JPS60117132A - Position adjustor for sample - Google Patents

Position adjustor for sample

Info

Publication number
JPS60117132A
JPS60117132A JP58225885A JP22588583A JPS60117132A JP S60117132 A JPS60117132 A JP S60117132A JP 58225885 A JP58225885 A JP 58225885A JP 22588583 A JP22588583 A JP 22588583A JP S60117132 A JPS60117132 A JP S60117132A
Authority
JP
Japan
Prior art keywords
sample
intensity
infrared
infrared rays
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225885A
Other languages
Japanese (ja)
Inventor
Yasunori Miyazaki
康則 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58225885A priority Critical patent/JPS60117132A/en
Publication of JPS60117132A publication Critical patent/JPS60117132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Abstract

PURPOSE:To perform adjustment of the position of a sample quickly at a high accuracy by memorizing and computing the intensity of diffusively reflected infrared rays moving the sample to automatically set the sample at the position of optimum intensity. CONSTITUTION:A sample 30 is placed on a sample lift mechanism 33 as a part of a driving means, adjusted to a sufficiently low position below the focus of a concave mirror of a diffusive reflection device 29 and then, infrared rays 28 are made incident thereupon. Infrared rays diffusively reflected on the surface of a sample 30 are detected with a detector 31 and the detection signal is converted into a digital numeral with an A/D converter 34 to be memorized into a memory circuit 35. Then, a motor 32 is controlled with a control circuit 37 to move the sample 30 slightly upward and memorization is done likewise. The relative position of the sample 30 thus memorized and the sample position at which the intensity of the detection signal peaks are determined with a computation circuit 36.

Description

【発明の詳細な説明】 本発明は赤外分光法等に用いる拡散反射装置における試
料上下位置の調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for adjusting the vertical position of a sample in a diffuse reflection device used for infrared spectroscopy or the like.

〔従来技術の概要〕[Overview of conventional technology]

赤外分光法は、試料に赤外線を照射して分子の振動のう
ち双極子モーメントの変化を起こす振動に起因する吸収
を測定するものである。一般に化合物は赤外域にそのも
の固有の振動スペクトルを有するもので赤外吸収波長を
測定することによシ定性分析が、tだその吸収の強さを
測定することによシ定量分析が可能である。
Infrared spectroscopy is a method of irradiating a sample with infrared rays and measuring absorption caused by vibrations that cause changes in the dipole moment of molecular vibrations. Generally, compounds have their own unique vibrational spectra in the infrared region, and qualitative analysis can be performed by measuring the infrared absorption wavelength, and quantitative analysis can be performed by measuring the intensity of absorption at t. .

赤外分光法に用いる通常のフーリエ変換型赤外分光4庶
泪のブロック図を第1図に示す。光源1から出た赤外光
2は入口絞り8で面積と立体角が制限され、凹面鏡4で
反射して平行光線となシマイケルソン干渉計5に入る。
FIG. 1 shows a block diagram of a typical Fourier transform type infrared spectrometer used in infrared spectroscopy. Infrared light 2 emitted from a light source 1 is restricted in area and solid angle by an entrance aperture 8, is reflected by a concave mirror 4, and enters a parallel ray into a Michaelson interferometer 5.

マイケルソン干渉側5は半透鏡のビームスプリッタ−6
と固定鏡7および可動鏡8から成る。入射光線はビーム
スプリッタ−6によって半分は反射して固定鏡7の方に
ゆき、半分は可動鏡8にいって反射され、再び合成され
て平行光線となシ。
Michelson interference side 5 is a semi-transparent mirror beam splitter 6
It consists of a fixed mirror 7 and a movable mirror 8. Half of the incident light beam is reflected by the beam splitter 6 and goes towards the fixed mirror 7, and the other half goes to the movable mirror 8 and is reflected, and is combined again to form parallel light beams.

試料を装填した拡散反射装置9を経て凹面鏡10で集光
されて出口絞Jllを通シ検出器12上に焦点を結ぶ。
The light passes through a diffuse reflection device 9 loaded with a sample, is condensed by a concave mirror 10, passes through an exit diaphragm Jll, and is focused on a detector 12.

このとき、ビームスプリッタ−6と固定鏡7.可動鏡8
の距離に差−があるとき、固定鏡7で反射された光波と
可動鏡8で反射された光波との間には光路差が生じ、そ
のため合成波は打ち消し合ったシ強め合ったシする。従
って検出器12からの出力は光路差の関数となる。
At this time, the beam splitter 6 and the fixed mirror 7. Movable mirror 8
When there is a difference in distance between -, an optical path difference occurs between the light wave reflected by the fixed mirror 7 and the light wave reflected by the movable mirror 8, so that the combined waves cancel each other out and strengthen each other. The output from detector 12 is therefore a function of the optical path difference.

この検出器12からの出力を7−リエ変換すると各波数
毎の赤外光のエネルギー分布が得られる。
When the output from the detector 12 is subjected to 7-lier transformation, the energy distribution of infrared light for each wave number can be obtained.

このため、検出器12の出力は増幅器18で増幅され、
アナログ−デジタル変換器14でデジタル値に変換され
、更に高速7−リエ変換アナライザー (FFTアナラ
イザー)15で7−リエ変換される。この高速フーリエ
変換アナライザー15で得られた結果は出力装置16に
直接かもしくは演算回路17で演算されたあと出力装置
16に出力される。高速フーリエ変換アナライザー15
.演算回路+7.出力装置16は制御回路18によって
いずれも制御され、更に制御回路18は入力装置19か
ら指令を受ける。また可動鏡8を駆動する駆動手段20
は制御回路18によ多制御される。
Therefore, the output of the detector 12 is amplified by the amplifier 18,
It is converted into a digital value by an analog-to-digital converter 14, and further subjected to 7-lier transform by a high-speed 7-lier transform analyzer (FFT analyzer) 15. The results obtained by the fast Fourier transform analyzer 15 are output to the output device 16 either directly or after being computed by the arithmetic circuit 17 . Fast Fourier Transform Analyzer 15
.. Arithmetic circuit +7. The output device 16 is controlled by a control circuit 18, and the control circuit 18 receives commands from an input device 19. Further, a driving means 20 for driving the movable mirror 8
is controlled by the control circuit 18.

以上のような構成において用いられる拡散反射装置の側
面図を第2図に示す。ここで入射赤外光21は平面鏡2
,2.28で反射され、凹面鏡24で反射され試料25
表面上に集光される。試料25によシ拡散反射された赤
外光は凹面鏡26で反射集光され、平面鏡27.28で
反射されて検出器12に送られる。
FIG. 2 shows a side view of the diffuse reflection device used in the above configuration. Here, the incident infrared light 21 is transmitted to the plane mirror 2.
, 2.28, reflected by the concave mirror 24, and the sample 25
Light is focused onto the surface. The infrared light diffusely reflected by the sample 25 is reflected and condensed by a concave mirror 26, reflected by plane mirrors 27 and 28, and sent to the detector 12.

前述のような拡散反射装置において試料25を装填する
場合、凹面鏡24で反射された赤外光が試料26表面上
で焦点を結ぶように試料25の高さを調整する必要があ
る。
When loading the sample 25 in the diffuse reflection device as described above, it is necessary to adjust the height of the sample 25 so that the infrared light reflected by the concave mirror 24 is focused on the surface of the sample 26.

〔従来技術の欠点〕[Disadvantages of conventional technology]

上述のとおシ、従来装置では試料装填に伴なう高さ調整
において、凹面鏡24で反射された赤外光が焦点を結ぶ
位置(高さ)をあらかじめめておき、測定に供する試料
25をすべてその高さに調製して測定していた。このた
め試料25の加工や、高さ調整のだめに試料25下部に
設置する架台の加工に高い精度を要するもので試料調製
に長時間を要する等の不具合があった。
As mentioned above, in the conventional device, when adjusting the height associated with sample loading, the position (height) at which the infrared light reflected by the concave mirror 24 is focused is determined in advance, and all the samples 25 to be subjected to measurement are adjusted. It was adjusted to that height and measured. For this reason, processing of the sample 25 and processing of the pedestal installed below the sample 25 for height adjustment required high precision, resulting in problems such as a long time required for sample preparation.

〔発明の目的〕[Purpose of the invention]

本発明は赤外分光法等に用いる拡散反射装置において、
前記従来装置の不具合に鑑みてなされたものであって、
長時間を要していた試料位置調整を短時間のうちに精度
よく行なうことのできる位置調整装置の提供を目的とし
ている。
The present invention provides a diffuse reflection device used for infrared spectroscopy, etc.
This was done in view of the problems with the conventional device,
The object of the present invention is to provide a position adjustment device that can accurately perform sample position adjustment in a short time, which previously required a long time.

〔発明の構成〕[Structure of the invention]

そのだめ本発明は、試料に赤外線を照射して拡散反射赤
外線の強度を測定する赤外分光光度計において、試料を
移動させる駆動手段と、試料からの拡散反射赤外線強度
を測定する検出器と、該赤外線強度と試料の位置情報を
同時に記憶する記憶回路と、記憶回路からの赤外線強度
を比較して最適強度に相当する位置情報を選択する演算
回路と、試料が演算回路でめた最適位置となるように駆
動手段を制御する制御回路とを具備した事を特徴とする
赤外分光光度計の位置調整装置を要旨とする。
Therefore, the present invention provides an infrared spectrophotometer that irradiates a sample with infrared rays and measures the intensity of the diffusely reflected infrared rays, which includes: a drive means for moving the sample; a detector that measures the intensity of the diffusely reflected infrared rays from the sample; a memory circuit that simultaneously stores the infrared intensity and position information of the sample; an arithmetic circuit that compares the infrared infrared intensities from the memory circuit and selects position information corresponding to the optimum intensity; The gist of the present invention is a position adjustment device for an infrared spectrophotometer, which is characterized by comprising a control circuit that controls a driving means so that the position of the infrared spectrophotometer is adjusted.

〔発明の効果〕〔Effect of the invention〕

すなわち本発明は、試料を観察面に垂直方向に駆動させ
ながら、拡散反射赤外線の強度を記憶・演算して、最適
強度の位置に試料を自動的に駆動設定守る事のできる位
置調節装置であって、試料表面をあらかじめ特定位置に
固定するために行っていた試料や架台の加工にあまり精
度をめられなくなったので試料調製を短時間にすますこ
とができるものである。
In other words, the present invention is a position adjustment device that can store and calculate the intensity of diffusely reflected infrared rays while driving the sample in a direction perpendicular to the observation surface, and can automatically maintain the drive settings for the sample at a position with the optimum intensity. As a result, it is no longer necessary to require much precision in processing the sample or mount, which was previously done to fix the sample surface at a specific position, so sample preparation can be completed in a short time.

〔実施例〕〔Example〕

第8図は本発明の一実施例にかかる拡散反射装置近傍の
試料の位置調整装置を示すブロック図である。ここで2
8は図示外の光源より発せられた赤外光で、拡散反射装
置29を通過中に試料80表面で拡散反射された後、検
出器31に達する。
FIG. 8 is a block diagram showing a sample position adjustment device near the diffuse reflection device according to an embodiment of the present invention. Here 2
Infrared light 8 is emitted from a light source (not shown), which is diffusely reflected on the surface of a sample 80 while passing through a diffuse reflection device 29, and then reaches the detector 31.

試料80は駆動手段としてのモーター32によシ駆動さ
れる試料昇降機構83上に載置されており。
The sample 80 is placed on a sample lifting mechanism 83 driven by a motor 32 serving as a driving means.

モーター82の回転によシわずかずつ上下方向にその位
置が可変できるように構成されている。
It is configured such that its position can be varied slightly in the vertical direction by rotation of the motor 82.

検出器31からの検出信号はアナロン−デジタル変換器
34でデジタル数値に変換され、記憶回路35に記憶さ
れる。この記憶回路85に記憶された数値は演算回路8
6で演算され、その結果に応じて制御回路37に信舟が
送られる。この信号に応じて制御回路87はモーター3
2の回転を制御する。
The detection signal from the detector 31 is converted into a digital value by an analog-to-digital converter 34 and stored in a storage circuit 35. The numerical value stored in this memory circuit 85 is stored in the arithmetic circuit 8
6, and the signal is sent to the control circuit 37 according to the result. In response to this signal, the control circuit 87 controls the motor 3.
Controls the rotation of 2.

試料80を駆動手段の一部である試料昇降機構38の上
に載置し、拡散反射装置29の凹面鏡24の焦点よシも
充分低い(または高い)位置に調整する。この状態で拡
散反射装置29に赤外光28を入射すると、赤外光28
は試料80表面で拡散反射された後検出器81に到達す
る。このとき、試料80の上下位置が完全に赤外光28
の光路からはずれていると赤外光28は検出器81まで
到達しないが何ら支障はない。
The sample 80 is placed on the sample lifting mechanism 38, which is part of the driving means, and the focal point of the concave mirror 24 of the diffuse reflection device 29 is also adjusted to a sufficiently low (or high) position. When the infrared light 28 is incident on the diffuse reflection device 29 in this state, the infrared light 28
reaches the detector 81 after being diffusely reflected on the surface of the sample 80. At this time, the upper and lower positions of the sample 80 are completely aligned with the infrared light 28
If the infrared light 28 is deviated from the optical path of the detector 81, the infrared light 28 will not reach the detector 81, but there will be no problem.

検出器31からの検出信号はアナログ−デジタル変換器
84でデジタル数値に変換され、記憶回路85に記憶さ
れる。この場合、試料位置が区別できるようなデータと
共に記憶させる。例えば第1回目の測定の場合、1とい
う数値も一緒に記憶させる。
The detection signal from the detector 31 is converted into a digital value by an analog-to-digital converter 84 and stored in a storage circuit 85. In this case, it is stored together with data that allows the sample position to be distinguished. For example, in the case of the first measurement, the value 1 is also stored.

次に制御回路87.駆動手段の一部であるモーター82
を制御して試料30をわずかに上方(または下方)に移
動する。この状態で前述のように赤外光28を入射して
検出5slで検出しアナログ−デジタル変換器84でデ
ジタル数値に変換した後2例えば2という試料30の相
対的位置を示す記号と共に記憶回路35に記憶させる。
Next, the control circuit 87. Motor 82 that is part of the drive means
control to move the sample 30 slightly upward (or downward). In this state, as described above, the infrared light 28 is incident, detected by the detection unit 5sl, and converted into a digital value by the analog-to-digital converter 84, and then sent to the memory circuit 35 along with a symbol 2, for example, 2, indicating the relative position of the sample 30. to be memorized.

以上のように試料8oをわずかずつ上方(または下方)
に移動させながら、第2図に示す凹面鏡24の焦点よシ
も充分鳥い(または低い)位置まで検出器81の検出信
号を記憶回路35に記憶していく、。
As above, move sample 8o slightly upward (or downward).
While moving the detector 81, the detection signal of the detector 81 is stored in the storage circuit 35 until the focal point of the concave mirror 24 shown in FIG.

上記のように記憶回路35に記憶された試料3゜の相対
的な位置と、その位置における検出信号強度から、演算
回路86にょシ最も検出信号強度が高くなる試料位置が
められる。この結果。
As described above, from the relative position of the sample 3° stored in the storage circuit 35 and the detected signal intensity at that position, the arithmetic circuit 86 determines the sample position where the detected signal intensity is highest. As a result.

演算回路86から制御回路87へ最も検出信号強度が高
くなるような試料80位置へ試料8oが移動するように
信号が送られる。その後、更に制御回路87はモーター
82を回転させて試料昇降機構88を上下させ、試料8
0位置を設定する。
A signal is sent from the arithmetic circuit 86 to the control circuit 87 so that the sample 8o is moved to the position of the sample 80 where the detection signal intensity is highest. After that, the control circuit 87 further rotates the motor 82 to move the sample lifting mechanism 88 up and down, and
Set the 0 position.

ryr 、上記実施例では最適位置の演算法としてあら
かじめ一定間隔で赤外線強度と位置を測定記憶し最後に
これらを比較する方法をとったが。
ryr In the above embodiment, the optimum position calculation method is to measure and store the infrared intensity and position at regular intervals in advance, and then compare them at the end.

赤外線強度と強度差を利用したニュートン法や傾斜法な
ど種々の最適化法を用いた演算であっても良い。
The calculation may be performed using various optimization methods such as Newton's method or slope method using infrared intensity and intensity difference.

また、第3図に示す各回路、検出器、アナログ−デジタ
ル変換器等は第1図中の各回路・機器と兼用させるのが
望ましい。
It is also desirable that the circuits, detectors, analog-to-digital converters, etc. shown in FIG. 3 be used in common with the circuits and devices shown in FIG. 1.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図は従来のンーリエ変換型赤外分光光度劇のブロッ
ク図、第2図は拡散反射装置の光路図、第8図は本発明
の一実施例を示すブロック図である。 82・・・駆動手段の一部としてのモータ、88・・・
駆動手段の一部としての試料昇降機構、31・・・検出
器、85・・・記憶回路、36・・・演算回路、37・
・・制御回路。 25 第2図 躬′3図
Fig. m1 is a block diagram of a conventional infrared spectrophotometer of the Nurier transform type, Fig. 2 is an optical path diagram of a diffuse reflection device, and Fig. 8 is a block diagram showing an embodiment of the present invention. 82...Motor as part of the drive means, 88...
Sample lifting/lowering mechanism as part of driving means, 31...detector, 85...memory circuit, 36...arithmetic circuit, 37.
...Control circuit. 25 Figure 2 Figure '3'

Claims (1)

【特許請求の範囲】 試料に赤外線を照射して拡散反射赤外線の強度を測定す
る赤外分光光度計において、試料を移動させる駆動手段
と、試料からの拡散反射赤外線強度を測定する検出器と
、該赤外線強度と試料の位置情報を同時に記憶する記憶
回路と。 記憶回路からの赤外線強度を比較して最適強度に相描す
る位置情報を選択する演算回路と、試料が演算回路でめ
た最適位置となるように駆動手段を制御する制御回路と
を具備した事を特徴とする試料の位置調整装置。
[Scope of Claims] An infrared spectrophotometer that irradiates a sample with infrared rays and measures the intensity of the diffusely reflected infrared rays, comprising: a drive means for moving the sample; a detector that measures the intensity of the diffusely reflected infrared rays from the sample; a memory circuit that simultaneously stores the infrared intensity and sample position information; Equipped with an arithmetic circuit that compares infrared infrared intensities from the memory circuit and selects position information that corresponds to the optimum intensity, and a control circuit that controls the driving means so that the sample is at the optimum position determined by the arithmetic circuit. A sample position adjustment device characterized by:
JP58225885A 1983-11-30 1983-11-30 Position adjustor for sample Pending JPS60117132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225885A JPS60117132A (en) 1983-11-30 1983-11-30 Position adjustor for sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225885A JPS60117132A (en) 1983-11-30 1983-11-30 Position adjustor for sample

Publications (1)

Publication Number Publication Date
JPS60117132A true JPS60117132A (en) 1985-06-24

Family

ID=16836386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225885A Pending JPS60117132A (en) 1983-11-30 1983-11-30 Position adjustor for sample

Country Status (1)

Country Link
JP (1) JPS60117132A (en)

Similar Documents

Publication Publication Date Title
US4984894A (en) Method of and apparatus for measuring film thickness
US5159412A (en) Optical measurement device with enhanced sensitivity
IE903555A1 (en) Scanning sensor system including an interferometer
EP2963400B1 (en) Fourier transform infrared spectrometer
JPS60259918A (en) Multiple wavelength excitation photometer
US6509964B2 (en) Multi-beam apparatus for measuring surface quality
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
US7224460B2 (en) Mapping-measurement apparatus
US5116120A (en) Gas analyzer having a test chamber traversed by radiation
JPS60117132A (en) Position adjustor for sample
JP4206618B2 (en) Fourier transform infrared spectrophotometer
JP2540430B2 (en) Laser beam condensing characteristics measuring device
US4172637A (en) Common beam aperture for dual beam spectrophotometers
JPH05312538A (en) Three-dimensional shape measuring instrument
JP2891780B2 (en) Energy beam irradiation angle setting method
JP3309537B2 (en) Fourier transform spectrophotometer
JPH0578780B2 (en)
JP2001091448A (en) Analyzer
JPH0675035B2 (en) Reflectance measuring device
JPS6089732A (en) Automatic sample feeder of diffuse reflection device
JPH06281432A (en) Fine angle adjusting device
JPH0436642A (en) Raman spectrophotometer
JPH02116723A (en) Automatic adjustment mechanism of spectro-photometer
Anthon et al. Automated precision reflectometer for first-surface mirrors I: optical head
JPH03180743A (en) Infrared spectrophotometer