adding lime and inert fillers as necessary.The mixture is then oxidized at high temperature. A method is adopted in which a sodium chromate aqueous solution is obtained by soaking the porcelain pottery in water. On the other hand, at this time, a large amount of chromium-containing leaching residue, chromium-containing ore, is formed, and its composition varies depending on the sintering conditions, type of ore, presence or absence of lime addition, etc., but in most cases it falls within the following range. It will be done. Weight% Among these, the Cr203 component mainly exists as trivalent chromium, but hexavalent chromium also exists in the form of 3,000 to 15,000
Contains about the legs.

またNa20成分の大部分は水に難溶性ないし不綾性の
化合物として存在するため通常の浸出操作によっては溶
出しない。従来、このようなクロム鉱蓬は、専ら浸出効
率を高めて可及的にクロム酸塩を回収した後は殆んど実
用的な利用価値は見し、出されていない。従って、該鍵
連中の6価クロムを硫酸第1鉄などの還元剤で3価クロ
ムに還元処理して埋立廃棄するのが通常であるけれども
、含クロム鉱樺の積極的な有効利用については検討され
ていないわけではなく、代表的には次のような提案がな
されている。まず第1として「含クロム鉱樺に珪酸質と
還元剤とを添加混合して造粒した後、該造粒物を高温で
焼成し、粒状多孔質の珪酸塩としたものを軽量骨村とし
て±木用に利用する。(特公昭52−10094号)第
2として、含クロム鉱淳に酸を作用させることによって
「 Fe203,Aそ203およびMざ0等の成分の一
部を溶解させ、これら塩類の水溶液を下水用水処理剤と
して利用する。(特開昭47−11010号)しかしな
がらトこれらの利用法のうち「前者の軽量骨材に供する
方法は〜多量の珪酸質を添加し融点に近い高温で加熱す
るために大規模の設備と多量のエネルギーを必要とする
欠点があり〜加えてtかかる経済的犠牲を要してもなを
付加価値は低く「使用されるとは限らないため工業的な
方法とは云い難い。
Furthermore, since most of the Na20 component exists as a compound that is poorly soluble or insoluble in water, it is not eluted by normal leaching operations. Conventionally, such chromium ore has little practical utility value after recovering as much chromate as possible by increasing the leaching efficiency and has not been produced. Therefore, although it is normal to reduce the hexavalent chromium in the key chain to trivalent chromium using a reducing agent such as ferrous sulfate and dispose of it in a landfill, active and effective use of chromium-containing ore birch is being considered. This is not to say that it has not been done, but the following typical proposals have been made. First of all, after adding and mixing chromium-containing birch with a silicic acid substance and a reducing agent and granulating it, the granulated product is fired at a high temperature to form a granular porous silicate, which is used as a lightweight skeleton. ±Used for wood. (Special Publication No. 52-10094) Second, by applying acid to chromium-containing ore, some of the components such as Fe203, Aso203 and Mzao are dissolved, Aqueous solutions of these salts are used as sewage water treatment agents.(Japanese Patent Application Laid-open No. 11010/1983) However, among these usage methods, ``the former method of using them as lightweight aggregates involves adding a large amount of silicic acid to the melting point. It has the disadvantage of requiring large-scale equipment and a large amount of energy to heat at near high temperatures. It can hardly be called an industrial method.

また、後者の水処理剤に供する方法はも含クロム鉱淫中
の一成分が利用されるにすぎず合理的な方法ではない。
In addition, the latter method of applying it to a water treatment agent is not a rational method since only one component of the chromium-containing mineral is used.

いずれにせよ「額クロム鉱藻がゆえの特徴を生した積極
的な有効利用はなされていないのである。本発明者等は
〜 このような状況に鑑みもクロム鉱達の特徴を生した
より効果的かつ能率的な利用法について各種の研究。検
討を重ねた結果も該鍵淫に化学的処理を加えることによ
って得られる特定組成の処理物が含クロム合金鉄製造用
の原料として極めて好適であることを見し、出し本発明
を完成した。すなわち、本発明はクロム鉱石からクロム
酸ソーダを製造する際に創生する含クロム鉱律の還元中
和処理物であって、酸化物換算で少なくともクロム分が
1Q重量%以上「 鉄およびクロムの有価成分が2の重
量%以上およびソーダ分が5重量%以下の各成分含有率
を有することを特徴とする合金鉄用原料にかかる。
In any case, the active and effective use of chromite algae has not been made. Various studies have been carried out on the effective and efficient use of chromium-containing iron.The results of repeated studies have shown that a product with a specific composition obtained by chemically treating the keystone is extremely suitable as a raw material for the production of chromium-containing iron alloys. In view of this, we have completed the present invention.That is, the present invention is a reduction-neutralized product of chromium-containing ore produced when producing sodium chromate from chromium ore, which has at least A raw material for a ferroalloy characterized by having a chromium content of 1Q% by weight or more, a valuable component of iron and chromium of 2% by weight or more, and a soda content of 5% by weight or less.

本発明者等の検討結果によれば、一般に含クロム鉱律に
は箸量の6価クロムやNa20成分が含まれているので
環境汚染の原因となり〜 また多量のCa○成分を含有
する場合もあるため、それ自体としては合金鉄用原料と
しては通さない。
According to the study results of the present inventors, chromium-containing minerals generally contain hexavalent chromium and Na20 components, which can cause environmental pollution. Therefore, it cannot be used as a raw material for ferroalloys.

また敢えて使用したとしても多量のCa0成分はクロム
および鉄などの有価成分含有率を低下するものであるた
め、合金鉄製造の工程で必要以上にスラグを生成するこ
とになりエネルギーの増大を招く。しかるに「かかる雛
樺であっても鉱酸によって還元中和処理されたものは、
合金鉄の原料としてクロム鉱樺の特徴を生じた有効利用
ができることがわかつた。従って「本発明において含ク
ロム鉱樺の還元中和処理物というのは、含クロム鉱連の
塩基性成分を酸で中和すると同時に含有する6価クロム
を還元して実質的に6価クロムを含有していない処理物
を意味する。
Furthermore, even if used in a large amount, a large amount of Ca0 component will reduce the content of valuable components such as chromium and iron, resulting in the production of more slag than necessary in the process of producing ferroalloy, resulting in an increase in energy. However, ``Even if such Hina birch has been reduced and neutralized with mineral acids,
It has been found that chromite birch can be effectively used as a raw material for ferroalloy. Therefore, in the present invention, the reduced and neutralized product of chromium-containing birch means that the basic components of chromium-containing birch are neutralized with acid and at the same time, the hexavalent chromium contained is reduced to substantially eliminate hexavalent chromium. It means a treated product that does not contain.

本発明において、上記還元中和処理物のうちも特に合金
鉄用原料として適用できるものはも酸化物換算でクロム
分が約1の重量%以上好ましくは12重量%以上「鉄お
よびクロムの有価成分が約2の重量%以上好ましくは3
の重量%以上およびソーダ分が約5重量%以下好ましく
は3重量%以下の各成分含有率を有することが必要であ
る。この理由は「本発明にかかる合金鉄用原料がそれ自
体又は他の製鉄用原料と併用されて効果的に有価分を回
収しうるためであり、この範囲からはずれるとスラグ成
分が多すぎたり「炉材の損傷を招くなどして大量使用が
不可となるからである。本発明に適用される含クロム鉱
盤はその履歴を問わず種々のものを用いることは可能で
あるが」その性質上できるだけクロム有価分が多くしか
もアルカリおよびカルシウム分の少し、方が好ましい。
In the present invention, among the above-mentioned reduction-neutralized products, those particularly applicable as raw materials for ferroalloys have a chromium content of about 1% by weight or more, preferably 12% by weight or more in terms of oxides. is about 2% by weight or more, preferably 3% by weight
It is necessary to have a content of each component of at least about 5% by weight, preferably at most 3% by weight of soda. The reason for this is that "the raw material for ferroalloy according to the present invention can be used by itself or in combination with other raw materials for iron manufacturing to effectively recover the valuable content; if it deviates from this range, the slag component may be too large" This is because large quantities of chromium-containing ore cannot be used as it may damage the furnace materials.Although it is possible to use various chromium-containing ore plates regardless of their history, due to their nature. It is preferable to have as much chromium as possible and a small amount of alkali and calcium.

一方〜酸は含クロム鉱律を改質して合金鉄用原料に適応
させるための不可欠な原料であるが、後述する処理方法
の如何によっては、その鉱連中の6価クロムを3価クロ
ムに還元させるために還元剤を併用する。
On the other hand, acid is an essential raw material for modifying chromium-containing minerals to make them suitable as raw materials for ferroalloys, but depending on the processing method described below, the hexavalent chromium in the minerals can be converted to trivalent chromium. A reducing agent is used in combination for reduction.

かかる還元剤としては、例えば硫酸第一鉄、硫化ソーダ
、亜硫酸、亜硫酸塩、チオ硫酸塩、硫黄、活性炭、グリ
オキザール又はヒドラジン等があげられる。また酸は単
なる水洗では溶出しない灘溶性のNa20成分を溶出さ
せるとともに余剰のCa○,Mg○および、A〆203
等のスラグ成分を溶かし去って有価成分であるCr20
3およびFe203含有率を高めるものであり、例えば
、硫酸、塩酸「硝酸などの鉱酸、蟻酸、酢酸等の有機酸
などがあげられる。従って、例えば酸化チタン製造に際
して創生する2価の鉄を含有する廃酸など各種化学工場
又は治金工程から廃出する工業廃液が安価であると共に
省資源の観点からみて実用的で好ましい。本発明にかか
る合金鉄用原料は、次のように工業的に製造することが
できる。
Examples of such reducing agents include ferrous sulfate, sodium sulfide, sulfite, sulfites, thiosulfates, sulfur, activated carbon, glyoxal, and hydrazine. In addition, the acid elutes Nada-soluble Na20 components that cannot be eluted by simple water washing, and also removes excess Ca○, Mg○, and A〆203.
By dissolving slag components such as Cr20, which is a valuable component,
3 and Fe203 content, such as sulfuric acid, hydrochloric acid, mineral acids such as nitric acid, and organic acids such as formic acid and acetic acid. The industrial waste fluids discharged from various chemical factories or metallurgical processes, such as waste acids, are inexpensive and practical from the viewpoint of resource saving. can be manufactured.

すなわち、含クロム鉱蓬、酸および還元剤をスラリー状
で反応させて改質処理する湿式法と前記鉱律と酸との混
合物を直接仮焼した後、可溶成分を浸出除去する乾式法
の2通りが代表的にあげられる。まず湿式法においては
、含クロム鉱蓬のスラ1′一を濃伴しながら酸および6
価クロムに対する酸化還元当量以上の還元剤を添加して
スラリーの最終pHが4以下となるまで反応を行なった
後、さらに必要に応じてアルカリを添加して中和処理す
る。反応は加温によって促進される。反応終了後は固液
分離し、次いで櫨過ケーキを洗浄した後乾燥して合金鉄
用原料に仕上げる。この乾燥の際、適当な結合剤を添加
して造粒化することができる。次に乾式法は、含クロム
鉱淫に適当量の水分の存在下に酸を添加して擁梓乃至混
練を行って均一に混合した後、この混合物を加熱炉で4
00〜1000℃に加熱する。
Namely, there are two methods: a wet method in which a chromium-containing mineral, an acid, and a reducing agent are reacted in a slurry form for modification, and a dry method in which a mixture of the mineral mineral and acid is directly calcined, and then the soluble components are leached out. Two ways are representative. First, in the wet method, acid and
After adding a reducing agent in an amount equal to or more than the redox equivalent to valent chromium and carrying out a reaction until the final pH of the slurry becomes 4 or less, an alkali is further added as necessary to perform a neutralization treatment. The reaction is accelerated by heating. After the reaction is completed, solid-liquid separation is performed, and the filtrate cake is then washed and dried to produce a raw material for ferroalloy. During this drying, a suitable binder can be added to form granules. Next, in the dry method, acid is added to the chromium-containing ore in the presence of an appropriate amount of water, and the mixture is mixed uniformly by mulling or kneading.
Heat to 00-1000°C.

これによって6価クロムは実質的に還元され、加熱後、
水洗してNa20等の可溶成分を分離除去し、さらに前
記と同様に乾燥することによって合金鉄用原料として仕
上げる。従って、この方法では、加熱により6価クロム
が還元されるので還元剤は必ずしも必要薬剤ではないが
、被処理鉱達の性状や焼成条件によって適宜使用するこ
ともできる。
As a result, hexavalent chromium is substantially reduced, and after heating,
It is washed with water to separate and remove soluble components such as Na20, and further dried in the same manner as described above to be finished as a raw material for ferroalloy. Therefore, in this method, since hexavalent chromium is reduced by heating, a reducing agent is not necessarily a necessary chemical, but it can be used as appropriate depending on the properties of the ores to be treated and firing conditions.

この方法における酸の量は湿式法の場合と同様でスラリ
ーのpHが約4以下になる程度である。
The amount of acid in this method is the same as in the wet method, and is such that the pH of the slurry is about 4 or less.

なお、還元中和処理において、クロムの酸化物、含水酸
化物を含有する各種の工場から発生する創生物、クロム
を含有する酸性物質は必要に応じて効果的にともに使用
することができる。また、乾燥に当り、いずれの場合に
おいても、コークスの如き炭素材,製鉄,製鋼又は金属
加工の際に発生するダストやスケール類を前記処理物と
混合してべレット化すると副生物が有効に回収されるの
でより好ましい。
In addition, in the reduction-neutralization treatment, chromium oxides, created substances generated from various factories containing hydrous oxides, and acidic substances containing chromium can be effectively used together as required. In addition, in any case, during drying, by-products can be effectively removed by mixing carbon materials such as coke, dust and scales generated during iron manufacturing, steelmaking, or metal processing with the above-mentioned processed materials and pelletizing them. This is more preferable because it can be recovered.

かくしていずれの方法によるにせよ、還元中和処理物は
アルカリその他可溶性成分が実質的に分離除去されてク
ロムおよび鉄などの有価成分は含クロム鉱藻よりも濃縮
されたものとなり、一方その他の成分は主としてA夕2
03,Mg0及びCa○等製鋼におけるスラグ形成成分
であるが、これらは特に易溶融性であって流動性に富む
スラグを形成して精錬作業を容易にする傾向が認められ
るなど、合金鉄用原料として効果的に使用することがで
きる。このように、本発明によれば含クロム鉱律の最も
問題とされた6価クロムを初めとするクロム分がFe2
03分と共に有価物として完全に回収され、更に他の成
分もスラグ形成剤として利用されるため、含クロム鉱律
の単なる無害化に止まらず、その特徴が十分に生されて
有効資源の回収が効果的に達成されうる。
In this way, regardless of the method used, in the reductively neutralized product, alkali and other soluble components are substantially separated and removed, and valuable components such as chromium and iron are more concentrated than in chromium-containing mineral algae, while other components are Mainly A evening 2
03, Mg0 and Ca○ are slag-forming components in steelmaking, but these are particularly easily meltable and have a tendency to form highly fluid slag, making refining work easier, and are used as raw materials for ferroalloys. It can be effectively used as In this way, according to the present invention, chromium content including hexavalent chromium, which has been the most problematic in the chromium-containing mineral regulations, is reduced to Fe2.
It is completely recovered as a valuable resource with 0.3 minutes, and other components are also used as slag forming agents, so it does not just detoxify chromium-containing minerals, but also makes full use of its characteristics, making it possible to recover effective resources. can be achieved effectively.

従って省資源が叫けばれている今日、最も合目的であっ
てその工業的意義は大きいと云えよう。
Therefore, it can be said that it is the most appropriate purpose and has great industrial significance in these days when resource saving is being called for.

次に本発明の実施例を示す。実施例 第1表に示す含クロム鉱盤粉末(粒度175ムの)10
0重量部と硫酸7.3重量部、硫酸第1鉄9.0重量部
及び水20の重量部をタンク内で反応させたあと固液を
分離する。
Next, examples of the present invention will be shown. Example Chromium-containing ore powder (particle size 175 mm) shown in Table 1 10
After reacting 0 parts by weight with 7.3 parts by weight of sulfuric acid, 9.0 parts by weight of ferrous sulfate, and 20 parts by weight of water in a tank, the solid and liquid are separated.

得られた固形物を約5倍量の水で洗浄した後ロータリー
キルンで乾燥する。ロータリーキルンの運転は最高温度
250℃、平均総時間1.虫時間の条件であった。これ
を合金鉄用原料Aとする。尚分離液は通常の排水処理の
条件で処理した。第1表 (数値は重量多) 次に第2表に示す含クロム鉱律粉末(粒度175一肌)
10の重量部と硫酸12.5重量部を均一に混合し、ロ
ータリーキルンにて最高温度800℃平均滞留時間2時
間の条件で焼成した。
The obtained solid is washed with about 5 times the amount of water and then dried in a rotary kiln. The rotary kiln operates at a maximum temperature of 250°C and an average total time of 1. It was a time-consuming condition. This is referred to as raw material A for ferroalloy. The separated liquid was treated under normal wastewater treatment conditions. Table 1 (values are based on weight) Next, Table 2 shows the chromium-containing mineral powder (particle size 175)
10 parts by weight of sulfuric acid and 12.5 parts by weight of sulfuric acid were uniformly mixed and fired in a rotary kiln at a maximum temperature of 800°C and an average residence time of 2 hours.

焼成物を1の音量の水で洗浄した後、固形物をロータリ
ーキルンにて最高温度250q0平均滞留時間1.5時
間の条件で乾燥した。これを合金鉄用原料Bとする。第
2表 (数値は重量多) 上記で得られた合金鉄用原料AおよびBの各10の重量
部に対し、それそれ珪石18重量部、生石灰1の重量部
、およびコークス10重量部を混合した*のち、この混
合物をゼーダーベルグ式電気炉に装.入して約1650
ooで溶融処理した。
After washing the baked product with 1 volume of water, the solid material was dried in a rotary kiln at a maximum temperature of 250 q and an average residence time of 1.5 hours. This is designated as raw material B for ferroalloy. Table 2 (values are based on weight) 18 parts by weight of silica stone, 1 part by weight of quicklime, and 10 parts by weight of coke are mixed with 10 parts by weight each of the raw materials A and B for ferroalloy obtained above. *After that, this mixture was placed in a Soederberg electric furnace. Approximately 1650 after entering
Melt processing was performed at oo.

得られた処理物及び回収率は第3表の通りであった。第
3表 以上の結果から明らかな如く、クロム含有鉱連中のクロ
ムの大部分はフェロクロムとして回収され、合金鉄用原
料として効果的であることがわかつた。
The obtained treated products and recovery rates are as shown in Table 3. As is clear from the results in Table 3 and above, most of the chromium in the chromium-containing ores was recovered as ferrochrome, which was found to be effective as a raw material for ferroalloys.

Claims (1)

【特許請求の範囲】 1 クロム鉱石からクロム酸ソーダを製造する際に副生
する含クロム鉱滓の還元中和処理物であって、酸化物換
算で少なくともクロム分が10重量%以上、鉄およびク
ロムの有価成分が20重量%以上およびソーダ分が5重
量%以下の各成分含有率を有することを特徴とする合金
鉄用原料。 2 還元中和処理物は湿式処理されたものであることを
特徴とする特許請求の範囲第1項記載の合金鉄用原料。 3 還元中和処理物は乾式処理されたものであることを
特徴とする特許請求の範囲第1項記載の合金鉄用原料。
4 還元中和処理物はペレツト状であることを特徴とす
る特許請求の範囲第1項記載の合金鉄用原料。
[Scope of Claims] 1. A reduced and neutralized product of chromium-containing slag produced as a by-product when producing sodium chromate from chromium ore, containing at least 10% by weight of chromium in terms of oxides, iron and chromium. A raw material for a ferroalloy, characterized in that the content of valuable components is 20% by weight or more and the content of soda is 5% by weight or less. 2. The raw material for a ferroalloy according to claim 1, wherein the reduced and neutralized product is wet-treated. 3. The raw material for a ferroalloy according to claim 1, wherein the reduced and neutralized product is dry-treated.
4. The raw material for a ferroalloy according to claim 1, wherein the reduced and neutralized product is in the form of pellets.
JP56098212A 1981-06-26 1981-06-26 Raw materials for ferroalloys Expired JPS609094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098212A JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098212A JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Publications (2)

Publication Number Publication Date
JPS581054A JPS581054A (en) 1983-01-06
JPS609094B2 true JPS609094B2 (en) 1985-03-07

Family

ID=14213665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098212A Expired JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Country Status (1)

Country Link
JP (1) JPS609094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591587B (en) * 2016-12-28 2018-04-13 中南大学 A kind of method of containing vanadium and chromium reducing slag selective oxidation alkali leaching separation vanadium chromium

Also Published As

Publication number Publication date
JPS581054A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
CN102703688B (en) The method of vanadium is reclaimed in vanadium titano-magnetite
EP3395456B1 (en) Treatment method for resource recycling of hexavalent chromium-containing residues
CN101209873A (en) Method for separating and recovering chromium from waste residue containing hexavalent chromium
CN101817553A (en) Method for treating arsenic-containing smoke dust
JP6585747B2 (en) Titanium-containing aggregate, production method thereof and use thereof
CN109913659A (en) A kind of method of antimony smelting arsenic alkali slag and flue gas during smelting comprehensive treatment
CN104561561A (en) Innocent treatment method for barium-containing waste residues
CN101182596A (en) Method for extracting vanadic anhydride from stone coal vanadium ore
CN112725629A (en) Preparation method for extracting nonferrous metal and reduced iron from steel slag
US5395601A (en) Re-calcination and extraction process for the detoxification and comprehensive utilization of chromic residues
CN110775995A (en) Treatment method for producing building material by using barium-containing slag mud
CN101817554A (en) Method for synthesizing calcium arsenate by oxygen pressure conversion
CN109133812A (en) A kind of processing method of electrolytic manganese residues
FI58349C (en) FOERFARANDE FOER BEHANDLING AV METALLHALTIGA STOFT OCH AVFALL FRAON METALLURGISK INDUSTRI
CN112430067B (en) Method for preparing ceramsite from acid vanadium extraction tailings
JPS609094B2 (en) Raw materials for ferroalloys
CN101116767A (en) Novel method of zero discharging of chromium and absolute utilization of resource
JPH01224204A (en) Insoluble industrial inorganic material producible from waste, production and use thereof
CN106216361B (en) Chromium residue detoxifying method of comprehensive utilization
CN102766761B (en) Method for extracting vanadium pentoxide from vanadium containing clay ores
CN113045327A (en) Ceramsite and preparation method and application thereof
CN105693051A (en) Curing and stabilizing agent for tannery sludge and method for treating pollution through curing and stabilizing agent
JPS5811761A (en) Raw material for alloy iron
JPS5825455A (en) Raw material for ferroalloy
CN110078254A (en) A method of heat-resisting material containing chromium is prepared using chromate waste water waste liquid