JPS6089732A - Automatic sample feeder of diffuse reflection device - Google Patents

Automatic sample feeder of diffuse reflection device

Info

Publication number
JPS6089732A
JPS6089732A JP19700783A JP19700783A JPS6089732A JP S6089732 A JPS6089732 A JP S6089732A JP 19700783 A JP19700783 A JP 19700783A JP 19700783 A JP19700783 A JP 19700783A JP S6089732 A JPS6089732 A JP S6089732A
Authority
JP
Japan
Prior art keywords
sample
diffuse reflection
reflection device
focus
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19700783A
Other languages
Japanese (ja)
Inventor
Yasunori Miyazaki
康則 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19700783A priority Critical patent/JPS6089732A/en
Publication of JPS6089732A publication Critical patent/JPS6089732A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Abstract

PURPOSE:To replace a sample on a sample holding table in a short time by moving the sample continuously so that the sample surface passes the focus of a diffuse reflection device, and stopping the movement temporarily at the focus position. CONSTITUTION:The diffuse reflection device 9 consisting of a concave mirror 24, plane mirrors 27 and 28, a mirror holding plate 30, and a rack 31 is placed on an optical bench 29. The whole device 9 is convered with a box type cover 32. A belt 35 is extended between rollers 33 and 34 in the optical bench 29 and the holding base 36 on which plural sample containers 37 are mounted is placed on the belt 35. The sample 25 in a container 37 enters a polarization chamber through a hole 38 of the cover 32 and stops at the focus of the concave mirror 24. The movement is carried on until the next sample 25 comes to the focus after an infrared absorption spectrum is measured, and samples are moved successively and discharged out through a hole 39 of the cover 32.

Description

【発明の詳細な説明】 この発明は赤外分光法により化合物試料を分析する拡散
反射装置に適用する拡散反射装置の自動試料送り装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic sample feeder for a diffuse reflector that is applied to a diffuse reflector that analyzes compound samples using infrared spectroscopy.

赤外分光法は、試料に赤外線を照射して分子の振動のう
ち双極子モーメントの変化を起こす振動に起因する吸収
を測定するものである。一般に化合物は赤外域にそのも
の固2有の振動スペクトルを有するので赤外吸収波長を
測定することにより定性分析が、またその吸収の強さを
洞1定することにより定量分析が可能である。
Infrared spectroscopy is a method of irradiating a sample with infrared rays and measuring absorption caused by vibrations that cause changes in the dipole moment of molecular vibrations. Generally, compounds have their own unique vibrational spectra in the infrared region, so qualitative analysis can be performed by measuring the infrared absorption wavelength, and quantitative analysis can be performed by determining the intensity of the absorption.

一般的なフーリエ変換型赤外分光4変計のブロック図を
第1図に示す。光源1から出た赤外光2は入口絞り3で
面積と立体角が制限され。
A block diagram of a general Fourier transform type infrared spectrometer with four variables is shown in FIG. The infrared light 2 emitted from the light source 1 is restricted in area and solid angle by the entrance aperture 3.

凹面鏡4て反射して平行光線となりマイケルソン干渉計
5に入る。マイケルソン干渉計5は半透鏡のビームスプ
リッタ−6と固定鏡7および可動鏡8から成る。入射光
線はビームスプリッタ−6によって半分は反射して固定
鏡7の方にゆき、半分は可動鏡8にいって反射され、再
び合成されて平行光線となり、試料を装填された拡散反
射装置9を経て凹面鏡10で集光されて出口絞り11を
通り検出器12上に焦点を締ぶ。このとぎ、ビームスプ
リフタ−6と固定鏡7.可動鏡8の距離に差があると、
固定鏡7で反射された光波と可動鏡8で反射された光波
との間には光路差が生じ、そのため合成波は打ち消し合
ったり強め合ったりする。こうして検出器12からの出
力は光路差の関数である。この検出器12からの出力を
フーリエ変換すると各波数毎の赤外光のエネルギー分布
が得られる。このため検出器12の出力は以下電気信号
ラインを太線で示すように増幅器13で増幅され、A−
D変換器14でデジタル値に変換され、更にFFTアナ
ライサ−15でフーリエ変換される。このFFTアナラ
イザー15で得られた結果は出力装置16に直接かもし
くは演算装置17で演算されたあと出力装置16に゛出
力される。FFTアナライザー15.演算装置+7.お
よび出力装置16はいずれも制御装置18によって制御
され、更に制御装■18は入力装置19から指令を受け
る。また可動鏡8を駆動する駆動装置20も制御装置1
8により制御される。
The light is reflected by the concave mirror 4 and becomes a parallel beam, which enters the Michelson interferometer 5. The Michelson interferometer 5 consists of a semitransparent beam splitter 6, a fixed mirror 7, and a movable mirror 8. Half of the incident light beam is reflected by the beam splitter 6 and goes towards the fixed mirror 7, and the other half is reflected by the movable mirror 8, and is combined again into parallel light beams, which pass through the diffuse reflector 9 loaded with the sample. The light is then condensed by a concave mirror 10, passes through an exit diaphragm 11, and is focused onto a detector 12. At this point, the beam splitter 6 and the fixed mirror 7. If there is a difference in the distance of the movable mirror 8,
An optical path difference occurs between the light wave reflected by the fixed mirror 7 and the light wave reflected by the movable mirror 8, so that the composite waves cancel each other out or strengthen each other. The output from detector 12 is thus a function of the optical path difference. When the output from this detector 12 is Fourier-transformed, the energy distribution of infrared light for each wave number can be obtained. Therefore, the output of the detector 12 is amplified by the amplifier 13 as shown below with the electric signal line indicated by a thick line.
The D converter 14 converts the signal into a digital value, and the FFT analyzer 15 performs a Fourier transform. The results obtained by this FFT analyzer 15 are outputted to the output device 16 either directly or after being calculated by the calculation device 17. FFT analyzer 15. Arithmetic device +7. and output device 16 are both controlled by a control device 18, which further receives commands from an input device 19. Further, the drive device 20 that drives the movable mirror 8 is also controlled by the control device 1.
8.

用いられる拡散反射装置9の内部の側面図を第2図に示
す。ここで拡散反射装置9の入射赤外光21は平面鏡2
2.28で反射され、凹面鏡24で反射され試料25表
面上に集光される。試料25により拡散反射された赤外
光は凹面鏡26で反射集光され、平面鏡27.28で反
射されて第1図で示す検出器12に送られる。
A side view of the interior of the diffuse reflection device 9 used is shown in FIG. Here, the incident infrared light 21 of the diffuse reflection device 9 is reflected by the plane mirror 2.
2.28, reflected by the concave mirror 24, and focused on the surface of the sample 25. The infrared light diffusely reflected by the sample 25 is reflected and condensed by a concave mirror 26, reflected by plane mirrors 27 and 28, and sent to the detector 12 shown in FIG.

第1図において、前述の構成のうち、光源12マイケル
ソン干渉計5.拡#I1.反射装置9.検出器12.凹
面鏡4,10等は全体が箱型カバーでおおわれている。
In FIG. 1, among the above configurations, a light source 12 a Michelson interferometer 5. Expansion #I1. Reflector9. Detector 12. The concave mirrors 4, 10, etc. are entirely covered with a box-shaped cover.

(この箱型カバーは図示していない)これはビームスプ
リッタ−6等の吸湿性の材質を保護し1分光室内への測
定妨害成分(水や炭酸ガスなど)の侵入を防ぐため1分
光室内に常に炭酸ガスを除去した乾燥空気を流す必要が
あるからである。
(This box-shaped cover is not shown.) This box-shaped cover is installed inside the 1-minute chamber to protect the hygroscopic materials such as the beam splitter 6 and to prevent measurement interference components (water, carbon dioxide, etc.) from entering the 1-minute chamber. This is because it is necessary to constantly flow dry air from which carbon dioxide gas has been removed.

赤外分光々度肝は以上のような構成であるため、これに
用いられる拡散反射装置9に試料を装填するには箱型カ
バーに設けられた試料装填ドアを開けて行なう。(箱型
カバーと試料装填ドアは図示してない。)この試料装填
ドアは拡散反射装置9の所定の位置に容易に試料を取り
付けられるように充分に大きいものである。このように
、試料交換時に分光室内のパージが破れるので次の試料
測定はパージが完全に復帰するまで待つ必要があり、測
定に時間を要する。
Since the infrared spectrophotometer has the above-described configuration, the sample loading door provided on the box-shaped cover is opened to load a sample into the diffuse reflection device 9 used therein. (The box cover and sample loading door are not shown.) The sample loading door is large enough to allow the sample to be easily attached to a predetermined position on the diffuse reflector 9. As described above, since the purge inside the spectroscopic chamber is broken when the sample is replaced, it is necessary to wait until the purge is completely restored before the next sample measurement, which takes time.

本発明は赤外分光法等に用いる拡散反射装置において、
前述のように時間を要していた試料交換を短時間に、か
つ分光室のパージを破らないように行なうことが出来る
ことを目的としてなされたもので、赤外分光法に用いる
拡散反射装P(において、試料を載置する試料保持台と
The present invention provides a diffuse reflection device used for infrared spectroscopy, etc.
This was done with the purpose of making it possible to perform the time-consuming sample exchange as mentioned above in a short time and without breaking the purge of the spectroscopic chamber. (In, a sample holding table on which a sample is placed.

該試オ′1保持台を載置し同保持台の上に配置した複数
の試料の試料表面が上記拡散反射装置の焦点を順次通過
し試料を連続的に測定出来るように構成された試料移動
手段と、該試料移動手段の駆動を試料が上記焦点上に達
した時に止め測定を可能とし測定完了後再び駆動し以降
順次これを繰り返すような駆動を与える駆動回路と。
Sample movement configured such that the sample surface of a plurality of samples placed on the holding stand is placed on the sample O'1 holding stand and that the sample surfaces of the plurality of samples placed on the holding stand are successively passed through the focal point of the above-mentioned diffuse reflection device so that the samples can be continuously measured. and a drive circuit that stops the drive of the sample moving means when the sample reaches the focal point to enable measurement, drives the sample moving means again after the measurement is completed, and repeats this sequentially thereafter.

該駆動回路を制御するための制御*lとを具備してなる
ことを特徴とする拡散反射装置の自動試料送り装置を提
供して、前述のような不都合を解決するために2分光室
外部からの操作で連続的に試料を供給するようにしたも
のである。
In order to solve the above-mentioned inconveniences, we provide an automatic sample feeding device for a diffuse reflection device characterized in that it is equipped with a control for controlling the driving circuit. The sample is continuously supplied through this operation.

第8図は2本発明の一実施例の装置を示す側面図である
。図中29は光学ベンチであり、その上には凹面鏡24
.平面鏡27.28等やミラー保持板30.架台81で
構成される拡散反射装置9が載置されている。更にこれ
らの拡散反射装Pr9全体を覆うように箱型カバー82
が設けられている。
FIG. 8 is a side view showing an apparatus according to an embodiment of the present invention. In the figure, 29 is an optical bench, on which is a concave mirror 24.
.. Plane mirrors 27, 28, etc. and mirror holding plates 30. A diffuse reflection device 9 made up of a pedestal 81 is mounted. Furthermore, a box-shaped cover 82 is provided to cover the entire diffuse reflection device Pr9.
is provided.

光学ベンチ29内には2つのローラー88.84が内股
されており、それらのローラー88.84にはベルト8
5が掛けられている。ベルト85の上には試料容器保持
台86が載せられ、更にその試料容器保持台86の上に
は試料25が装填された試料容器37が載置されている
。これらの試料容器保持台36、試料容器87は箱型カ
バー32ζこ開けられた微小な穴38.89を通って、
ローラー88.84の回転によりベルト35の上を分光
室外部→分光室内部→分光室外部の順に移動するように
構成されている。この移動の際、試料容器37内の試料
25表面が凹面鏡24の焦点を通るように配置されてい
る。ベルト85上を移動する試料容器保持台86を容易
に装着や承り外しできるように補助台40゜41が光学
ベンチ29の左右に配置されている。また、以下太線の
電気系統で示されるように、一方のローラー33はパル
スモータ−42に接続されており、パルスモータ−42
は駆動回路43に、更に駆動回路43は制御装置44に
接続されている。
Two rollers 88, 84 are installed inside the optical bench 29, and a belt 8 is attached to these rollers 88, 84.
It is multiplied by 5. A sample container holding stand 86 is placed on the belt 85, and further on the sample container holding stand 86 is placed the sample container 37 loaded with the sample 25. These sample container holding stand 36 and sample container 87 pass through minute holes 38 and 89 made in the box-shaped cover 32ζ.
It is configured to move on the belt 35 in the order of the outside of the spectroscopic chamber, the inside of the spectroscopic chamber, and the outside of the spectroscopic chamber by rotation of the rollers 88 and 84. During this movement, the surface of the sample 25 in the sample container 37 is placed so as to pass through the focal point of the concave mirror 24. Auxiliary stands 40.degree. 41 are arranged on the left and right sides of the optical bench 29 so that the sample container holding stand 86 moving on the belt 85 can be easily attached and removed. Further, as shown by the electrical system shown in bold below, one of the rollers 33 is connected to a pulse motor 42.
is connected to a drive circuit 43, and the drive circuit 43 is further connected to a control device 44.

次に、」二記の構成の装置の作用を説明する。Next, the operation of the apparatus having the configuration described in section 2 will be explained.

試料25を試料容器37に装填した後、試料容器保持台
36に多数個配置する。その試料容器保持台36をベル
ト35上に載せ、制御装置44から駆動回路43に信号
を送ってパルスモータ−42,ローラー83.84を回
転させることイこより徐々にベルト85を動かす。試料
容器保持台86が箱型カバー32に開けられた微小な八
38を通って拡散反射装置9の方に移動し、第1番目の
試料25の表面が凹面鏡24の焦点に達したときベルト
85の移動を止める。この状態で第1番目の試料25の
赤外吸収スペクトルの測定を行なう。潤定後更lこベル
ト35を駆動して第2番目の試料25の表面を凹面鏡2
4の焦点まで移動する。この状態で第2番目の試料25
の赤外線吸収スペクトルを測定する。
After loading the sample 25 into the sample container 37, a large number of samples 25 are placed on the sample container holding stand 36. The sample container holding stand 36 is placed on the belt 35, and the belt 85 is gradually moved by sending a signal from the control device 44 to the drive circuit 43 to rotate the pulse motor 42 and rollers 83, 84. When the sample container holding stand 86 moves toward the diffuse reflection device 9 through a small hole 38 opened in the box-shaped cover 32 and the surface of the first sample 25 reaches the focal point of the concave mirror 24, the belt 85 stop moving. In this state, the infrared absorption spectrum of the first sample 25 is measured. After lubrication, the belt 35 is driven to scan the surface of the second sample 25 with the concave mirror 2.
Move to focus point 4. In this state, the second sample 25
Measure the infrared absorption spectrum of

以上のような操作を繰り返すことによって第3番目、第
4番目の試料25を次々に測定していく。
By repeating the above operations, the third and fourth samples 25 are measured one after another.

測定された試料25は順次箱型カバー82のもう一方の
穴39を通して補助台41上に送り出されてくる。
The measured samples 25 are sequentially sent out onto the auxiliary table 41 through the other hole 39 of the box-shaped cover 82.

以−1−説明の本発明の拡散反射装置の自動試料送り装
置Hによれば、従来は拡散反射装置で試料を測定する場
合、その試料交換時に′分光室内のパージ状態をその都
度破る必要があったため。
According to the automatic sample feeding device H of the diffuse reflector of the present invention described below in 1-1, when measuring a sample with a diffuse reflector, it was conventionally necessary to break the purge state in the spectroscopic chamber each time the sample was replaced. Because there was.

次の試料測定までにパージを回復するための待機時間を
要していた。
A waiting time was required to recover the purge before the next sample measurement.

本発明の装置によると2分光室を形成している箱型カバ
ーの一部に設けられた微小な穴(入口、出口)を通して
試料を自動的に搬送する構造であるため、上記のような
パージ回復のための待機時間の必要もなく、試料のセン
ティングも容易に出来るようになった。
According to the apparatus of the present invention, the sample is automatically transported through minute holes (inlet and outlet) provided in a part of the box-shaped cover that forms the two-spectrum chamber, so the purge as described above is possible. There is no need for waiting time for recovery, and the specimen can now be easily centered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なフーリエ変換型赤外分光4変計のブロ
ック図、第2図は一般的な拡散反射装置内部の側面図に
光線の反射状態を示した説明図、第3図は本発明の一実
施例を示す装置の側面図と制御部のブO,り図をそれぞ
れ示す。 25・・・試料、29・・・光学ベンチ、30・・・保
持板、81・・・架台、32・・・箱型カバー、 88
.84・・・ローラー。 35・・・ベルト、36・・・試料容器保持台、87・
・・試料容rd+ 38.39・・・微少な穴、 40
.41・・・補助台、42・・・パルスモータ、43・
・・駆動回路、44・・・制御装置。
Figure 1 is a block diagram of a general Fourier transform type infrared spectrometer with four variables, Figure 2 is an explanatory diagram showing the state of light ray reflection in a side view of the inside of a general diffuse reflection device, and Figure 3 is a diagram of the book. 1 shows a side view of an apparatus and a diagram of a control section, respectively, showing an embodiment of the invention. 25... Sample, 29... Optical bench, 30... Holding plate, 81... Frame, 32... Box-shaped cover, 88
.. 84...Roller. 35... Belt, 36... Sample container holding stand, 87...
...Sample volume rd+ 38.39...Minute hole, 40
.. 41... Auxiliary stand, 42... Pulse motor, 43.
...Drive circuit, 44...Control device.

Claims (1)

【特許請求の範囲】 赤シト分光法に用いる拡散反射装置において。 試料を載置する試料保持台と、該試料保持台を載置し同
保持台の上に配置した複数の試料の試料表面が上記拡散
反射装置の焦点を順次通過し試料を連続的に測定出来る
ように構成された試料移動手段と、該試料移動手段の駆
動を試料が」二記焦点上に達した時に止め測定を可能と
し測定完了後再び駆動し以降次順これを繰り返すような
駆動を与える駆動回路と、該駆動回路を制御するための
制御装置とを具備してなることを特徴とする拡散反射装
置の自動試料送り装置。
[Claims] In a diffuse reflection device used for red-sight spectroscopy. A sample holding table on which a sample is placed, and the sample surfaces of a plurality of samples placed on the sample holding table and placed on the holding table sequentially pass through the focal point of the diffuse reflection device, so that the samples can be measured continuously. A sample moving means configured as above, and a drive such that the drive of the sample moving means is stopped when the sample reaches the two focal points to enable measurement, is driven again after the measurement is completed, and is repeated sequentially thereafter. An automatic sample feeding device for a diffuse reflection device, comprising a drive circuit and a control device for controlling the drive circuit.
JP19700783A 1983-10-21 1983-10-21 Automatic sample feeder of diffuse reflection device Pending JPS6089732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19700783A JPS6089732A (en) 1983-10-21 1983-10-21 Automatic sample feeder of diffuse reflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19700783A JPS6089732A (en) 1983-10-21 1983-10-21 Automatic sample feeder of diffuse reflection device

Publications (1)

Publication Number Publication Date
JPS6089732A true JPS6089732A (en) 1985-05-20

Family

ID=16367237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19700783A Pending JPS6089732A (en) 1983-10-21 1983-10-21 Automatic sample feeder of diffuse reflection device

Country Status (1)

Country Link
JP (1) JPS6089732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217427A (en) * 1988-05-09 1990-01-22 Spectra Tech Inc Diffusive reflection spectroscopic system
WO2001011342A1 (en) * 1999-08-09 2001-02-15 Colin Roy Jeffress Automated sample analysis system
CN115091654A (en) * 2022-08-24 2022-09-23 深圳市唯锐科技有限公司 Plastic identification and classification system and method based on mid-infrared detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217427A (en) * 1988-05-09 1990-01-22 Spectra Tech Inc Diffusive reflection spectroscopic system
WO2001011342A1 (en) * 1999-08-09 2001-02-15 Colin Roy Jeffress Automated sample analysis system
US6739209B1 (en) 1999-08-09 2004-05-25 Colin Roy Jeffress Automated sample analysis system
CN115091654A (en) * 2022-08-24 2022-09-23 深圳市唯锐科技有限公司 Plastic identification and classification system and method based on mid-infrared detector

Similar Documents

Publication Publication Date Title
JP2000039398A (en) Integral optical measuring apparatus and optically measuring method
JPS61258147A (en) Method and device for detecting gas
US3854044A (en) A method and apparatus for measuring a transmission spectrum of a film
GB2128359A (en) Double-beam spectrophotometer
US8378303B2 (en) Infrared spectrophotometer and auxiliary device therefor
US5381234A (en) Method and apparatus for real-time film surface detection for large area wafers
JPH09318535A (en) Light absorption spectrum measuring method of solution by laser induced photothermic displacement spectroscopy
US4487477A (en) Optical beam splitter
JPS6089732A (en) Automatic sample feeder of diffuse reflection device
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
TW201543021A (en) Device for analysing a specimen and corresponding method
JPH06137948A (en) Photometer
US3972618A (en) Interferometer for testing materials of different sizes
EP0059836A1 (en) Optical beam splitter
CN210108948U (en) Optical integrating sphere and gas sample terahertz spectrum acquisition device
JPH08327550A (en) Raman spectrometer
JP2960474B2 (en) Nicotine sensor
JPH07140004A (en) Spectroscopic analysis apparatus
JPS6382346A (en) Solution sample measuring apparatus
JPH0459457U (en)
JPH07260678A (en) Method and device for measuring light
JPS60117132A (en) Position adjustor for sample
JP2001242039A (en) Inspection device for wave length characteristic of optical component
JPH03180743A (en) Infrared spectrophotometer
SU939996A1 (en) Method of checking material fatigue