JPS6089891A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS6089891A
JPS6089891A JP58197043A JP19704383A JPS6089891A JP S6089891 A JPS6089891 A JP S6089891A JP 58197043 A JP58197043 A JP 58197043A JP 19704383 A JP19704383 A JP 19704383A JP S6089891 A JPS6089891 A JP S6089891A
Authority
JP
Japan
Prior art keywords
memory
row
read
cell
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58197043A
Other languages
Japanese (ja)
Inventor
Hiroshi Watabe
渡部 博士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58197043A priority Critical patent/JPS6089891A/en
Publication of JPS6089891A publication Critical patent/JPS6089891A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To relax the limit of a maximum value of a read time of a cell and to attain low power consumption of a memory and high speed access by inactivating a row line after cell read and selecting the identical row line again and performing rewrite when the write is executed. CONSTITUTION:One row in row lines W101-W10M is selected by a selection circuit C10 in a memory matrix M100, a memory cell at cross point of column lines B101-B10N is read to each column line and a data is transferred to latch circuits L101-L10N. Every time a signal phi2 is given once, a selection circuit C11 continues to select different column lines. After a required data is accessed, the chip is activated again by using the phi2, the data of the L101-L10N is transferred to the column lines B101-B10N by the control of the signal R/S, the row line selected at read is selected again and rewrite is conducted to the memory.

Description

【発明の詳細な説明】 本発明は半導体メモリ゛に関し、特に一部シリア、 ル
アクセスを主体とするメモリに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory, and particularly to a memory that is partially serially accessed.

近年半導体メモリはMOS型のダイナミックメモリの発
展にょシ大容量化されピッMlのコストが急速に竺下し
多くの分野で使用されるようになって来た。特に画像処
理の分野においてはブラウン管上の1画素子をメモリの
1ビツトに対応させ、メモリに書かれた内容をブラウン
管に画像として出し、これによシ画象拠理の機能の向上
を計っている。この、ようなメモリのアクセスはブラウ
ン管の構造上高速のシリアルアクセスが要求され1画素
子当シの読み出しサイクルは50〜7Qnsとされてい
る。しかしメモリのサイクルは300〜4001gと遅
く、このためインターリーブ等の技術が用いられている
◎又−万メモリは通常M@Nのマトリックスに構成され
ておシ、1行に配置されたN個のメモリセルを各セルに
接続されたN個の列線ヘセルデーターを読み出す、しか
る後に列線の内の1個を外部へ接続し読み出し書込等が
実行される。最近のアドレスマルチプレクス方式のメモ
リでは各列線に塾み出された1行分のメモリセルの情報
を1メモリサイクル中にランダムに読み出すことが可能
で、lページモードと呼ばれている。このページモード
の利点は1ピツト当シのアクセスサイクルは150〜2
00nsであシ通常のイクルではメモリセルから列線へ
の読出しをする高速かつ低消費電力の動作が可能となる
。しかしダイナミックメモリにおいてはメモリセルが読
み出されている時間の最大値(以下アクティブ巾max
 と呼ぶ)が規定されておシこのアクティブ巾maxを
超えてメモリをアクセスしつづけることはできない。こ
の値は約10μSであシページモードのサイクル200
nsでは約50ビツト程度しかアクセスできない。64
にビットメモリでは列線は256本あシ約4回に分割し
てアクセスすることになる。−万ブラウン管は画面の水
平方向の画素子は一定の間かくでデーターを与える必要
があシ、前述の分割して1ペ一ジ分をアクセスするアク
ティブ巾maxを超えた時メモリは非活性となるためデ
ーターがとぎれてしまい一定の間かくでデーターを出す
ことができない、従ってこのようなデーターのとぎれを
なくすためにメモーリ−の−アクセスのコン)o−ル拡
非常に複雑となる。
In recent years, the capacity of semiconductor memories has increased due to the development of MOS-type dynamic memories, and the cost of semiconductor memory has rapidly declined, allowing them to be used in many fields. Particularly in the field of image processing, one pixel element on a cathode ray tube corresponds to one bit of memory, and the content written in memory is output as an image to the cathode ray tube, thereby improving the function of image representation. There is. Due to the structure of the cathode ray tube, high-speed serial access is required for such memory access, and the read cycle for one pixel is set at 50 to 7 Qns. However, the memory cycle is slow at 300 to 4001 g, so techniques such as interleaving are used. ◎Memory is usually configured in an M@N matrix, with N pieces arranged in one row. Cell data is read from the memory cells to N column lines connected to each cell, and then one of the column lines is connected to the outside to perform read/write operations. In recent address multiplex type memories, it is possible to randomly read out information from one row of memory cells drawn out to each column line during one memory cycle, which is called l-page mode. The advantage of this page mode is that the access cycles per pit are 150 to 2.
In a normal cycle, it is possible to read data from a memory cell to a column line at high speed and with low power consumption. However, in dynamic memory, the maximum time that a memory cell is read (hereinafter referred to as active width max)
) is specified, and it is not possible to continue accessing the memory beyond the active width max. This value is approximately 10 μS and 200 cycles in page mode.
In ns, only about 50 bits can be accessed. 64
In a bit memory, there are 256 column lines, which are accessed approximately four times. - In a cathode ray tube, it is necessary to provide data to the pixels in the horizontal direction of the screen at certain intervals, and when the active width exceeds the maximum active width that is accessed by dividing one page as described above, the memory becomes inactive. As a result, the data is interrupted and it is not possible to output the data for a certain period of time.Therefore, in order to eliminate such interruptions in the data, the memory access control becomes extremely complicated.

本発明の目的はこのような1行線に配置されたメモリセ
ルを順次シリアルに読み出すダイナミックメモリにお−
てアクティブ巾maxの制限を解消したメモリを提供す
ることにある。
The purpose of the present invention is to provide a dynamic memory in which memory cells arranged in one row are sequentially and serially read out.
The object of the present invention is to provide a memory which eliminates the limitation on the maximum active width.

以下実施例に従って説明する。The following will be explained according to examples.

第1図は本発明の実施例の1つを示し第2図は実施例を
コントロールする信号を示す。
FIG. 1 shows one embodiment of the invention, and FIG. 2 shows the signals controlling the embodiment.

メモリマトリックスM100はM行N列に構成され、行
線W101〜wl OMの内1行が選択回路CIOによ
って選らばれ列線BIOI〜BIQNの交点にあるメモ
リセルが各列線へ読み出されかつ各列線に接続されたラ
ッチ回路LIOI−LIONにデーターが転送される。
The memory matrix M100 is configured with M rows and N columns, one row of the row lines W101 to wlOM is selected by the selection circuit CIO, and the memory cells at the intersections of the column lines BIOI to BIQN are read out to each column line and each Data is transferred to latch circuits LIOI-LION connected to the column lines.

上記動作は第2因に示す信号φ1で時刻Tlよル実行さ
れφlかリセット状態(ルベル状態とする)になると選
択された行線は非選択状態となシメモリセルは閉じられ
る。しかる後時刻T、よシ信号φ3によシ列選択回路C
1lによシ1本の列線が選択されスイッチ回路C13に
よシ列線が入出力回路C1意と接続され、出力へは選ら
ばれたラッチ回路の信号が出、書込は同ラッチ回路の情
報を書きかえることによって実行される。
The above operation is executed at time Tl by the signal φ1 shown in the second factor, and when φl becomes a reset state (set to a level state), the selected row line becomes a non-selected state and the memory cell is closed. After that, at time T, the column selection circuit C is activated by the input signal φ3.
One column line is selected by switch circuit C13, and the column line is connected to input/output circuit C1 by switch circuit C13, and the signal of the selected latch circuit is output to the output. It is executed by rewriting information.

−信号φ2が1同人るごとに、選択回路C1lは異な□
る列線を選択し続ける。必要なデータをアクセスした後
時刻T3よシ再びφ3によシチップを活性化しリード/
ストア信号R/8のコントロールによシラッチ回路LI
OI−L1ONのデーターを列線B101〜BIQNへ
転送し、しかる後読出時選択された行線を再び選択しメ
モリへ再書込を行う。このような□動作をさせることに
よシ、メモリのアクティブrfJ’ ma xは時刻’
i’、’r、間と時刻T3−T4間ですむため小さくて
も1行分のセル情報をアクセスすることが可能となった
。説明中動選択回路Cxiの・構成は外部入力アドレス
で決定されるデコーダー内部カウンターで派生されたア
ドレス信号で決定されるデコーダー、あるいは選択信号
を転送するシフトレジスター等各種の形が使用できる。
- For each signal φ2, the selection circuit C1l is different □
Continue selecting the column line. After accessing the necessary data, the chip is activated again at time T3 and read/read.
Silatch circuit LI controlled by store signal R/8
The data of OI-L1ON is transferred to the column lines B101 to BIQN, and then the row line selected at the time of reading is selected again and rewritten to the memory. By performing such □ operation, the active rfJ'max of the memory becomes the time '
It is possible to access one row's worth of cell information even if it is small because it only needs to be done between i' and 'r and between times T3 and T4. The configuration of the dynamic selection circuit Cxi can be of various types, such as a decoder determined by an external input address, a decoder determined by an address signal derived from an internal counter, or a shift register that transfers a selection signal.

又ラッチ回路L101〜LIQNと各列線B101〜W
ION の接続非接続がコントロールされうるならば、
ラッチデーターをアクセスする間にセルのリフ、レッジ
晶を実行することも可能である。
In addition, the latch circuits L101 to LIQN and each column line B101 to W
If ION connectivity/disconnection can be controlled,
It is also possible to perform a cell refresh or ledge crystal while accessing latch data.

第3図は本発明の他の実例の一つであシ、1トランジス
タ型メモリを利用した例である。行選択回路によって行
線Wとダミーの行線DWが選択されセルC1l及びダミ
ーセルCZZの情報がちらかじめルベルにプリチャージ
された正補1組の列線B、Bに微少信号として読み出さ
れかつ信号φSがルベルにしてトランジスタQs Qz
をON状態を保てば列線B、Bに読み出された信号は節
点Nl、N2に転送される。しかる後信号φ、によシト
2ンジスタQ7を導通させ節点N、、N、を放電させる
@ここで節点N 1.N 1に信号差即ち電位差がある
ためトランジスタQs、Q、−の導通抵抗に差が生じ、
節点N!N2の放電速度に差が生じ7リツプフロツプ結
線による正帰還によりm巾が完了する。増巾が完了した
後φSによシト2ンジスタQs、Qaを非導通状態とす
ることによシセルC!lの信号がセンスアンプC宜3に
取シこまれることとなるしかる後スイッチ信号Yiによ
ルトランジスタQs、Qsを導通させ正補の入出力線I
10.I10に接続させることによシセンスアンプq■
に1iLり。込まれたセルC2,(7)情報を外部へと
接続されることが可能となる。即ち第2図で言う時刻T
I−T、の間にセルを読み出しセンスアンプCZSにラ
ッチし時刻1゛2よシラッチ信号と外部との外部の接続
を行う従って前実施例と同様時刻T2よシ行線W及びダ
ミー行線DWは非活性化することが可能である。さて時
刻T2以降に外部よシ書込まれた信号は一度センスアン
プC18へ転送されて−るが、時刻T3よシセルヘの書
込が始まるが、あらかしめに再度プリチャージされてい
た正補の列1[11BBへ信号φ、、φ榔によシトラン
ジスタQ7. Qs 、 Qaを導通させることによシ
節点N、 N、の信号を列線BBへ転送することが可能
であシ、従りて同一のワード線を選択することによシセ
ルC!lへ再度データーを書込むことが可能となる・上
述の説明の中で読出時の信号φ轟と信号φ、の関係は信
号φ1で増巾完了後信号φ1にトランジスタQs、Qa
 t−非導通状態にすれば、正補の列線B、BはセルC
Wtの情報に応じて1.0の電位となるための行線Wに
よシセルCoへ再書込が、なされるため時刻T2よシの
入出力サイクル問に書込が実行されなければ時刻T3よ
シの再書込の必要はない。しかし信号φ8によシトラン
ジスタQ3.Q4を非導通にした後センスアンプC23
を活性化すればセル情報は破壊されるため再書込のサイ
クルは必らず実行しなければならない。しかし後者の方
法を取れば列線の再プリチャージはほぼ不要となるため
に消費電電力が少なくすることができる。
FIG. 3 is another example of the present invention, which uses a one-transistor type memory. The row line W and the dummy row line DW are selected by the row selection circuit, and the information of the cell C1l and the dummy cell CZZ is read out as minute signals to a pair of column lines B and B, which are precharged in advance. And when the signal φS is leveled, the transistor Qs Qz
If the ON state is maintained, the signals read out to the column lines B and B are transferred to the nodes Nl and N2. After that, the signal φ makes the second transistor Q7 conductive and discharges the nodes N, , N, @here, the node N1. Since there is a signal difference, that is, a potential difference in N1, a difference occurs in the conduction resistance of the transistors Qs, Q, -.
Node N! There is a difference in the discharge speed of N2, and the m width is completed by positive feedback by the 7 lip-flop connection. After the width increase is completed, the second transistor Qs and Qa are brought into a non-conductive state by φS, so that the cell C! The signal of I is input to the sense amplifier C3, and then the switch signal Yi makes the transistors Qs and Qs conductive, and the correction input/output line I
10. By connecting it to I10, the SiSense amplifier q■
1 iL per day. It becomes possible to connect the stored cell C2, (7) information to the outside. In other words, time T in Figure 2
During I-T, the cell is read out and latched into the sense amplifier CZS, and from time 1 to 2, external connections are made between the latched signal and the outside.Therefore, as in the previous embodiment, from time T2, the row line W and the dummy row line DW are connected. can be deactivated. Now, the signal externally written after time T2 is once transferred to the sense amplifier C18, but at time T3, writing to the sense amplifier starts, but the correction column that has been precharged again 1 to 11BB, the signal φ, φ is passed through the transistor Q7. By making Qs and Qa conductive, it is possible to transfer the signals of nodes N and N to column line BB, and therefore by selecting the same word line, cell C! In the above explanation, the relationship between the signal φ and the signal φ during reading is that after the amplification is completed with the signal φ1, the transistors Qs and Qa are connected to the signal φ1.
t-If made non-conductive, the corrective column lines B and B will be connected to the cell C.
Since rewriting is performed to the cell Co by the row line W to set the potential to 1.0 according to the information of Wt, if writing is not performed during the input/output cycle from time T2 to time T3. There is no need to rewrite the data. However, due to signal φ8, transistor Q3. After Q4 is made non-conductive, sense amplifier C23
Activation destroys cell information, so a rewrite cycle must be performed. However, if the latter method is adopted, there is almost no need to re-precharge the column lines, so power consumption can be reduced.

本発明を使用することによ)主としてシリアルアクセス
がなされるメモリにおいてアクティブ巾maxの制限な
しにメモリの低電力高速アクセスが可能となる。
By using the present invention, low-power, high-speed memory access is possible without limiting the maximum active width in a memory that is primarily serially accessed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は本発明の入
力信号波形図、および第3図は本発明の他の実施例を示
す図である。 Mloo・・・・・・メモリマトリックス代理人 弁理
士 内 原 晋とべ私 乃I関 躬2圀
FIG. 1 is a diagram showing an embodiment of the invention, FIG. 2 is an input signal waveform diagram of the invention, and FIG. 3 is a diagram showing another embodiment of the invention. Mloo・・・Memory Matrix Agent Patent Attorney Susumu Uchihara Tobe Shino I Sekiman 2 Kuni

Claims (1)

【特許請求の範囲】[Claims] 半導体ダイナミックメモリにおいて各列線にラッチ回路
を持ちメモリセル読出後行線を非活性化し入出力は2.
フチ。回路で行った後、書込が実行された時再度、、同
一行線を選択し再誉込を行5ことを特徴とした半導体メ
モリ。
In a semiconductor dynamic memory, each column line has a latch circuit, and after reading a memory cell, the row line is inactivated, and the input/output is 2.
Border. A semiconductor memory characterized in that when writing is executed after being written in a circuit, the same row line is selected again and the writing is performed again in row 5.
JP58197043A 1983-10-21 1983-10-21 Semiconductor memory Pending JPS6089891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197043A JPS6089891A (en) 1983-10-21 1983-10-21 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197043A JPS6089891A (en) 1983-10-21 1983-10-21 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS6089891A true JPS6089891A (en) 1985-05-20

Family

ID=16367766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197043A Pending JPS6089891A (en) 1983-10-21 1983-10-21 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS6089891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142794A (en) * 1984-08-03 1986-03-01 Toshiba Corp Sense amplifier system of semiconductor memory device
JPS62242252A (en) * 1986-04-14 1987-10-22 Mitsubishi Electric Corp Data transfer method in semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161130A (en) * 1973-07-11 1975-12-26
JPS5755592A (en) * 1980-09-18 1982-04-02 Nec Corp Memory device
JPS5880191A (en) * 1981-11-04 1983-05-14 Nippon Telegr & Teleph Corp <Ntt> Storage circuit
JPS598193A (en) * 1982-06-30 1984-01-17 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Random access memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161130A (en) * 1973-07-11 1975-12-26
JPS5755592A (en) * 1980-09-18 1982-04-02 Nec Corp Memory device
JPS5880191A (en) * 1981-11-04 1983-05-14 Nippon Telegr & Teleph Corp <Ntt> Storage circuit
JPS598193A (en) * 1982-06-30 1984-01-17 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Random access memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142794A (en) * 1984-08-03 1986-03-01 Toshiba Corp Sense amplifier system of semiconductor memory device
JPH041434B2 (en) * 1984-08-03 1992-01-13 Tokyo Shibaura Electric Co
JPS62242252A (en) * 1986-04-14 1987-10-22 Mitsubishi Electric Corp Data transfer method in semiconductor memory device

Similar Documents

Publication Publication Date Title
US5313431A (en) Multiport semiconductor memory device
KR960001778B1 (en) Dual port memory and the data transferring method
JPS60136086A (en) Semiconductor memory device
EP0056240A2 (en) Memory device
US4879685A (en) Semiconductor memory device with internal array transfer capability
JPS61288240A (en) Semiconductor storage device
US4837746A (en) Method and apparatus for resetting a video SRAM
KR950007447B1 (en) Semiconductor memory device
JPH04318391A (en) Semiconductor storage device
US5383160A (en) Dynamic random access memory
JPS5856287A (en) Semiconductor circuit
KR100299337B1 (en) Semiconductor memory device including copy circuit
JP2546161B2 (en) Dynamic memory device
KR100482380B1 (en) SRAM compatable memory having memory banks capable of indepedently writing access and Operating Method thereof
JPS6089891A (en) Semiconductor memory
JPH05314763A (en) Semiconductor memory
US4916669A (en) Semiconductor memory
US4710896A (en) Semiconductor memory having multiple access
JP2937717B2 (en) Memory device
JPH02148496A (en) Semiconductor memory and data transferring method
US4389714A (en) Memory device
JP2795846B2 (en) Semiconductor device
KR950008441B1 (en) Data process system
JPH0713860B2 (en) Semiconductor memory device
JPS62121997A (en) Dynamic ram