JPS6089600A - Regenerating method of electrolyte to be decontaminated - Google Patents

Regenerating method of electrolyte to be decontaminated

Info

Publication number
JPS6089600A
JPS6089600A JP19811483A JP19811483A JPS6089600A JP S6089600 A JPS6089600 A JP S6089600A JP 19811483 A JP19811483 A JP 19811483A JP 19811483 A JP19811483 A JP 19811483A JP S6089600 A JPS6089600 A JP S6089600A
Authority
JP
Japan
Prior art keywords
electrolyte
chamber
electrode
acid
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19811483A
Other languages
Japanese (ja)
Other versions
JPH0557560B2 (en
Inventor
Takashi Sasaki
隆 佐々木
Toshio Kobayashi
小林 俊男
Koichi Wada
耕一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO FUAUDORAA KK
Shinko Pfaudler Co Ltd
Original Assignee
SHINKO FUAUDORAA KK
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO FUAUDORAA KK, Shinko Pfaudler Co Ltd filed Critical SHINKO FUAUDORAA KK
Priority to JP19811483A priority Critical patent/JPS6089600A/en
Priority to US06/661,696 priority patent/US4615776A/en
Priority to EP84307185A priority patent/EP0141590B1/en
Priority to DE8484307185T priority patent/DE3484045D1/en
Publication of JPS6089600A publication Critical patent/JPS6089600A/en
Publication of JPH0557560B2 publication Critical patent/JPH0557560B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover the dissolved metallic ions in particular in the concd. form as far as possible by conducting DC current between an insoluble anode electrode and a capturing electrode which is a cathode via a diaphragm, depositing and recovering the dissolved metallic ions in the used electrolyte by the cathode and recovering simultaneously the electrolyte in the form of a strong acid in the initial period in an anode chamber. CONSTITUTION:A cathode chamber 2 partitioned by a diaphragm 2 of an electrodepositing and regenerating cell 1 contains the used electrolyte 4 consisting of the acid electrolyte of a high concn. in which radioactive dissolved metallic ions are accumulated. A capturing electrode 5 is installed in said chamber. An anolyte 7 which consists of the acid of the same component as the acid of the electrolyte, is adjusted to about 2pH and is provided with conductivity is contained in an anode chamber 6 having the same capacity as the capacity of the chamber 2. An insoluble electrode 8 is installed in said chamber. DC current is conducted to he electrode 8 as an anode and the electrode 5 as a cathode to deposit and recover the radioactive metal on the electrode 5 and to form the regenerated liquid in the chamber 6. The pH of the electrolyte 4 increases to about 2 in this case and at the same time the amt. of the gaseous H2 to be generated is decreased so that metal deposition takes place.

Description

【発明の詳細な説明】 本発明は、原子力発電所等で使用きれ裁囲に放射性を帯
びた機器の電解除染のために使用され除染効力の殆んど
なくなった電解液から放射性金員イオンを金相固体とし
て回収すると同時に電解液を初期の強酸液に再生する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for removing radioactive metal from an electrolyte that has almost lost its decontamination effect and is used to decontaminate equipment that is radioactive after being used at nuclear power plants. This invention relates to a method for recovering ions as a gold-phase solid and simultaneously regenerating an electrolyte into an initial strong acid solution.

電解除染の過程で、電解液中に蓄禎される放射性物質の
うち被除染物の表向から電解液中籾離放出される金―酸
化物等の懸濁物は電解液の循環濾過や沈降分m。等の固
液分離手段を適用するこ七により比較的容易に電解液系
外に敗出すことができる。しかし被除染物から溶用口電
解液中に金員イオンとして溶存する放射性物質は#配置
液分N手段で#:I′原夫されず次第に濃〜辞積される
ので、そのような電解液の放射線11)が増加した状態
で電解除染作業を続行することは作業者に放射線被曝の
危険が生ずるばが9でなく、電f’l?研摩効率が溶存
金員イオン濃度の増加により低下して電解液の痔命に違
Tる〇電f97研摩除染の電解液として5%硫酸等の強
酸の希薄水溶液を使用する場合は研摩速度が大きく溌電
解敢処理も容易であるが研M表開が粗く再汚染し易いの
で被除去物はn業物に限られる。一般の電解研摩に準じ
高濃度酸液を電解研摩除染に使用する場合、高濃度硫酸
系では研摩吸血の光沢度が悪いが、高濃度燐酸系および
高濃度r4酸−硫酸系では光沢化できるので、再使用目
的の容器内面あるいは部品の除染VC使用する2再使用
機器の再汚染防止の効果が最大となる。しかし廃電解液
の処理に関し問題がある。
During the process of electrolytic de-dying, among the radioactive substances accumulated in the electrolyte, suspended matter such as gold-oxides, which are released from the surface of the object to be decontaminated into the electrolyte, are removed by circulation filtration of the electrolyte and sedimentation. Minute m. By applying a solid-liquid separation means such as the above, the electrolyte can be relatively easily discharged from the electrolyte system. However, the radioactive substances dissolved in the electrolyte from the object to be decontaminated as metal ions are gradually concentrated and accumulated in the electrolyte solution. Continuing the decontamination work in a state where the radiation level 11) has increased may put workers at risk of radiation exposure. The polishing efficiency decreases due to the increase in the concentration of dissolved metal ions, resulting in a decrease in the electrolytic solution. If a dilute aqueous solution of a strong acid such as 5% sulfuric acid is used as the electrolyte for electrolytic F97 polishing decontamination, the polishing speed will decrease. Although it is easy to carry out hot electrolytic treatment, the surface of the polished surface is rough and easy to recontaminate, so the objects to be removed are limited to n-class materials. When a high concentration acid solution is used for electrolytic polishing decontamination in accordance with general electrolytic polishing, high concentration sulfuric acid systems have poor polishing gloss, but high concentration phosphoric acid systems and high concentration r4 acid-sulfuric acid systems can produce gloss. Therefore, the effect of preventing recontamination of reusable equipment is maximized when VC is used to decontaminate the inner surfaces of containers or parts intended for reuse. However, there are problems with the treatment of waste electrolyte.

すなわち、除染過程の電解液から濃翁d蓄積されてゆく
金属イオンを回収する方法は各種提案されているが、持
に電解液として高濃度の酸液を使用する場合、電解液中
の溶存金回イオンをa給された形態で回収することはこ
れまで困難とされている。例えば電解液中の溶存金属イ
オンを回収する1つの方法として、隔膜で仕切られた電
解槽中で捕集?$!aiKより析出回収する方法が知ら
れているが、この場合隔膜で仕切られた陰極室内の捕集
電極においてeま金網の析出民心よりも水素ガス発生反
応が優先して生ずるので、水素イオン濃度を金属の析出
可能な濃度にまで低下させることが必要条件2なる。と
ころが高濃度の酸溶液では隔1漢によって仕切られた陽
極室と陰極室との濃度勾配が大きく1含極室内へ酸が仏
教上上記のようVC陰極室内の水系イオン濃度を金属の
析出可能な#度に低下きせることができず、隔膜の効果
がでなかった。
In other words, various methods have been proposed to recover the metal ions that accumulate from the electrolyte during the decontamination process, but when a highly concentrated acid solution is used as the electrolyte, the dissolved Until now, it has been difficult to recover gold ions in the a-supplied form. For example, one way to recover dissolved metal ions in an electrolyte is to collect them in an electrolytic tank separated by a diaphragm. $! A method of precipitation and recovery from aiK is known, but in this case, the hydrogen gas generation reaction occurs preferentially at the collection electrode in the cathode chamber partitioned by a diaphragm, rather than the precipitation center of the wire mesh, so the hydrogen ion concentration cannot be reduced. Requirement 2 is to reduce the concentration to a level where metal can be precipitated. However, in a highly concentrated acid solution, there is a large concentration gradient between the anode chamber and the cathode chamber, which are separated by a partition.According to Buddhism, when the acid enters the cathode chamber, it lowers the aqueous ion concentration in the VC cathode chamber, making it possible for metals to precipitate. # It was not possible to reduce the drop, and the diaphragm was not effective.

以上のような次第で、高濃度の散液を電#!除染液とす
る場合は、従来、電解液中の溶存金属イオン濃度あるい
は放射線量が一定値に達した四点て仁の電解液を廃液と
してプラスチック同化処理あるいはセメント同化処理を
行なって亮棄している。しかしこのような廃電解液の処
理力法は2次汚染廃棄物茄が増加する点で問題が伐って
いる。
Depending on the above, you can make a highly concentrated dispersion! Conventionally, when using a decontamination solution, the electrolyte solution that has reached a certain level (dissolved metal ion concentration or radiation dose) is treated as a waste solution by performing plastic assimilation treatment or cement assimilation treatment and discarding it. ing. However, this method of processing waste electrolyte has a problem in that it increases the amount of secondary contaminated waste.

本発明は従来技術の上記島問題を解決するため、電解除
染過程の高濃度酸溶液の電解液中の溶存金属イオンをで
きるだけ濃縮された形態で回収可能とするとともに電解
液を再生して廃液の発生を抑制することを可能とする方
法を与え、2次坑棄物梱を少くすることを目的とする。
In order to solve the above-mentioned island problem of the prior art, the present invention makes it possible to recover dissolved metal ions in the electrolyte of a highly concentrated acid solution during the electrolytic dedying process in a form as concentrated as possible, and also regenerates the electrolyte and wastes it. The purpose of this invention is to provide a method that makes it possible to suppress the occurrence of waste materials, and to reduce the amount of secondary mine waste bales.

本発明の方法は、隔膜によって仕切られた陽極室と陰極
室とを持つ電#411において、陰極室には特命に達し
た使用済の電解液と捕集電極を収容し1−力陽極室は電
解液と同成分の酸を添加してPHをほぼ2Kv!4整し
た水溶液と不に性電極を収容し1隔膜を介して陽極の不
溶液電極と陰極の捕集電極との同に直流通電を行なって
使用済電解液中の溶存金員イオンを内極に析出回収する
と同時に陽極室で電解液を初79(の強酸として回収す
るものである。
The method of the present invention is that in cell #411, which has an anode chamber and a cathode chamber separated by a diaphragm, the cathode chamber stores a used electrolyte and a collection electrode that have reached a special purpose, and the anode chamber is Add an acid with the same components as the electrolyte to reduce the pH to approximately 2Kv! 4) Contains the prepared aqueous solution and the inert electrode, and 1) DC current is applied to the anode insoluble electrode and the cathode collection electrode through a diaphragm to remove dissolved gold ions in the spent electrolyte from the inner electrode. At the same time, the electrolyte is recovered as a strong acid in the anode chamber.

不発側力法においては、次の諸過程が(Pl運的に行な
われるよう、設定がなσれる。すなわち、Ii&極室に
収容した寿命に達した使用済電解液中出 の溶存金属イオンから金■を析させるためKは先づ金属
イオノと結合していないフリーな酸から水素イオンを水
屋ガスとして除去し水素イオン濃度を低下きせる必要が
ある。一方、電解液を再生するためKri陰極室で分離
された陰イオンを隔膜′f、JI]Iシ陽極室に移動さ
せ、陽極の不溶性電fiKよって生成した水素イオンと
結合させて、陰極室で分解した酸と一奪h1でしかも同
濃度の酸溶7反を再生する必要がある。そのためには当
初、陽極室に収容する液としては、陰極室に収容する電
解液と同容笥でLがも酸分の含まれていない液でなけれ
はならないことになるが、しかし酸分の全く入っていな
い中性液では導電性が悪く隔膜電解が困難になるので、
陽極室の液としては再生後の酸濃度に影曽を及はさない
範囲でなおかつ導電性をもった液にする必要がある。従
って電解液と同成分の醒によって導電性をもたせ、しか
も次回のバンチ操作のl’A M 液として陰極室に生
じた処理液を利用するためには、PJ(を21j’J 
Vt−K lt’!整した液を初回に使用するこ七が望
ましい。
In the unexploded side force method, settings are made so that the following processes are carried out in a Pl luck manner. In other words, from the dissolved metal ions in the spent electrolyte that has reached the end of its life stored in the Ii & electrode chamber. In order to deposit gold, it is first necessary to remove hydrogen ions from free acids that are not bonded to metal ions as mizuya gas to lower the hydrogen ion concentration.On the other hand, in order to regenerate the electrolyte, Kri cathode The anions separated in the chamber are transferred to the anode chamber through the diaphragm 'f, JI]I, where they are combined with hydrogen ions generated by the insoluble electrolyte at the anode, and the anions are absorbed at the same rate as the acid decomposed in the cathode chamber. It is necessary to regenerate the acid solution with a concentration of 7. To do this, the solution to be stored in the anode chamber must first be a solution that has the same volume as the electrolyte to be stored in the cathode chamber, but does not contain acid. However, a neutral solution containing no acid has poor conductivity and makes diaphragm electrolysis difficult.
The liquid in the anode chamber must be electrically conductive and within a range that does not affect the acid concentration after regeneration. Therefore, in order to make the treated solution conductive due to the awakening of the same components as the electrolytic solution and to use the treatment solution generated in the cathode chamber as the l'A M solution for the next bunch operation, PJ (21j'J
Vt-Klt'! It is preferable to use the prepared solution for the first time.

本発明はこのようVC設定してパンチ式操作により遂行
される。本発明では、通電当初は陰極室内の酸の水素イ
オンが水素ガスとして飛散し陰イオンが分離されると同
時にItjil極室内では不溶性電極によって酸素の発
生と並行して水素イオンが生成され、陰極室内の分離さ
れた陰イオ/が陽極室内に移動して水素イオンと結合し
て再び酸に再生される。この反応過程を継続して陰極室
内の水素イオン濃度が次第に低下しPH=2VC達する
と溶4′、′会Uイオンが捕集電極上に析出する。この
間も分離でれた陰イオンがliお極室に移動し同様に酸
として再生される。従って、最終的には、 l’lil
棒室には当初の電解液と同口の高濃度の溶存酸素イオ/
の除去された酸f′8#が再生され、これは電解除染の
電解液として使用可能であり、−力陰様室K u Ji
ff its電極上に溶存金鴫イオンを重心回収すると
同時VCPH= 2程度の溶存金回イオンを殆んど合ま
ない溶成が残液 る。そしてこの陰極室内の溶は次回のバッチ操ハ 作詩には陽むく室へgwJ して前記のPH調整液2同
様VC使用できる。このパンチ操作を繰返すことによっ
て廃液を出さず濱存金(1イオーを金鴫として回収しか
つ電解液を再生することができるO 本発明の方法を添付図に例示の装置によりδらに具体的
に説明する。電着再生槽(1ンの隔膜(2〉によって仕
切られた陰極室(3) Vt−はν子命に達した使用済
電解液(4)すなわち放射性溶存金回イオ/の#槓した
高濃度酸電メlv液を収容しかつ白板等の捕集電極(5
)を設直し1隘極室(3)と同容損の陽極室(6)Kは
電力r液と同成分の酸によってPH=2程度Vc調整し
て等定性を打たせた陽極液(7)を収SlLかつ白金メ
ンキしたチタンネント製の不溶性71j極(8)を設置
する。そして不溶性電極(8ンを四極とL 4Tl]集
電極(5)を陰極とし1頁流通電を行い、捕集電極(5
)上r(溶存企嬬イオンを析出回収し陽極室(6)Kは
再生電解液を生成σせるΩ通電当初は陰極室(3)内の
電解液の水素イオン濃度が高く捕集電極(5)上では多
量の水素ガスが発生して金鴫の析出は生じないが、電解
液(4)のPI(が28+!度r(上昇するとともに水
素ガス発生岱が減少し余端析出が生ずるようKなる。そ
して陰極室(3)で生じ/こ陰イオンは陽極室(6)K
移行し1陶極室(6)では不躬性電極(8)での112
素の放出により生じた水素イオンと結合して電解液VC
74生する5JJf+電の継#iにより所定の結果に到
達すればパンチ操作を終る。
The present invention is performed by setting the VC as described above and performing a punch-type operation. In the present invention, when electricity is initially applied, hydrogen ions of the acid in the cathode chamber are scattered as hydrogen gas and anions are separated, and at the same time hydrogen ions are generated in the Itjil electrode chamber by an insoluble electrode in parallel with the generation of oxygen. The separated anions move into the anode chamber and combine with hydrogen ions to be regenerated into acid again. Continuing this reaction process, the hydrogen ion concentration in the cathode chamber gradually decreases and when pH=2VC is reached, dissolved 4','-U ions are deposited on the collection electrode. During this time, the separated anions move to the Li electrode chamber and are similarly regenerated as an acid. Therefore, in the end, l'lil
The rod chamber contains the same high concentration of dissolved oxygen and ions as the original electrolyte.
The removed acid f'8# is regenerated, which can be used as an electrolyte for electrolytic de-dying, - force-yin-like chamber K u Ji
When the center of gravity of the dissolved gold ions is collected on the ffits electrode, there remains a solution that hardly contains dissolved gold ions with a VCPH of about 2. The solution in the cathode chamber can then be transferred to the solar chamber for the next batch operation and used as a VC in the same way as the pH adjusting solution 2 described above. By repeating this punching operation, it is possible to recover the remaining gold (1 iodine) as gold powder and regenerate the electrolyte without producing any waste liquid. In the cathode chamber (3) partitioned by a diaphragm (2) in the electrodeposition regeneration tank (1), Vt- is the spent electrolyte (4) that has reached the ν life, i.e. # of the radioactive dissolved gold io/ A collecting electrode (5
) was rebuilt and the anode chamber (6) with the same capacity loss as the 1st electrode chamber (3) was used. ) and an insoluble 71j electrode (8) made of platinum-coated titanium. Then, one page of current was applied using the insoluble electrode (8 mm as a quadrupole and L 4 Tl) as the collector electrode (5) as the cathode, and the collector electrode (5) was used as the cathode.
) upper r (dissolved potential ions are precipitated and recovered, and the anode chamber (6) K generates a regenerated electrolyte (σ). Ω At the beginning of energization, the hydrogen ion concentration of the electrolyte in the cathode chamber (3) is high and the collection electrode (5) ), a large amount of hydrogen gas is generated and gold drop does not precipitate, but as the PI of the electrolyte (4) rises to 28+! degrees r, the amount of hydrogen gas generated decreases and precipitation occurs at the excess. K.Then, this anion is produced in the cathode chamber (3) and becomes K in the anode chamber (6).
112 in the infallible electrode (8) in the transition 1 electrode chamber (6)
Combines with hydrogen ions generated by the release of hydrogen atoms to form an electrolyte VC
If a predetermined result is reached by 5JJf + electric connection #i, the punching operation ends.

通電の准fiによ!ll陰極室(3)内のPHが上昇し
過ぎる場合は、陰極室(3)内Vc設置したpn叶(9
)により検出しボ/プ00を運転して陽極室(6)内の
再生電解液を18極室(3) K #i加して電着効率
のよいpn=21cコントロールするようにすることが
できる。
It's a quasi-fi with electricity! ll If the pH in the cathode chamber (3) rises too much, remove the
), the regenerated electrolyte in the anode chamber (6) can be added to the 18-electrode chamber (3) by operating the bo/p00 to control pn=21c for high electrodeposition efficiency. can.

本発明方法の数値的実施例を示すと次のとおりである。Numerical examples of the method of the present invention are shown below.

(1) 5US14不婢肖を燐酸75ωt%の電解液で
電解除染を行なって生じた使用済電解液を対象とする。
(1) The target is a used electrolyte produced by electrolytically dedying 5US14 filth with an electrolyte containing 75ωt% phosphoric acid.

この液pζは欽イオン62.5g/Isクロムイオン9
.75g// s ニッケルイオン1.75g、/l 
、コバルトイオン0.21g//が溶存している。この
液を添付図装置の陰極室(3)に収容し1陽極室(6)
にはP)12 ICC修整た液を収容し、IOA/aゴ
の電流密度にて隔膜電解を血屯愈3・500 AH/l
まで実施した。その結果、陰極室(3)内の液に伐笛す
る会同イオンはそれぞれ鉄イオン0.045g/li 
クロムィオ70.052g// 、ニッケルイオン0.
067g/l 1 コバルトイオン0.002(g//
 kなり、−力1−極室(6)内の故の燐酸イア/は1
250g/i ?!:なってほぼ完全に当初の75ωt
5+5の高濃反炒般准2して再生された。ただし、この
再生液中へi’t tiM 1M(2)を介しての濃度
拡散OでよV約20%金回イオンのリークがみられた。
This liquid pζ is 62.5 g of chromium ion/Is chromium ion 9
.. 75g//s Nickel ion 1.75g/l
, 0.21 g// of cobalt ions are dissolved. This liquid is stored in the cathode chamber (3) of the apparatus shown in the attached figure, and the anode chamber (6)
Contain P)12 ICC corrected liquid and perform diaphragm electrolysis at a current density of IOA/a of 3.500 AH/l.
carried out up to. As a result, the amount of iron ions added to the liquid in the cathode chamber (3) was 0.045 g/li.
Chromeio 70.052g//, Nickel ion 0.
067g/l 1 Cobalt ion 0.002(g//
k, - force 1 - the phosphoric acid / in the polar chamber (6) is 1
250g/i? ! : Almost completely the original 75ωt
It was played as 5+5 Takano Anti-Fried General Jun 2. However, it was observed that approximately 20% gold ions leaked into the regenerating solution through i't tiM 1M (2).

(: M ) niJ (1)例と同様Kして燐酸70
ωt%、硫酸30ωt%の2成分系の高歳Iy1綬液を
電)′産油として電解除染を行って生じた秋、クロム、
ニッケル、コバルトの金知イオンを100程度に溶解ゴ
ーる使用済電解液を・対象とし亀本発明力法によって隔
膜電解を実施したところり4ノ例〔1〕 と同様な結果
が得られた。
(: M) niJ (1) As in the example, K and phosphoric acid 70
Autumn, chromium, produced by de-dying the two-component Takashi Iy1 solution containing ωt% and 30ωt% sulfuric acid as electrolyte oil,
When diaphragm electrolysis was carried out using the Kamemoto Inventive Power Method using a used electrolytic solution in which nickel and cobalt ions were dissolved to about 100%, similar results to Example 4 [1] were obtained.

特に陽極室(6)内の燐酸・イ流酸再生液は当初の電解
液と混合比の同じものが再生された口以上のように本発
明方法によると、放射能除染機器の再使用1!:有利と
する高濃度酸による電解すt M l#、染に併用して
、除染対象機器から除去された放射性を帯びた企覇物質
ね捕集電極に集中捕捉されるので放射性物質の集中廃棄
処理が可能となり、電解1余染に使用きれた電ri’+
i液は再生して再使用されるので放射性廃液として処理
する6曹が解消あるいは軽減され、2υ(汚!1gの拡
散の問題を解決することができる効果がある。
In particular, according to the method of the present invention, the phosphoric acid/fluoric acid regenerated solution in the anode chamber (6) has the same mixing ratio as the original electrolyte. ! : Used in conjunction with electrolysis with high concentration acid, which is advantageous, the radioactive substances removed from the equipment to be decontaminated are concentratedly captured by the collection electrode, reducing the concentration of radioactive substances. It is now possible to dispose of the electricity ri'+ that has been used for electrolysis 1 after-dyeing.
Since I-liquid is regenerated and reused, the amount of 6sodium that must be treated as radioactive waste is eliminated or reduced, which has the effect of solving the problem of diffusion of 2υ (dirt!1g).

【図面の簡単な説明】[Brief explanation of the drawing]

添イ・]図は本発明′j5法をブ(施する装置)゛(の
1例の側聞配置?Z図である。 (1)・・電着再生イ台、(2)・・隔膜、(3)・・
陰極室)(4) ・ ・ 1会 極 室 欣 、り5)
 ・ ・ t+Ii 集 電 極 、(6) ・ ・陽
極室、(7)・・陶祿室液、(8)・・不溶性重積、(
9)・・PHI71、四・−ボ/ブ。
The attached figure is a Z diagram of an example of the lateral arrangement of the apparatus for applying the method of the present invention. (1) Electrodeposition regeneration stand, (2) Diaphragm. , (3)...
Cathode chamber) (4) ・ ・ 1 meeting Pole chamber Kin, Ri5)
・ ・ t+Ii collector electrode, (6) ・ ・Anode chamber, (7)... Ceramic chamber fluid, (8)... Insoluble status accumulation, (
9)...PHI71, 4-bo/bu.

Claims (1)

【特許請求の範囲】[Claims] 電解除染に使用され放射性金Nイオンを含む高濃度酸電
解液から捕集電極に放射性金−を回収し電解液を初期の
高?Q度酸に再生する方法であって、隔膜によって11
等容量の陽極室と陰極室に代りった電着再生槽の陽極室
には同成分の酸によってPJ(を2 QiJ後に調整し
導電性を持たせた液を収容し不溶4′1電棒を設置し、
陰極室には放射性会同イオンを含む高濃度酸使用済電解
液を収容し歌板等の捕集電極を設置し、直流通電するこ
とによって、捕集電極上に放射性金員を回収するととも
に陽極室に電解液として(与利用町屹な高濃度酸液を再
生することを特徴とする隔FPA電MKよる除染電解液
の再生力法。
Radioactive gold is recovered from the highly concentrated acid electrolyte containing radioactive gold N ions used for electrolytic de-dying to a collection electrode, and the electrolyte is then recovered from the initial high concentration. A method for regenerating into Q-degree acid using a diaphragm.
The anode chamber of the electrodeposition regeneration tank, which replaced the anode chamber and cathode chamber of equal volume, contained a solution prepared by adjusting PJ (after 2 QiJ) with an acid of the same composition to make it conductive, and an insoluble 4'1 electric rod was placed in the anode chamber. installed,
The cathode chamber contains a highly concentrated acid spent electrolyte solution containing radioactive ions, and a collection electrode such as a singing board is installed.By applying direct current, radioactive metal is collected on the collection electrode, and the anode chamber A method for regenerating a decontamination electrolyte using the FPA Den MK, which is characterized by regenerating a highly concentrated acid solution as an electrolyte.
JP19811483A 1983-10-21 1983-10-21 Regenerating method of electrolyte to be decontaminated Granted JPS6089600A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19811483A JPS6089600A (en) 1983-10-21 1983-10-21 Regenerating method of electrolyte to be decontaminated
US06/661,696 US4615776A (en) 1983-10-21 1984-10-17 Electrolytic decontamination process and process for reproducing decontaminating electrolyte by electrodeposition and apparatuses therefore
EP84307185A EP0141590B1 (en) 1983-10-21 1984-10-18 Method and apparatus for regenerating an acid electrolyte that has been used in the decontamination of components with radioactively contaminated surfaces
DE8484307185T DE3484045D1 (en) 1983-10-21 1984-10-18 METHOD AND ARRANGEMENT FOR REGENERATING AN ACID ELECTROLYTE USED FOR DECONTAMINATING COMPONENTS WITH RADIOACTIVELY CONTAMINATED SURFACES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19811483A JPS6089600A (en) 1983-10-21 1983-10-21 Regenerating method of electrolyte to be decontaminated

Publications (2)

Publication Number Publication Date
JPS6089600A true JPS6089600A (en) 1985-05-20
JPH0557560B2 JPH0557560B2 (en) 1993-08-24

Family

ID=16385699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19811483A Granted JPS6089600A (en) 1983-10-21 1983-10-21 Regenerating method of electrolyte to be decontaminated

Country Status (1)

Country Link
JP (1) JPS6089600A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136808B2 (en) 2012-12-19 2017-05-31 株式会社デンソーウェーブ Information code generation method, information code, information code reader, and information code utilization system
WO2014098134A1 (en) 2012-12-19 2014-06-26 株式会社デンソーウェーブ Information code, information code generation method, information code reader device, and information code usage system
EP2937818B1 (en) 2012-12-19 2022-04-20 Denso Wave Incorporated Information code, information code generation method, information code reader device, and information code usage system
EP2937820B1 (en) 2012-12-19 2021-07-28 Denso Wave Incorporated Method of producing an information code, information code and information code reader

Also Published As

Publication number Publication date
JPH0557560B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JPH01294368A (en) Preparation of electrolyte for redox flow battery
JPH05209998A (en) Extraction method of technetium from radioactive polluted metal
JPH07280998A (en) Method for decontaminating transition metal
RU2157569C2 (en) Method for removing technetium from metal contaminated with radioactive materials
JPS6089600A (en) Regenerating method of electrolyte to be decontaminated
KR101919200B1 (en) Electrolytic decontamination method capable of regenerative electrolyte
JP3342968B2 (en) Reprocessing of spent fuel
CN107338359B (en) It is a kind of containing gold, copper, nickel waste nitric acid in heavy metal classified reclaiming method
JPS5914000A (en) Method of removing radioactive material in electrolyte in electrolytic decontamination
JP3173566B2 (en) Method for recovering metallic uranium from uranium-containing sodium fluoride salt
JPS603593A (en) Method of electrolytically decontaminating radioactive metallic waste
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
JPS61161500A (en) Electrolytic decontamination waste liquor treating method
JPS60179700A (en) Method of continuously regenerating decontaminated electrolyte
JPH0527093A (en) Processing of radioactive metallic sludge
JPH08112595A (en) Method and device for consumable anodic electrodissolution applicable for decontamination of slightly radioactive wasteliquid
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPS59116595A (en) Method of removing radioactive material in electrolyte in electrolytic decontamination
KR100579370B1 (en) Volume Reduction method of Uranium-containing Sludge
JPH0210232B2 (en)
JPH0631858B2 (en) Method for separating metal ions in solution
JPS59219499A (en) Electrolytic decontaminating method by dilute electrolyte
JPS5597287A (en) Treatment system for waste water used in metal acid washing
JPH0231838B2 (en)
JPS60204900A (en) Regenerating method of electrolytic polishing liquid