JPS581054A - Raw material for ferroalloy - Google Patents

Raw material for ferroalloy

Info

Publication number
JPS581054A
JPS581054A JP56098212A JP9821281A JPS581054A JP S581054 A JPS581054 A JP S581054A JP 56098212 A JP56098212 A JP 56098212A JP 9821281 A JP9821281 A JP 9821281A JP S581054 A JPS581054 A JP S581054A
Authority
JP
Japan
Prior art keywords
chromium
slag
raw material
ferroalloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56098212A
Other languages
Japanese (ja)
Other versions
JPS609094B2 (en
Inventor
Hiroyuki Kashiwase
弘之 柏瀬
Kingo Takeuchi
竹内 金吾
Muneo Mita
三田 宗雄
Sakae Iizuka
飯塚 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP56098212A priority Critical patent/JPS609094B2/en
Publication of JPS581054A publication Critical patent/JPS581054A/en
Publication of JPS609094B2 publication Critical patent/JPS609094B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a raw material which consists of reduction-neutralized chromium slag of specified contents of chromium, valuable components of iron and chromium and sodium respectively and which is extremely suitable for production of chromium-congt. alloys. CONSTITUTION:The chromium-contg. slag which is byproduced in the stage of producing Na2CrO4 from chromium ore is prepared. More specifically, the chromium-contg. slag having respective component contents of about >=10wt%, more particularly >=12wt% chromium in terms of oxide, about >=20wt%, more particularly, >=30wt% valuable components of iron and chromium, and about <=5wt%, more particularly <=3wt% sodium is preferable. Such chromium-contg. slag is reduction-neutralized by, for example, a wet method. More specifically, a reducing agent of an oxidation reduction equiv. to acid and Cr<6+> or above is added to the slurry of the chromium ore under agitation and these are allowed to react until the final pH of the slurry attains <=4. The product of reaction is subjected to solid-liquid sepn., and after the filter cake is washed, it is dried and is finished to the intended raw material for ferroalloy. It is possible to granulate this by adding a suitable binder to the cake in the stage of said drying.

Description

【発明の詳細な説明】 本発明は合金鉄用原料、特にクロム鉱石からクロム酸ソ
ーダを製造する際に副生ずる含クロム鉱滓に化学的処理
を加えたものをクロム含有合金鉄製造用の原料として有
効利用することに関する・−1一般に、クロム酸ソーダ
の工業的な製造は、クロム鉱石にソーダ灰苛性ソーダな
どのアルカリ剤を配合し、さらに必要に応じて石灰や不
活性充填剤などを添加した混合物を高温で酸化焙焼し、
次いで焙焼物を水で浸出することによってクロム酸ソー
ダ水溶液として得る方法が採られる。一方、この際多量
の含クロム浸出残液である含クロム鉱滓が副生じ、その
成分組成は焙焼条件、鉱石の種類あるいは石灰添加の有
無等により相違するが多くこれらのうちCr2O3成分
は主として3価クロムとして存在するが、6価クロムも
3,000〜15,000 ppM程度含まれている。
Detailed Description of the Invention The present invention uses raw materials for ferroalloys, particularly chromium-containing slag produced as a by-product when producing sodium chromate from chromium ore, through chemical treatment, as a raw material for producing chromium-containing ferroalloys. Regarding effective utilization -1 Generally, industrial production of sodium chromate is made by mixing chromium ore with an alkaline agent such as soda ash and caustic soda, and further adding lime, inert fillers, etc. as necessary. oxidized and roasted at high temperature,
Next, a method is adopted in which a sodium chromate aqueous solution is obtained by leaching the roasted product with water. On the other hand, at this time, a large amount of chromium-containing leaching residue, chromium-containing slag, is generated as a by-product, and its composition varies depending on the roasting conditions, type of ore, presence or absence of lime addition, etc. Among these, Cr2O3 components are mainly 3 Although it exists as valent chromium, it also contains about 3,000 to 15,000 ppM of hexavalent chromium.

またNa20 成分の大部分は水に難溶性ないし不溶性
の化合物として存在するため通常の浸出操作によっては
溶出しない。
Furthermore, since most of the Na20 component exists as a compound that is poorly soluble or insoluble in water, it is not eluted by normal leaching operations.

従来、このようなりロム鉱滓は、専ら浸出効率を高めて
可及的にクロム酸塩を回収した後は殆んど実用的な利用
価値は見い出されていない。従って、該鉱滓中の6価ク
ロムを硫酸第1鉄などの還元剤で3価クロムに還元処理
して埋立廃棄するのが通常であるけれども、含クロム鉱
滓の積極的な有効利用については検討されていないイつ
けではなく、代表的には次のような提案がなされている
Conventionally, such chromium slag has been found to have little practical utility after recovering as much chromate as possible by increasing the leaching efficiency. Therefore, although it is normal to reduce the hexavalent chromium in the slag to trivalent chromium using a reducing agent such as ferrous sulfate and dispose of it in a landfill, active and effective use of chromium-containing slag has not been studied. The following are typical proposals that have been made, rather than just the wrong ideas.

まず第1として、含クロム鉱滓に珪酸質と還元剤とを添
加混合して造粒した後、該造粒物を高温で焼成し、粒状
多孔質の珪酸塩としたものを軽量骨材として土木用に利
用する。(特公昭52−10094号)第2として、含
クロム鉱滓に酸を作用させることによって、Fe2O3
,At203およびj、J g○等の成分:の一部を溶
解させ、これら塩類の水溶液を下水用水処理剤として利
用する。(特開昭47−110.10号) しかしながら、これらの利用法のうち、前者の軽量骨材
に供する方法は、多量の珪酸質を添加し、融点に近い高
温で加熱するために大規模の設’、1Mと多量のエネル
ギーを必要とする欠点があり、加えて、かかる経済的犠
牲を要してもなを付加価値は低く、使用されるとは限ら
ないため工業的な方法とは云い難い1、 また、後者の水処理剤に供する方法は、含クロム鉱滓中
の一成分が利用されるにすぎず合理的な方法ではない。
First, after adding and mixing chromium-containing slag with silicic acid and a reducing agent and granulating it, the granulated product is fired at a high temperature to form a granular porous silicate, which is used as a lightweight aggregate for civil engineering. use for purposes. (Special Publication No. 52-10094) Second, by applying acid to chromium-containing slag, Fe2O3
, At203 and components such as j, J g○ are partially dissolved, and an aqueous solution of these salts is used as a sewage water treatment agent. (Japanese Unexamined Patent Publication No. 110.10/1982) However, among these methods, the former method for making lightweight aggregates requires large-scale production in order to add a large amount of silicic acid and heat it at a high temperature close to the melting point. It has the disadvantage of requiring a large amount of energy (1M) to set up, and in addition, even if such an economic sacrifice is required, the added value is low and it is not always used, so it cannot be called an industrial method. In addition, the latter method of providing water treatment agents is not a rational method because only one component in the chromium-containing slag is used.

いずれにせよ、含クロム鉱滓がゆえの特徴を生じた積極
的な有効利用はなされていないのである本発明者等は、
このような状況に鑑み、クロム鉱滓の特徴を生じたより
効果的かつ能率的な利用法につい′て各種の研究・検討
を重ねた結果、該鉱滓に化学的処理を加えることによっ
て得られる特定組成の処理物が含クロム合金鉄製造用の
原料として極めて好適であることを見い出し本発明を完
成した。
In any case, chromium-containing slag has not been actively and effectively utilized for its characteristics.
In view of this situation, as a result of various studies and examinations on more effective and efficient utilization methods that give rise to the characteristics of chromium slag, we have found that a specific composition of chromium slag can be obtained by chemically treating the chromium slag. The present invention was completed by discovering that the treated product is extremely suitable as a raw material for producing chromium-containing iron alloys.

すなわち、本発明はクロム鉱石からクロム酸ソーダを製
造する際に副生ずる含クロム鉱滓の還元中和処理物であ
って、酸化物換算で少なくともクロム分が10重量%以
上、鉄およびクロムの有価成分が20重量%思上および
ソーダ分が5重量に以下の各成分含有率を有することを
特徴とする合金鉄用j車重にかかる。
That is, the present invention is a reduced-neutralized product of chromium-containing slag produced as a by-product when producing sodium chromate from chromium ore, which contains at least 10% by weight of chromium in terms of oxide, and contains valuable components of iron and chromium. The vehicle weight for ferroalloy is 20% by weight, and the soda content is 5% by weight, and the content of each component is as follows.

本発明者等の検討結果によれば、一般に含クロム鉱滓に
は著量の6価クロムやNa2O成分が含まれているので
環境汚染の原因となり、また多量のCaO成分を含有す
る場合もあるため、それ自体としては合金鉄用原料とし
ては適さない。また敢えて使用したとしても多量のCa
O成分はクロムおよび鉄などの有価成分含有率を低下す
るものであるため、合金鉄製造の工程で必要以上にスラ
グを生成することになりエネルギーの増大を招く。しか
るに、かかる鉱滓であっても鉱酸によって還元中和処理
されたものは、合金鉄の原料としてクロム鉱滓の特徴を
生じた有効利用ができることがわかった。
According to the study results of the present inventors, chromium-containing slag generally contains significant amounts of hexavalent chromium and Na2O components, causing environmental pollution, and may also contain large amounts of CaO components. , itself is not suitable as a raw material for ferroalloys. Also, even if you dare to use it, a large amount of Ca
Since the O component lowers the content of valuable components such as chromium and iron, more slag is produced than necessary in the process of producing ferroalloy, resulting in an increase in energy. However, it has been found that such slag, which has been reduced and neutralized with mineral acid, can be effectively used as a raw material for ferroalloy, which has the characteristics of chromium slag.

従って、本発明において含クロム鉱滓の還元中和処理物
というのは、含クロム鉱滓の塩基性成分を酸で中和する
と同時に含有する6価クロムを還元して実質的に6価ク
ロムを含有していない処理物を意味する。本発明におい
て、上記還元中和処理物のうち、特に合金鉄用原料とし
て適用できるものは、酸化物換算でクロム分が約10重
量96′以上好ましくは12重量%以上、鉄およびクロ
ムの有価成分が約20重量%以上好ましくは30車量%
以上およびソーダ分が約5車量に以下好ましくは3重量
%以下の各成分含有率を有することが必要である。この
理由は、本発明にかかる合金鉄用原料がそれ自体又は他
の製鉄用原料と併用されて効果的に有価分を回収しうる
ためであり、この範囲からはずれるとスラグ成分が多す
ぎたり、炉材の損傷を招くなどして大量使用が不可とな
るからである。
Therefore, in the present invention, the reduced and neutralized product of chromium-containing slag means that the basic components of chromium-containing slag are neutralized with an acid and at the same time, the hexavalent chromium contained therein is reduced to substantially contain hexavalent chromium. refers to processed materials that have not been processed. In the present invention, among the above-mentioned reduction-neutralized products, those particularly applicable as raw materials for ferroalloys have a chromium content of about 10% by weight or more, preferably 12% by weight or more in terms of oxide, and valuable components of iron and chromium. is about 20% by weight or more, preferably 30% by weight
It is necessary to have a content of each component above and below about 5% by weight, preferably below 3% by weight. The reason for this is that the raw material for ferroalloy according to the present invention can be used by itself or in combination with other raw materials for iron manufacturing to effectively recover valuable components, and if it deviates from this range, the slag component may be too large, This is because large quantities cannot be used because it may damage the furnace materials.

本発明に適用される含クロム鉱滓はその履歴を問わず種
々のものを用いることiま可能であるが、その性質上で
きるだけクロム有価分が多くしかもアルカリおよびカル
シウム分の少い方が好ましい。
Various chromium-containing slags can be used in the present invention regardless of their history, but due to their properties, it is preferable to have as much chromium as possible and as little alkali and calcium as possible.

一方、酸は含クロム鉱滓を改質1して合金鉄川原′#)
に適応させるための不可欠な原料であるが、後述する処
理方法の如何によっては、その鉱滓中の6価クロムを3
価クロムに還元させるために還元剤を併用する。かかる
還元剤としては、例えば硫酸第一鉄、硫化ソーダ、亜硫
酸、亜硫酸塩、チオ硫酸塩、硫黄、活性炭、グリオキザ
ール又はヒドラジン等があげられる。また酸は単なる水
洗では溶出しない難溶性のNa、20成分を溶出させる
とともに余剰のCaO、MgOおよび、At203等の
スラグ成分を溶かし去って有価成分であるCr2O,お
よびFe203含有率を高めるものであり、例えば、硫
酸、塩酸、硝酸などの鉱酸、蟻酸、酢酸等の有機酸など
があげられる。従って、例えば酸化チタン製造に際して
副生ずる2価の鉄を含有する廃酸など各種化学工場又は
冶金工程から廃山する工業廃液が安価であると共に省資
源の観点からみて実用的で好ましい。
On the other hand, the acid is made by modifying chromium-containing slag 1 and making it a ferroalloy Kawahara'#).
However, depending on the processing method described below, the hexavalent chromium in the slag can be reduced to 3.
A reducing agent is used in combination to reduce it to valent chromium. Examples of such reducing agents include ferrous sulfate, sodium sulfide, sulfite, sulfites, thiosulfates, sulfur, activated carbon, glyoxal, and hydrazine. In addition, acid elutes poorly soluble Na and 20 components that cannot be eluted by simple water washing, and dissolves excess CaO, MgO, and slag components such as At203 to increase the content of valuable components Cr2O and Fe203. Examples include mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as formic acid and acetic acid. Therefore, for example, industrial waste fluids discarded from various chemical factories or metallurgical processes, such as waste acid containing divalent iron produced as a by-product during the production of titanium oxide, are inexpensive and practical from the viewpoint of resource conservation, and are therefore preferable.

本発明にかかる合金鉄用原料は、次のように工業°的に
製造することができる。すなわち、含クロム鉱滓、酸お
よび還元剤をスラリー状で反応させて改質処理する湿式
法と前記鉱滓と酸との混合物を直接仮焼した後、可溶成
分を浸出除去する乾式法の2通りが代表的にあげられる
The raw material for the ferroalloy according to the present invention can be industrially produced as follows. Specifically, there are two methods: a wet method in which chromium-containing slag, an acid, and a reducing agent are reacted in a slurry form for modification, and a dry method in which a mixture of the slag and acid is directly calcined, and then soluble components are leached out. are representative examples.

まず湿式法においては、含クロム鉱滓のスラリーを攪拌
しながら酸および、6価クロムに対する酸化還元当量以
上の還元剤を添加してスラリーの最終pHが4以下とな
るまで反応を行なった後−さらに必要に応じてアルカリ
を添加して中和処理する。反応は加温によって促進され
る。反応終了後は固液分離し、次いで濾過ケーキを洗浄
した後乾燥して合金鉄用原料に仕上げる。この乾燥の際
、適当な結合剤を添加して造粒化することができる。
In the wet method, a slurry of chromium-containing slag is first added with an acid and a reducing agent having an oxidation-reduction equivalent or more for hexavalent chromium while stirring, and the reaction is carried out until the final pH of the slurry becomes 4 or less. Neutralize by adding alkali as necessary. The reaction is accelerated by heating. After the reaction is completed, solid-liquid separation is performed, and the filter cake is then washed and dried to produce a raw material for ferroalloy. During this drying, a suitable binder can be added to form granules.

次に乾式法は、含クロム鉱滓に適当量の水分の存在下に
酸を添加して攪拌乃至混練を行って均一に混合した後、
この混合物を加熱炉で400〜1000℃に加熱する。
Next, in the dry method, acid is added to the chromium-containing slag in the presence of an appropriate amount of water, stirred or kneaded to mix uniformly, and then
This mixture is heated to 400-1000°C in a heating furnace.

これによって6価クロムは実質的に還元され、加熱後、
水洗してNa2O等の可溶成分を分離除去し、さらに前
記と同様に乾燥することによって合金鉄用原料として仕
上げる。
As a result, hexavalent chromium is substantially reduced, and after heating,
It is washed with water to separate and remove soluble components such as Na2O, and further dried in the same manner as described above to be finished as a raw material for ferroalloy.

従って、この方法では、加熱により6価クロムが還元さ
れるので還元剤は必ずしも必要薬剤ではないが、被処理
鉱滓の性状や焼成条件によって適宜1史用することもで
きる、 この方法における酸の量は湿式法の場合と同様でスラリ
ーのpHが約4以下になる程度である。
Therefore, in this method, since hexavalent chromium is reduced by heating, a reducing agent is not necessarily a necessary agent, but it can be used as appropriate depending on the properties of the slag to be treated and the firing conditions.Amount of acid in this method The pH of the slurry is about 4 or less, which is the same as in the wet method.

なお、還元中和処理において、クロムの酸化物、含水酸
化物を含有する各種の工場から発生する副生物、クロム
を含有する酸性物質は必要に応じて一効果的にともに使
用することができる。
In addition, in the reduction-neutralization treatment, by-products generated from various factories containing chromium oxides and hydrous oxides, and acidic substances containing chromium can be effectively used together as required.

また、乾燥に当り、いずれの場合においても。Also, when drying, in any case.

コークスの如き炭素材、製鉄、製鋼又は金属加工の際に
発生するダストやスケール類を前記処理物と混合してペ
レット化すると副生物が有効に回収されるのでより好ま
しい。かくしていずれの方法によるにせよ、還元中和処
理物はアルカリその他可溶性成分が実質的に分離除去さ
れてクロムおよび鉄などの有価成分は含クロム鉱滓より
も濃縮されたものとなり、一方その他の成分は主として
A40.。
It is more preferable to mix carbon materials such as coke, dust and scales generated during iron manufacturing, steel manufacturing, or metal processing with the treated material and pelletize it, since by-products can be effectively recovered. In this way, regardless of the method used, the reduced and neutralized product has alkali and other soluble components substantially separated and removed, and valuable components such as chromium and iron are more concentrated than in chromium-containing slag, while other components are Mainly A40. .

MgO及びCaO等製鋼におけるスラグ形成成分である
が、これらは特に易溶敵性であって流動性に富むスラグ
を形成して精錬作業を容易にする傾向が認められるなど
、合金鉄用原料として効果的lこ赫用することができる
MgO and CaO are slag-forming components in steelmaking, and these are particularly easily soluble and have a tendency to form highly fluid slag to facilitate refining operations, making them effective as raw materials for ferroalloys. It can be used for both purposes.

このように、本発明によれば含クロム鉱滓の最も問題と
された6価クロムを初めとするクロム分がFe20.分
と共に有価物として完全に回収され、更に他の成分もス
ラグ形成剤として利用されるため、含クロム鉱滓の単な
る無害化に止まらず、その特徴が十分に生されて有効資
源の回収が効果的に達成されつる。
As described above, according to the present invention, the chromium content including the most problematic hexavalent chromium in chromium-containing slag can be reduced to Fe20. Since the chromium-containing slag is completely recovered as a valuable resource along with other components, and other components are also used as slag forming agents, the chromium-containing slag is not only rendered harmless, but its characteristics are fully utilized and the recovery of useful resources is effective. Accomplished by Vine.

従って省資源が叫けばれている今日、最も合目的であっ
てその工業的意義は大きいと云えよう。
Therefore, it can be said that it is the most appropriate purpose and has great industrial significance in these days when resource saving is being called for.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 第1表に示す含クロム鉱滓粉末(粒度175μm)10
0重量部と硫酸7.3重量部、硫酸第1鉄90重量部及
び水200重量部をタンク内で反応させたあと固液を分
離する。得られた固形物を約5倍量の水で洗浄した後ロ
ータリーキルンで乾燥する。
Example Chromium-containing slag powder (particle size 175 μm) shown in Table 1 10
After reacting 0 parts by weight with 7.3 parts by weight of sulfuric acid, 90 parts by weight of ferrous sulfate, and 200 parts by weight of water in a tank, the solid and liquid are separated. The obtained solid is washed with about 5 times the amount of water and then dried in a rotary kiln.

ロータリーキルンの運転は最高温度250℃、平均滞留
時間15時間の条件であった。 これを合金鉄用原料A
とする。 尚分離液は通常の排水処理の条件で処理した
The rotary kiln was operated at a maximum temperature of 250° C. and an average residence time of 15 hours. This is raw material A for ferroalloy.
shall be. The separated liquid was treated under normal wastewater treatment conditions.

次に第2表に示す含クロム鉱滓粉末(粒度175μm)
 lo o重量部と硫酸125重量部を均一に混合し、
ロータリーキルンにて最高温度800℃平均滞留時間2
時間の条件で焼成した。焼成物を10倍量の水で洗浄し
た後、固形物をロータリーキルンにて最高温度250℃
平均滞留時間】、5時間の条件で乾燥した。これを合金
鉄用原料Bとする。
Next, chromium-containing slag powder (particle size 175 μm) shown in Table 2
Uniformly mix 125 parts by weight of lo o and 125 parts by weight of sulfuric acid,
Maximum temperature 800℃ in rotary kiln Average residence time 2
Fired under certain conditions. After washing the baked product with 10 times the amount of water, the solid material was heated to a maximum temperature of 250°C in a rotary kiln.
The average residence time was 5 hours. This is designated as raw material B for ferroalloy.

上記で得られた合金鉄用原料AおよびBの各100重量
部に対し、それぞれ珪石18重量部、生石灰10重量部
、およびコークス17重量部を混合したのち、この混合
物をゼーダーベルグ式電気炉に装入して約1641o’
cで溶融、処理した。得られた処理物及び回収率は第3
表の通りであった。
After mixing 18 parts by weight of silica, 10 parts by weight of quicklime, and 17 parts by weight of coke with 100 parts by weight of each of the raw materials A and B for ferroalloy obtained above, this mixture was placed in a Soederberg electric furnace. Approximately 1641 o'
It was melted and treated at c. The obtained treated products and recovery rate are the third
It was as shown in the table.

第  3  表 以上の結果から明らかな如く、クロム含有鉱滓中のクロ
ムの大部分はフェロクロムとして回収され、合金鉄用原
料として効果的であることがわかった。
As is clear from the results shown in Table 3, most of the chromium in the chromium-containing slag was recovered as ferrochrome, which was found to be effective as a raw material for ferroalloys.

Claims (1)

【特許請求の範囲】 1′1)  クロム鉱石からクロム酸ソーダを製造する
際に副生ずる含クロム鉱滓の還元中和処理物であって、
酸化物換算で少なくともクロム分が10重量%以上、鉄
およびクロムの有価成分が20重量%以上およびソーダ
分が5重量%以上の各成分含有率を有することを特徴さ
する合金鉄用原料っ (2)  還元中和処理物は湿式処理されたものである
ことを特徴とする特許請求の範囲第1項記載の合金鉄用
原料。 (3)  還元中和処理物は乾式処理されたものである
ことを特徴とする特許請求の範囲第1項記載の合金鉄用
原料。 (4)還元中和処理物はペレット状であることを特徴と
する特許請求の範囲第1項記載の合金鉄用原料。
[Scope of Claims] 1'1) A reduced and neutralized product of chromium-containing slag produced as a by-product during the production of sodium chromate from chromium ore, comprising:
A raw material for a ferroalloy characterized by having a chromium content of at least 10% by weight or more, a valuable component of iron and chromium at least 20% by weight, and a soda content of at least 5% by weight (calculated as an oxide). 2) The raw material for a ferroalloy according to claim 1, wherein the reduced and neutralized product is wet-treated. (3) The raw material for a ferroalloy according to claim 1, wherein the reduction-neutralized product is dry-treated. (4) The raw material for a ferroalloy according to claim 1, wherein the reduced and neutralized product is in the form of pellets.
JP56098212A 1981-06-26 1981-06-26 Raw materials for ferroalloys Expired JPS609094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098212A JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098212A JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Publications (2)

Publication Number Publication Date
JPS581054A true JPS581054A (en) 1983-01-06
JPS609094B2 JPS609094B2 (en) 1985-03-07

Family

ID=14213665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098212A Expired JPS609094B2 (en) 1981-06-26 1981-06-26 Raw materials for ferroalloys

Country Status (1)

Country Link
JP (1) JPS609094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591587A (en) * 2016-12-28 2017-04-26 中南大学 Method for separating vanadium and chromium from vanadium-chromium containing reducing slag through selective oxidation and alkaline leaching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591587A (en) * 2016-12-28 2017-04-26 中南大学 Method for separating vanadium and chromium from vanadium-chromium containing reducing slag through selective oxidation and alkaline leaching

Also Published As

Publication number Publication date
JPS609094B2 (en) 1985-03-07

Similar Documents

Publication Publication Date Title
CN102703688B (en) The method of vanadium is reclaimed in vanadium titano-magnetite
CN103667710B (en) Technology for clean production of vanadium pentoxide employing high-calcium vanadium slag
WO2017174012A1 (en) Molten-salt chlorinated-slag resource processing method
CN102220478B (en) Preparation method for vanadium pentoxide
DK152094B (en) PROCEDURE FOR THE TREATMENT OF WASTE CONTAINING HEAVY METAL Contaminants
CN105884156A (en) Resource utilization method for metal surface treatment sludge
CN102586612A (en) Method for recovering vanadium and chromium from vanadium and chromium-containing slag
CN102219257A (en) Method for preparing vanadium pentoxide
JP6585747B2 (en) Titanium-containing aggregate, production method thereof and use thereof
CN109913659A (en) A kind of method of antimony smelting arsenic alkali slag and flue gas during smelting comprehensive treatment
CN112725629A (en) Preparation method for extracting nonferrous metal and reduced iron from steel slag
US5395601A (en) Re-calcination and extraction process for the detoxification and comprehensive utilization of chromic residues
CN102220499B (en) Roasting-leaching method of fine vanadium slags
US4069295A (en) Treating raw materials containing titanium components
CN101817554A (en) Method for synthesizing calcium arsenate by oxygen pressure conversion
SE449757B (en) PROCEDURE FOR THE RECYCLING OF VALUABLE METALS FROM CATALYSTS
CN102220495B (en) Method for purifying vanadium-precipitating mother liquor
CN107475520A (en) The separating technology of iron aluminium in a kind of red mud
JPS581054A (en) Raw material for ferroalloy
US4126453A (en) Composition for a fluidizing flux in the production of iron and steel
CN113136488B (en) Wet treatment process for iron vitriol slag in zinc hydrometallurgy
US4112046A (en) Disintegration of silica-rich chromite
CN102766761B (en) Method for extracting vanadium pentoxide from vanadium containing clay ores
JPS581053A (en) Raw material for ferroalloy
Kologrieva et al. The investigate of vanadium-containing slurry oxidation roasting process for vanadium extraction