JPS6089981A - Impatt diode - Google Patents

Impatt diode

Info

Publication number
JPS6089981A
JPS6089981A JP19859683A JP19859683A JPS6089981A JP S6089981 A JPS6089981 A JP S6089981A JP 19859683 A JP19859683 A JP 19859683A JP 19859683 A JP19859683 A JP 19859683A JP S6089981 A JPS6089981 A JP S6089981A
Authority
JP
Japan
Prior art keywords
substrate
electrode
chemical etching
pellet
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19859683A
Other languages
Japanese (ja)
Inventor
Kazuo Iwase
和夫 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19859683A priority Critical patent/JPS6089981A/en
Publication of JPS6089981A publication Critical patent/JPS6089981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/864Transit-time diodes, e.g. IMPATT, TRAPATT diodes

Abstract

PURPOSE:To prevent the manufacturing yield from decreasing in an IMPATT diode formed in a mesa structure by coating the surface of a substrate formed when chemical etching is performed from a contact layer side with a metal film. CONSTITUTION:The substrate side of an Si epitaxial wafer on which an N<-> type operation layer 2 and a P<+> type contact layer 3 are sequentially formed on an N<+> type Si is cut by mechanical or chemical etching, and circular electrodes 4, 4' made of multilayer structure of Ti-Pt-Au are formed on both side surfaces. Then, with the electrode 4 of the layer 3 side as a mask a mesa structure is formed at the junction by chemical etching, and a gold film 5 is then deposited on the mesa side. This gold film is formed on the electrode 4 and the substrate 1, but becomes a shade at the P-N junction in which the electrode 4 is projected from the mesa, and the gold film is not formed on the portion. After the gold film 5 is then cut, with the electrode 4' from the substrate 1 side as a mask the substrate is cut by chemical etching to obtain a pellet.

Description

【発明の詳細な説明】 本発明は、主に、ミリ波帯で動作させるインバットダイ
オードのペレット構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a pellet structure of an invat diode operated in a millimeter wave band.

従来より、インバットダイオードは発振特性及が信頼性
を上げる為に熱抵抗を低くする必要があシ、P−N接合
部がパッケージのヒートジンク側に近くなるような、い
わゆるアップサイドダウン構造で組立てられている。し
たがって、その組立を容易にする為に、ベレット構造も
第1図に示す如(N”シリコン基板1.N−動作層2.
P3コンタクト層3から成る円板状のシリコンチップの
両端に、耐熱性の優れたTi−Pt−Auの多層構造か
ら成る電極用金属層4,4′を有する構造となっている
Traditionally, in-butt diodes have required low thermal resistance to improve oscillation characteristics and reliability, and are assembled in a so-called upside-down structure in which the P-N junction is close to the heat sink side of the package. It is being Therefore, in order to facilitate its assembly, a pellet structure is also used as shown in FIG.
The structure has electrode metal layers 4, 4' made of a Ti--Pt--Au multilayer structure with excellent heat resistance at both ends of a disk-shaped silicon chip made of the P3 contact layer 3.

第2図は上記ペレットの製造方法を示すものであり、N
+ シリコン基板1上にN−動作層2、P1コンタクト
層3が順次形成されたエビウェハーを約50μmの厚さ
まで削り、その両面に’:[’1−Pt −Auの多層
構造から成る円形電極4.4′を相対して形成する(第
2図(a))。次にP−N接合側の電極4をマスクにし
て化学的食刻法によシメサ部を形成しく第2図中))、
最後に基板側の電極4′をマスクにして化学的食刻法に
よシ基板を切断して個々のベレットに分離する(第2図
(C))。
Figure 2 shows the method for producing the above pellets, and shows the method for producing the pellets.
+ A shrimp wafer in which an N- operation layer 2 and a P1 contact layer 3 were sequentially formed on a silicon substrate 1 was ground to a thickness of about 50 μm, and a circular electrode 4 having a multilayer structure of ':['1-Pt-Au was formed on both sides. .4' are formed facing each other (Fig. 2(a)). Next, using the electrode 4 on the P-N junction side as a mask, a mesa portion is formed by chemical etching (in Fig. 2).
Finally, the substrate is cut into individual pellets by chemical etching using the electrode 4' on the substrate side as a mask (FIG. 2(C)).

第3図はインバットダイオードの一般的な構造図でベレ
ット11をパッケージのペデスタル12上にアップサイ
ドダウン方式で熱圧着し、更に電極用金テープ13をベ
レット11とパッケージのフランジ14とに熱圧着し、
最後にキャップ15を封着して組立を完了する。
Figure 3 is a general structural diagram of an invat diode, in which a pellet 11 is thermocompression bonded to the pedestal 12 of the package in an upside-down method, and a gold tape 13 for electrode is thermocompression bonded to the pellet 11 and the flange 14 of the package. death,
Finally, the cap 15 is sealed to complete the assembly.

さて、インバットダイオードが動作中に発生する高周波
電流はベレットを縦方向に介して流れるが、動作周波数
がミリ波領域に達すると電流は表皮効果の為、ベレット
基板の表面に沿って流れる様にな如、シリコン基板の有
する抵抗が無視できなくなる。これは高周波振出力特性
に多大な悪影響を及ぼす。一方シリコン基板を薄くする
ことによシ、シリコン基板の抵抗を減少させることが可
能であるが、それでも50μm程度の厚さが限度で1L
これよシ薄くするとベレット製造中にウェハー割れが発
生し1歩留シが著しく低下するという欠点があった。
Now, the high-frequency current generated when the invat diode is in operation flows vertically through the pellet, but when the operating frequency reaches the millimeter wave region, the current begins to flow along the surface of the pellet substrate due to the skin effect. As a result, the resistance of the silicon substrate cannot be ignored. This has a great negative effect on the high frequency output characteristics. On the other hand, by making the silicon substrate thinner, it is possible to reduce the resistance of the silicon substrate, but even so, the thickness of about 50 μm is the limit for 1L.
If the wafer was made thinner than this, wafer cracking would occur during pellet production, resulting in a significant decrease in yield.

本発明は、主にミリ波帯で動作させるインバットダイオ
ードベレットの製造歩留シを低下させることなく、発振
動作特性の優れたインバットダイオードを提供すること
を目的としている。
An object of the present invention is to provide an invat diode with excellent oscillation operation characteristics without reducing the production yield of an invat diode pellet that operates mainly in the millimeter wave band.

本発明のインバットダイオードはシリコン基板上に動作
層及びコンタクト層が順次形成されたシリコンエビウェ
ハーの両面に電極用金属層を付層し、この金属層を所定
のパターンに形成した後。
The in-bat diode of the present invention is manufactured by forming an electrode metal layer on both sides of a silicon wafer in which an active layer and a contact layer are sequentially formed on a silicon substrate, and then forming this metal layer into a predetermined pattern.

シリコンエビウェハーをコンタクト層側及び基板側の両
面から化学的食刻法を用いてメサ構造並びに基板切断が
なされて形成されたシリコンチップを有し、このシリコ
ンチップは、コンタクト層側からの化学的食刻によ多形
成された基板表面に導電性の優れた金属膜で被われてい
ることを特徴としている。
It has a silicon chip formed by cutting a silicon shrimp wafer into a mesa structure and cutting the substrate using chemical etching from both the contact layer side and the substrate side. It is characterized in that the surface of the substrate formed by etching is covered with a highly conductive metal film.

次に、本発明を芙施例によシ説明する。Next, the present invention will be explained using several examples.

第4図は本発明のインバットダイオードペレットの製造
方法を示したもので、まず厚さ300μm程麓のN゛シ
リコン基板1上にN−動作層2及びP+コンタクト層3
が順次形成されたシリコンエビウェハーの基板側を1機
械的食刻あるいは、化学的食刻を用いて50μm程度の
厚さまで削シ、この両面に’Pi−Pt−Au の多層
構造から成る円形電極4.4′を相対して形成する(第
4図(a))。次にコンタクト層3側の電極4をマスク
にして、化学的食刻法により接合部にメサ構造を形成し
く第4図中))、その後メサ側に金被膜5を蒸着する(
第4図(C))。この金被膜は電極4及びシリコン基板
上には形成されるが、電極4がメサ部より突出している
為P−N接合部は影になシその部分には金被膜が形成さ
れない。次にシリコン基板上の金被膜5を機械的あるい
は化学的食刻法を用いて切断した後(第4図(d))、
シリコン基板側よシミ極4′をマスクにして化学的食刻
法により基板切断を施し、個々に分離すれば、目的のベ
レットが製造できる(第4図(e))。
FIG. 4 shows a method for manufacturing an in-vat diode pellet according to the present invention. First, an N- active layer 2 and a P+ contact layer 3 are placed on a N-silicon substrate 1 with a thickness of about 300 μm.
The substrate side of the silicon shrimp wafer on which the wafers were sequentially formed was ground to a thickness of about 50 μm using mechanical etching or chemical etching, and circular electrodes made of a multilayer structure of 'Pi-Pt-Au were formed on both sides. 4.4' are formed facing each other (Fig. 4(a)). Next, using the electrode 4 on the contact layer 3 side as a mask, a mesa structure is formed at the junction by chemical etching (see Fig. 4), and then a gold film 5 is deposited on the mesa side (
Figure 4(C)). This gold film is formed on the electrode 4 and the silicon substrate, but since the electrode 4 protrudes from the mesa portion, the P-N junction is not in the shadow and no gold film is formed on that part. Next, after cutting the gold film 5 on the silicon substrate using mechanical or chemical etching (FIG. 4(d)),
By cutting the substrate from the silicon substrate side by chemical etching using the stain electrode 4' as a mask and separating it into individual pieces, the desired pellet can be manufactured (FIG. 4(e)).

本発明によれば、インバットダイオードが動作中にベレ
ットを流れる高周波電流が表皮効果によりベレットの表
面を流れても、シリコン基板の一部が良導体の金被膜で
被われているため、従来のベレットよシ抵抗成分が減り
それに伴い損失も減少し、発振出力特性が優れたものに
なる。更にペ5− レットの製造面から見ても、従来は、ミIJ波領域で使
用するインバットダイオードは、特性劣化を防止するた
めに、ウエノ1−厚さ15μm程度にしていたのでウェ
ハー加工中にウニ/S−割れが多発し、歩留シが著しく
低下していたが、これに対して本発明によれば、従来よ
p厚いままで加工できるため製造歩留シの低下を防止で
きるという利点がある。
According to the present invention, even if the high-frequency current that flows through the pellet during operation of the invat diode flows on the surface of the pellet due to the skin effect, the silicon substrate is partially covered with a gold film that is a good conductor. The resistance component is reduced and the loss is accordingly reduced, resulting in excellent oscillation output characteristics. Furthermore, from the perspective of pellet manufacturing, in the past, in-butt diodes used in the mid-IJ wave region were made to have a thickness of about 15 μm in order to prevent characteristic deterioration; On the other hand, sea urchin/S-cracks occurred frequently and the yield decreased significantly, but according to the present invention, it is possible to prevent the decrease in manufacturing yield because it can be processed while keeping the thickness thicker than before. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のベレットの断面図、第2図(a)〜(
C)は従来のベレットの製造法を示す各工程断面図、第
3図はインバットダイオードの構、遣口、第4図(a)
〜(e)は本発明の一実施例のベレット、製造法に基づ
く各工程断面図である。 1・・・・・・シリコン基板、2・・・・・・動作層、
3・・・・・・コンタクト層、4.4′・・・・・・T
 i −P t−Au多層金属膜、5・・・・・・金被
膜、11・・・・・・インバットダイオードペレット、
12・・・・・・パッケージのペデスタル。 13・・・・・・金テープ514・・・・・・パッケー
ジのフラン6− ジ、15・・・・・・キャップ。 −7− 篤 / 図 ^ごノr 物 3 図
Figure 1 is a cross-sectional view of a conventional pellet, and Figures 2 (a) to (
C) is a cross-sectional view of each process showing the conventional pellet manufacturing method, Figure 3 is the structure of the in-butt diode, and Figure 4 (a)
-(e) are cross-sectional views of each process based on the manufacturing method of a pellet according to an embodiment of the present invention. 1... Silicon substrate, 2... Operating layer,
3...Contact layer, 4.4'...T
i-P t-Au multilayer metal film, 5...gold coating, 11...invat diode pellet,
12...Pedestal of the package. 13...Gold tape 514...Package flange 6-ji, 15...Cap. -7- Atsushi / Figure ^ Gonor thing 3 Figure

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上に動作層及びコンタクト層が順次形成さ
れたウェハーの両面に、電極用金属層を付着し、該金属
層を所定の形状に形成した後、コンタクト層側並びに基
板側の両面から化学的食刻法を用いて、メサ構造に形成
されたインバットダイオードに於て、コンタクト層側か
らの化学的食刻が施された際に生じた基板表面が金属膜
で被われていることを特徴とするインバットダイオード
A metal layer for electrodes is attached to both sides of a wafer on which an active layer and a contact layer are sequentially formed on a silicon substrate, and after forming the metal layer into a predetermined shape, chemical treatment is applied from both the contact layer side and the substrate side. In an in-bat diode formed into a mesa structure using an etching method, the substrate surface created when chemical etching is applied from the contact layer side is covered with a metal film. Invat diode.
JP19859683A 1983-10-24 1983-10-24 Impatt diode Pending JPS6089981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19859683A JPS6089981A (en) 1983-10-24 1983-10-24 Impatt diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19859683A JPS6089981A (en) 1983-10-24 1983-10-24 Impatt diode

Publications (1)

Publication Number Publication Date
JPS6089981A true JPS6089981A (en) 1985-05-20

Family

ID=16393817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19859683A Pending JPS6089981A (en) 1983-10-24 1983-10-24 Impatt diode

Country Status (1)

Country Link
JP (1) JPS6089981A (en)

Similar Documents

Publication Publication Date Title
US3775200A (en) Schottky contact devices and method of manufacture
GB2151079A (en) Semiconductor device structures
JP2008028079A (en) Semiconductor device, and its manufacturing method
US3427708A (en) Semiconductor
JPS6089981A (en) Impatt diode
JPS5914906B2 (en) Method for manufacturing field effect transistors
US4152718A (en) Semiconductor structure for millimeter waves
JP2522952Y2 (en) Gallium nitride based compound semiconductor device
US5144413A (en) Semiconductor structures and manufacturing methods
JPH0373573A (en) Schottky barrier semiconductor device
JPH08125270A (en) Laminated semiconductor laser
JPS6412105B2 (en)
JP2810322B2 (en) Method for manufacturing semiconductor device
JP2608658B2 (en) Semiconductor device and manufacturing method thereof
JPS58201383A (en) Semiconductor light emitting device
JPH09266215A (en) Semiconductor device for high frequency high output and manufacture thereof
US3670218A (en) Monolithic heteroepitaxial microwave tunnel die
JPS60223172A (en) Impatt diode
JPS59125667A (en) Diode
JPS6177369A (en) Manufacture of semiconductor device
CA1212181A (en) Semiconductor structures and manufacturing methods
JPS5840348B2 (en) Manufacturing method of semiconductor device
JPS5935188B2 (en) Manufacturing method of shotgun barrier diode
CN115548864A (en) Laser and preparation method thereof
JPS5914691A (en) Semiconductor laser