JPS6089913A - Method of producing ceramic condenser - Google Patents

Method of producing ceramic condenser

Info

Publication number
JPS6089913A
JPS6089913A JP19876283A JP19876283A JPS6089913A JP S6089913 A JPS6089913 A JP S6089913A JP 19876283 A JP19876283 A JP 19876283A JP 19876283 A JP19876283 A JP 19876283A JP S6089913 A JPS6089913 A JP S6089913A
Authority
JP
Japan
Prior art keywords
ceramic
electrodes
dielectric
raw
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19876283A
Other languages
Japanese (ja)
Inventor
恒夫 村田
戸田 建一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19876283A priority Critical patent/JPS6089913A/en
Publication of JPS6089913A publication Critical patent/JPS6089913A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、セラミックコンデンサの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a ceramic capacitor.

単板型セラミックコンデンサは、第1図のように、セラ
ミックを用いた誘電体1の両面に電極2を設け、両電極
2に各々リード線3,4を接続した構造であり、この種
コンデンサを使用する各種電子機器においては、小型化
の傾向にあるため、セラミックコンデンサは小型で大容
量のものが必要になってきているのが現状である。
As shown in Figure 1, a single-plate ceramic capacitor has a structure in which electrodes 2 are provided on both sides of a dielectric 1 made of ceramic, and lead wires 3 and 4 are connected to both electrodes 2. Since there is a trend toward miniaturization in the various electronic devices used, the current situation is that ceramic capacitors that are small in size and have a large capacity are required.

従来の単板型セラミックコンデンサの製造方法1− としでは、セラミック粉体をプレス加工してこれを焼結
し、誘電体を形成し、次に誘電体の外面に無電解メッキ
法により電極膜を設け、この後電極膜の一部を除去し、
セラミック誘電体を間に挾んだ対向電極を形成する方法
や、上記と同様に製作した焼結流セラミック誘電体の両
面に金属塗料を印刷塗布し、この後焼成する方法等が採
用されている。
Conventional method for manufacturing single-plate ceramic capacitors 1- In Toshiba, ceramic powder is pressed and sintered to form a dielectric, and then an electrode film is formed on the outer surface of the dielectric by electroless plating. After that, a part of the electrode film is removed,
Methods that have been adopted include forming a counter electrode with a ceramic dielectric in between, and printing and applying metal paint on both sides of a sintered ceramic dielectric produced in the same manner as above, followed by firing. .

ところで、上記従来の製造方法は何れの場合も、セラミ
ック粉体を加圧成形した後、焼結してセラミック誘電体
を形成するため、誘電体を薄くして静電容量を大きくし
ようとすると、成形工程中において割れやかけなどの損
傷が生じやすいという問題がある。
By the way, in any of the above conventional manufacturing methods, ceramic powder is press-molded and then sintered to form a ceramic dielectric, so if you try to make the dielectric thinner and increase the capacitance, There is a problem in that damage such as cracking and chipping is likely to occur during the molding process.

このため、耐電圧性などは所期の特性に対し過剰値とな
っているにかかわらず、過大の厚みの誘電体を使用しな
ければならず、小型化の要望を満すことができないもの
である。
For this reason, even though the voltage resistance and other characteristics are excessive compared to the desired characteristics, it is necessary to use an excessively thick dielectric material, which cannot meet the demand for miniaturization. be.

また、何れの方法もセラミック粉体を個々に加圧成形す
ると共に、誘電体に設ける電極を熱処理− または別途焼成する必要があるため、製作工程数が多く
かかり、生産コストが高くつくという問題がある。さら
に電極を印刷、塗布により形成する場合は、誘電体の厚
みが薄いと、塗布時に割れが生じるため、一定の厚み以
上に誘電体を薄くすることには限度がある。
In addition, both methods require the ceramic powder to be individually pressure-molded and the electrodes provided on the dielectric to be heat-treated or separately fired, resulting in a large number of manufacturing steps and high production costs. be. Furthermore, when electrodes are formed by printing or coating, if the dielectric is thin, cracks will occur during coating, so there is a limit to how thin the dielectric can be made beyond a certain thickness.

この発明は、上記のような問題を解消するためになされ
たものであり、セラミック誘電体の成形工程での割れや
かけの発生がなく、誘電体を薄くして静電容量が大きく
、しかも量産が可能なセラミックコンデンサの製造方法
を提供することを目的とする。
This invention was made to solve the above-mentioned problems. It eliminates the occurrence of cracks and chips during the molding process of ceramic dielectrics, makes the dielectric thinner, increases capacitance, and makes it easier to mass produce. The purpose of the present invention is to provide a method of manufacturing a ceramic capacitor that enables the following.

この発明の構成は粉末セラミックにバインダを混合した
泥漿でセラミック生シートを作成し、このシー1−の両
面に電極を設けた後、シートの焼結と電極の焼成を同時
に行ない、セラミック誘電体の厚みを薄くできるように
したものである。
The structure of this invention is to create a green ceramic sheet using a slurry of powdered ceramic mixed with a binder, provide electrodes on both sides of this sheet, and then sinter the sheet and fire the electrodes at the same time to form a ceramic dielectric. This allows the thickness to be reduced.

以下、この発明の実施例を添付図面の第2図ないし第7
図にもとづいて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 7 of the accompanying drawings.
This will be explained based on the diagram.

この発明の方法は、粉末セラミックに有機パイ3− ンダ等を混合して形成した泥漿で所望形状のセラミック
生シー]へ11を作成し、この生シー1−11の両面対
応位置に電極12と13を設けた後、生シー1〜11の
焼結と電極12.13の焼成を同時に行なうものである
In the method of the present invention, a ceramic raw sheath 11 of a desired shape is created using a slurry formed by mixing powdered ceramic with organic powder, etc., and electrodes 12 are placed at corresponding positions on both sides of the raw ceramic sheath 1-11. After providing the electrodes 12 and 13, the sintering of the green sheets 1 to 11 and the firing of the electrodes 12 and 13 are performed simultaneously.

前記泥漿を用いたセラミック生シート11の作成は、ド
クターブレード法や引き上げ法或いは押し出し法、印刷
法等により容易に形成でき、得られたセラミック生シー
ト11は柔軟性に富むため、電極12.13の付与工程
等の取扱時にも割れやかけ等の破損の発生をほとんど皆
無にできる。
The green ceramic sheet 11 using the slurry can be easily formed by a doctor blade method, a pulling method, an extrusion method, a printing method, etc., and since the obtained ceramic green sheet 11 is highly flexible, it can be used as an electrode 12.13. It is possible to almost completely eliminate the occurrence of damage such as cracking or chipping during handling during the application process.

また、セラミック生シート11は柔軟性に富み強度的に
優れているため、その肉厚を薄くすることができる。例
えば成形時の厚みを25〜300μで自由に選択でき、
生シート11での上記厚みは焼結後のセラミック誘電体
14において15〜200μになる。
Further, since the raw ceramic sheet 11 is highly flexible and has excellent strength, its thickness can be reduced. For example, the thickness during molding can be freely selected from 25 to 300μ,
The thickness of the green sheet 11 becomes 15 to 200 μm in the ceramic dielectric body 14 after sintering.

またセラミック生シート11の両面に設ける電極12と
13は、例えばスクリーン印刷やスプレー法によって形
成することができる。
Further, the electrodes 12 and 13 provided on both sides of the raw ceramic sheet 11 can be formed, for example, by screen printing or spraying.

前記セラミック生シー1〜11の焼結と電極12.13
4− の焼成を同時に行なうため、電極12.13に用いる金
属にはセラミック生シート11の焼結温度に応じて一点
の高いもの、反応性に乏しいものが必要である。
Sintering of the ceramic green sheets 1 to 11 and electrodes 12.13
In order to perform the firing of the electrodes 12 and 13 at the same time, the metal used for the electrodes 12 and 13 needs to be one with a high point or a metal with poor reactivity depending on the sintering temperature of the raw ceramic sheet 11.

例えば、セラミック生シート11の焼結温度は高温であ
るので、これに対応する電極用金属材料としては、Pt
 、 Au 、 ’Pdおよびそれらの合金、〜−Pd
合金で〜の比率が30%以下のもの、あるいはニッケル
等を用いなければならず、電極12.13の膜厚は0.
8〜3.0μが適当である。 □図示の□実施例は、一
枚の広幅長尺のセラミック生シートを用い、多数個のコ
ンデンサを同時に製作′する場合を示しており、第2図
ないし第4図の第1の例は円形セラミックコンデンサを
、また第5図ないし第7図の第2の例は角形セラミック
コンデンサを示している。
For example, since the sintering temperature of the raw ceramic sheet 11 is high, a metal material for the electrode corresponding to this is Pt.
, Au, 'Pd and their alloys, ~-Pd
An alloy with a ratio of ~30% or less, or nickel, etc. must be used, and the film thickness of the electrodes 12 and 13 is 0.
8 to 3.0μ is appropriate. □The example shown in the figure shows the case where a large number of capacitors are manufactured simultaneously using one wide and long raw ceramic sheet.The first example shown in Figures 2 to 4 is a circular ceramic sheet. A ceramic capacitor is shown, and the second example in FIGS. 5 to 7 shows a rectangular ceramic capacitor.

一枚のセラミック生シート11から多数個のコンデンサ
を製作するには、生シート11の両面に多数の電極12
と13を所定の配置間隔をもって両面で対応するように
形成する。
In order to manufacture a large number of capacitors from one raw ceramic sheet 11, a large number of electrodes 12 are formed on both sides of the raw ceramic sheet 11.
and 13 are formed so as to correspond to each other on both sides with a predetermined spacing.

電極12.13は第1の例では円形に、また第2の例で
は角形のパターンに形成すると共に、両面の電極12.
13の形成時に位置ずれが生じても支障がないよう、−
面側の電極12に対して他面側の電極13を少し大きく
形成している。
The electrodes 12.13 are formed in a circular pattern in the first example and in a rectangular pattern in the second example, and the electrodes 12.13 are formed on both sides.
13 so that there is no problem even if there is a misalignment when forming -
The electrode 13 on the other side is formed slightly larger than the electrode 12 on the side.

両面に電極12.13を形成したセラミック生シート1
1は、次にパンティングまたはカット法等により、各電
極12.13の部分を円形や角形に打抜き、第4図と第
7図に示すごとき単板コンデンサ素材を形成する。
Ceramic raw sheet 1 with electrodes 12 and 13 formed on both sides
1 is then punched out into a circular or square shape for each electrode 12, 13 by a punching or cutting method to form a single-plate capacitor material as shown in FIGS. 4 and 7.

打抜いた単板コンデンサ素材はセラミック原料組成及び
電極組成に応じた雰囲気および温度で加熱することによ
り、セラミック生シート11の焼結と電極12.13の
焼成を同時に行なえば、セラック誘電体の両面に電極を
備えたコンデンサ素子が得られる。
By heating the punched single plate capacitor material in an atmosphere and temperature depending on the ceramic raw material composition and the electrode composition, if the raw ceramic sheet 11 and the electrodes 12 and 13 are simultaneously sintered, both sides of the shellac dielectric material are heated. A capacitor element having electrodes is obtained.

このコンデンサ素子はすでにコンデンサとしての性能を
備えているので、両側の電極12.13にリード線を半
田付けし、絶縁塗装を施ずことにより、リード線付き単
板型のセラミックコンデンサができ」二る。
This capacitor element already has the performance as a capacitor, so by soldering lead wires to the electrodes 12 and 13 on both sides and applying no insulation coating, a single-plate ceramic capacitor with lead wires can be created. Ru.

以上のように、この発明によると、上記のような構成で
あるので、以下に示す効果がある。
As described above, according to the present invention, since the configuration is as described above, there are the following effects.

(1) セラミックコンデンサの誘電体をセラミック生
シー1〜から形成するようにしたので、生シートは柔軟
性に冨み強度的に優れ、薄肉厚でも取扱時に割れやかけ
の発生が少く歩留りが向上する。
(1) Since the dielectric of the ceramic capacitor is formed from ceramic raw sheets 1 to 1, the raw sheets are highly flexible and have excellent strength, and even with a thin wall thickness, there are fewer cracks or chips during handling, improving yields. do.

(2)生シートの使用により誘電体の肉厚を簿くするこ
とができ、小型で静電容量の大きなセラミックコンデン
サを製作することができる。
(2) By using green sheets, the thickness of the dielectric material can be reduced, making it possible to manufacture small ceramic capacitors with large capacitance.

(3)生シートの使用によりコンデンサの形状を自由に
選択することができる。
(3) By using raw sheets, the shape of the capacitor can be freely selected.

(71) セラミック誘電体の焼結と電極の焼成を同時
に行なうので、工程数の削減により製作能率が向上する
(71) Since sintering of the ceramic dielectric and firing of the electrode are performed at the same time, manufacturing efficiency is improved by reducing the number of steps.

(5)一枚の生シーl〜から多数のコンデンサを同時に
製作することができるので、大量生産が可能になり、製
品のコスト削減を行なうことができる。
(5) Since a large number of capacitors can be manufactured simultaneously from a single raw seal, mass production is possible and product costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミックコンデンサの基本構造を示す正面図
、第2図はこの発明の第1の例を示す生シー1〜の平面
図、第3図は同裏面図、第4図は同上から打抜いたコン
デンサ素子の斜視図、第5図は同第2の例を示ず生シー
1への平面図、第6図は同裏面図、第7図は同上から打
抜いた]ンデンザ素子の斜視図である。 11・・・セラミック生シート 12.13・・・電極
14・・・誘電体 特許出願人 株式会社 村1月製作所 代 理 人 弁理士 和 1) 昭 67 UN ″ 一 第5図 第6図
Fig. 1 is a front view showing the basic structure of a ceramic capacitor, Fig. 2 is a plan view of a raw seam 1~ showing the first example of the present invention, Fig. 3 is a back view of the same, and Fig. 4 is a top view of the same. A perspective view of a capacitor element that has been punched out, FIG. 5 is a plan view of the raw sheet 1 without showing the second example, FIG. 6 is a back view of the same, and FIG. 7 is a perspective view of a capacitor element punched out from the same above. It is a diagram. 11...Ceramic green sheet 12.13...Electrode 14...Dielectric patent applicant Mura January Manufacturing Co., Ltd. Agent Patent attorney Kazu 1) 1986 UN'' 1 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 粉末セラミックにバインダを混合した泥漿でレラミツク
生シートを作成し、この生シートの両面対応位置に電極
を設けた後、生シー1への焼結と電極の焼成を同時に行
なうことを特徴とするセラミックコンデンサの製造方法
A ceramic characterized in that a raw sheet is prepared from a slurry made of powdered ceramic mixed with a binder, electrodes are provided at corresponding positions on both sides of the raw sheet, and then sintering into the raw sheet 1 and firing of the electrodes are performed simultaneously. Method of manufacturing capacitors.
JP19876283A 1983-10-24 1983-10-24 Method of producing ceramic condenser Pending JPS6089913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19876283A JPS6089913A (en) 1983-10-24 1983-10-24 Method of producing ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19876283A JPS6089913A (en) 1983-10-24 1983-10-24 Method of producing ceramic condenser

Publications (1)

Publication Number Publication Date
JPS6089913A true JPS6089913A (en) 1985-05-20

Family

ID=16396520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19876283A Pending JPS6089913A (en) 1983-10-24 1983-10-24 Method of producing ceramic condenser

Country Status (1)

Country Link
JP (1) JPS6089913A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55894A (en) * 1978-05-19 1980-01-07 Vapor Energy Inc Steam generating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55894A (en) * 1978-05-19 1980-01-07 Vapor Energy Inc Steam generating device

Similar Documents

Publication Publication Date Title
JPS63169014A (en) Method of forming external electrode terminal of chip capacitor
JP2001043954A (en) Surge absorbing element and manufacture of the same
JP3018645B2 (en) Manufacturing method of chip parts
JPS6089913A (en) Method of producing ceramic condenser
JPH09266131A (en) Multilayer electronic part
JPH0329307A (en) Manufacture of laminated ceramic chip capacitor
JP3493665B2 (en) Conductive paste
JP2727789B2 (en) Positive characteristic thermistor and manufacturing method thereof
JP2004014338A (en) Conductive paste
JPH11121276A (en) Electronic component and manufacturing method therefor
JP4290237B2 (en) Manufacturing method of laminated electronic component
JPH09260199A (en) Multilayer capacitor
JPS61144813A (en) Laminated ceramic capacitor and manufacture thereof
JPH08148338A (en) Multilayer chip inductor and production thereof
JP3092455B2 (en) Method for forming base electrode for plating electronic components
JPS62242325A (en) Manufacture of chip capacitor
JP2023174139A (en) Multilayer ceramic electronic component and manufacturing method of the same
JPS5866321A (en) Method of producing laminated ceramic condenser
JPH10172854A (en) Manufacturing coil component
JPH06283377A (en) Layered ceramic capacitor and manufacture thereof
JPS63169015A (en) Manufacture of laminated ceramic chip capacitor
JPS61131519A (en) Laminated capacitor
JPS5818913A (en) Multilayer semiconductor porcelain condenser and method of producing same
JPH1050552A (en) Manufacture of laminate ceramic capacitor
JP2000012332A (en) Laminated inductance element and its manufacture